

Etomidato

Eric Sabatini Regueira R1 Medicina de Emergência HCFMUSP

SRI

- * Dose: $0.2^1 0.6 (0.3)^2 \text{ mg/kg}$
 - * 59% bom
 - * 19% inadequado
- * 30 segundos
- * 10 minutos

¹ Kay B. Some experience of the use of etomidate in children. Acta Anesthesiol Belg. 1976;27 Suppl:86–92

² Zuckerbraun NS et al. Use of etomidate as an induction agent for rapid sequence intubation in a pediatric emergency department. Acad Emerg Med. 2006; 13(6):602-9

Quando usar?

- * Hipotensão
- * Aumento de PIC
- * TCE + Hipotensão
- Status Epilepticus

Prós

- * Efeitos hemodinâmicos^{3, 4}
- * Farmacocinética⁵
- Efeitos respiratórios⁶

³ Gooding JM, Corssen G. Effect of etomidate on the cardio-vascular system. Anesth Analg 1977; 56: 517–9

⁴ Sprung J, Ogletree-Hughes ML, Moravec CS. The effects of etomidate on the contractility of failing and nonfailing human heart muscle. Anesth Analg. 2000;91:68–75

⁵ Van Hamme MJ, Ghoneim MM, Ambre JJ. Pharmacokinetics of etomidate, a new intravenousanesthetic. Anesthesiology 1978; 49: 274–7

⁶ Morgan M. Lumley I. Whitznam IC. Recuiratory effects of etomidate Br. I. Angesth 1977: 49: 233-6

Contras

- Supressão adrenal⁷
- * Mioclonia⁸

⁷ Vinclair M, Broux C, Faure P, Brun J, Genty C, Jacquot C, et al. Duration of adrenal inhibition following a single dose of etomidate in critically ill patients. Intensive Care Med. 2008;34:714–9.

⁸ Guldner, G., Schultz, J., Sexton, P., Fortner, C. and Richmond, M. (2003), Etomidate for Rapid-sequence Intubation in Young Children: Hemodynamic Effects and Adverse Events. Academic Emergency Medicine, 10: 134–139. doi:10.1197/aemj.10.2.134

Anesthetic Indi Conclusion than Propofol, Liva 30-Day Mortal After Noncardia

Ryu Ł Yusu

The impact of e L'impact de l'été trauma

Chris Hinkewich, MD · Robert G

on between use of a single dose 🔒 🕻 racheal intubation in the inconclusive. Etomidate vith caution in trauma ttion. Further data are ty and risk-benefit of lation.

ly in trauma patients lité des patients atteints de

The use of bolus dose in the 72 h before study is associated with an incidence of inadequate o corticotropin, but is also e associated with an 1 mortality. We recommend demonstrate extreme cau-

use of etomidate in 30-day morspecially on Ithough our tcomes but at improved longer-term

MD;

a lower incidend

Etomidate

RESEARCH

to pneum Comparis patients w anesthesid surgery: a

Conclusions: This study found no evidence induction with or without administration of a an acceptable option for single-dose anesthesia inducti **Open Access**

variables in date-facilitated ajor cardiac

sed on anesthesia d lxchel Castellanos¹ te might remain

Single-Dose Etomidate Does Not Increase Mortality in Patients With Sepsis

A Systematic Review and Meta-analysis of Randomized Controlled Trials and Observational Studies

Wan-Jie Gu, MSc; Fei Wang, MD; Lu Tang, MD; and Jing-Chen Liu, MD

BACKGROUND: The effect of single-dose etomidate on mortality in patients with sepsis remains controversial. We systematically reviewed the literature to investigate whether a single dose of etomidate for rapid sequence intubation increased mortality in patients with sepsis.

METHODS: PubMed, Embase, and CENTRAL (Cochrane Central Register of Controlled Trials) were searched for randomized controlled trials (RCTs) and observational studies regarding the effect of single-dose etomidate on mortality in adults with sepsis. The primary outcome was all-cause mortality. The Mantel-Haenszel method with random-effects modeling was used to calculate pooled relative risks (RRs) and 95% CIs.

RESULTS: Eighteen studies (two RCTs and 16 observational studies) in 5,552 patients were included. Pooled analysis suggested that single-dose etomidate was not associated with increased mortality in patients with sepsis in both the RCTs (RR, 1.20; 95% CI, 0.84-1.72; P = .31; $I^2 = 0\%$) and the observational studies (RR, 1.05; 95% CI, 0.97-1.13; P = .23; $I^2 = 25\%$). When only adjusted RRs were pooled in five observational studies, RR for mortality was 1.05 (95% CI, 0.79-1.39; P = .748; $I^2 = 71.3\%$). These findings also were consistent across all subgroup analyses for observational studies. Single-dose etomidate increased the risk of adrenal insufficiency in patients with sepsis (eight studies; RR, 1.42; 95% CI, 1.22-1.64; P < .00001).

CONCLUSIONS: Current evidence indicates that single-dose etomidate does not increase mortality in patients with sepsis. However, this finding largely relies on data from observational studies and is potentially subject to selection bias; hence, high-quality and adequately powered RCTs are warranted.

CHEST 2015; 147(2):335-346

	Etomid	late	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.1.1 RCT							
Jabre 2009	17	41	12	35	37.2%	1.21 [0.67, 2.17]	
Tekwani 2010	26	61	21	59	62.8%	1.20 [0.76, 1.88]	-
Subtotal (95% CI)		102		94	100.0%	1.20 [0.84, 1.72]	
Total events	43		33				
Heterogeneity: Tau ² = 0.0	00; Chi ² = 0	0.00, df	= 1 (P =	0.98); [² = 0%		
Test for overall effect: Z =	= 1.01 (P =	0.31)					
1.1.2 Observational stud	dies						
Alday 2014	38	83	36	83	4.2%	1.06 [0.75, 1.48]	-
Annane 2002	38	72	135	227	7.2%	0.89 [0.70, 1.13]	-
Cherfan 2011	23	23	37	39	19.7%	1.04 [0.95, 1.15]	*
Cuthbertson 2009	41	96	123	403	5.9%	1.40 [1.06, 1.84]	
Dmello 2010	44	113	46	111	4.6%	0.94 [0.68, 1.29]	
Ehrman 2011	76	173	26	57	4.4%	0.96 [0.69, 1.34]	
Jung 2012	17	60	14	42	1.5%	0.85 [0.47, 1.53]	
Kim 2008	9	25	20	40	1.4%	0.72 [0.39, 1.32]	
McPhee 2013	410	1102	345	912	17.8%	0.98 [0.88, 1.10]	*
Mohammad 2006	24	38	63	114	5.3%	1.14 [0.85, 1.53]	
Ray 2007	51	74	51	85	7.7%	1.15 [0.91, 1.45]	 -
Riché 2007	25	69	22	47	2.7%	0.77 [0.50, 1.20]	
Sunshine 2013	175	452	108	372	9.7%	1.33 [1.10, 1.62]	
Tekwani 2008	63	135	18	46	3.1%	1.19 [0.80, 1.78]	
Tekwani 2009	28	74	14	32	2.2%	0.86 [0.53, 1.41]	
Thompson Bastin 2014	38	110	18	47	2.6%	0.90 [0.58, 1.41]	
Subtotal (95% CI)		2699		2657	100.0%	1.05 [0.97, 1.13]	•
Total events	1100		1076				
Heterogeneity: Tau ² = 0.0	00; Chi2 =	19.88, d	If = 15 (P	= 0.18); I ² = 25%		
Test for overall effect: Z =	= 1.21 (P =	0.23)					
							02 05 1 2 5
							0.2 0.5 1 2 5 Favors etomidate Favors control
							ravors etornidate ravors control

Figure 2 – Effect of single-dose etomidate on mortality in patients with sepsis. df = degrees of freedom; M-H = Mantel-Haenszel.

	Etomidate		Control		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Annane 2002	68	72	161	227	21.7%	1.33 [1.20, 1.47]	-
Cuthbertson 2009	59	96	180	403	17.2%	1.38 [1.14, 1.67]	
Dmello 2010	16	50	13	45	4.8%	1.11 [0.60, 2.04]	
Jabre 2009	21	41	9	35	4.5%	1.99 [1.05, 3.77]	
Kim 2008	21	25	19	40	9.8%	1.77 [1.22, 2.56]	
Mohammad 2006	29	38	58	114	14.2%	1.50 [1.16, 1.93]	
Riché 2007	41	69	30	47	12.6%	0.93 [0.70, 1.24]	
Sunshine 2013	140	312	74	298	15.2%	1.81 [1.43, 2.28]	
Total (95% CI)		703		1209	100.0%	1.42 [1.22, 1.64]	•
Total events	395		544				
Heterogeneity: Tau ² = 0.02; Chi ² = 18.45, df = 7 (P = 0.01); I ² = 62%							
Test for overall effect: 2	Z = 4.55 (P < 0.00	0001)			F	0.2 0.5 1 2 5 avours etomidate Favours control

Figure 3 – Effect of single-dose etomidate on adrenal insufficiency in patients with sepsis. See Figure 2 legend for expansion of abbreviations.

In conclusion, the present systematic review and metaanalysis suggests that single-dose etomidate is not associated increased mortality in patients with sepsis. Etomidate may remain an acceptable option for rapid sequence intubation in patients with sepsis; however, the finding largely relies on data from observational studies, is potentially subject to selection bias, and should be interpreted cautiously. Hence, high-quality and adequately powered RCTs are warranted.

Etomidato

Eric Sabatini Regueira R1 Medicina de Emergência HCFMUSP