
www.it-ebooks.info

http://www.it-ebooks.info/

Java	EE	7	Development	with	WildFly

www.it-ebooks.info

http://www.it-ebooks.info/

Table	of	Contents
Java	EE	7	Development	with	WildFly

Credits

About	the	Authors

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more
Why	subscribe?
Free	access	for	Packt	account	holders
Instant	updates	on	new	Packt	books

Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support
Downloading	the	example	code
Errata
Piracy
Questions

1.	Getting	Started	with	WildFly

An	overview	of	Java	EE	and	WildFly
WildFly	and	Enterprise	Application	Platform
Welcome	to	Java	EE	7

JavaServer	Faces	2.2	–	JSR	344
Enterprise	JavaBeans	3.2	–	JSR	345
Java	Persistence	API	2.1	–	JSR	338
Contexts	and	Dependency	Injection	for	Java	EE	1.1	–	JSR	346
Java	Servlet	API	3.1	–	JSR	340
JAX-RS,	the	Java	API	for	RESTful	Web	Services	2.0	–	JSR	339
Java	Message	Service	2.0	–	JSR	343
Bean	Validation	1.1	–	JSR	349
Concurrency	utilities	for	Java	EE	1.0	–	JSR	236
Batch	applications	for	the	Java	Platform	1.0	–	JSR	352
Java	API	for	JSON	Processing	1.0	–	JSR	353
Java	API	for	WebSocket	1.0	–	JSR	356

New	features	in	WildFly
Installing	the	server	and	client	components
Installing	Java	SE

www.it-ebooks.info

http://www.it-ebooks.info/

Testing	the	installation
Installing	WildFly
Starting	WildFly
Connecting	to	the	server	with	the	command-line	interface
Stopping	WildFly
Locating	the	shutdown	script
Stopping	WildFly	on	a	remote	machine
Restarting	WildFly

Installing	the	Eclipse	environment
Installing	JBoss	Tools

Alternative	development	environments
Installing	Maven

Testing	the	installation
Summary

2.	Your	First	Java	EE	Application	on	WildFly

WildFly	8	core	concepts
The	WildFly	8	directory	layout
Managing	the	application	server
Managing	WildFly	8	with	the	web	interface

Launching	the	web	console
Deploying	your	first	application	to	WildFly	8
Advanced	Eclipse	deployment	options

Managing	deployments	with	the	web	console
Changing	the	deployment	scanner	properties

Deploying	applications	using	the	command-line	interface
Deploying	applications	to	a	domain

Summary

3.	Introducing	Java	EE	7	–	EJBs

EJB	3.2	–	an	overview
Developing	singleton	EJBs
Configuring	the	EJB	project	object	module	(pom.xml)
Coding	our	EJB	application
Controlling	bean	concurrency

Using	bean-managed	concurrency
Cooking	session	beans
Adding	a	stateless	bean
Adding	a	stateful	bean

Deploying	the	EJB	application
Creating	a	remote	EJB	client
Configuring	the	client’s	project	object	module
Coding	the	EJB	client

Adding	the	EJB	client	configuration
Running	the	client	application

Adding	user	authentication

www.it-ebooks.info

http://www.it-ebooks.info/

Using	the	EJB	timer	service
Programmatic	timer	creation
Scheduling	timer	events

Adding	asynchronous	methods	to	our	EJBs
Using	fire-and-forget	asynchronous	calls
Returning	a	Future	object	to	the	client

Summary

4.	Learning	Context	and	Dependency	Injection

Introducing	Contexts	and	Dependency	Injection
Named	beans
CDI	scopes
WildFly	CDI	implementation
Rethinking	your	ticketing	system

Adding	the	required	dependencies
Creating	the	beans

Building	the	view
JSF	2	facet	suggestions
Getting	ready	to	run	the	application
Combining	the	scheduler	into	our	application
Installing	RichFaces
Making	your	application	rich
Running	the	application
Creating	interceptors

Are	EJBs	and	JSF	Managed	Beans	obsolete?
Summary

5.	Combining	Persistence	with	CDI

Data	persistence	meets	the	standard
Working	with	JPA

Adding	persistence	to	our	application
Setting	up	the	database
Installing	the	JDBC	driver	in	WildFly

Using	the	command-line	interface	to	create	a	new	data	source
Creating	the	Maven	project
Adding	the	Maven	configuration
Cooking	entities
Adding	Bean	Validation

Configuring	persistence
Adding	producer	classes
Coding	queries	for	your	application
Adding	services	to	your	application
Adding	a	controller	to	drive	user	requests
Coding	the	JSF	view
Running	the	example

Summary

www.it-ebooks.info

http://www.it-ebooks.info/

6.	Developing	Applications	with	JBoss	JMS	Provider

A	short	introduction	to	JMS
The	building	blocks	of	JMS
The	JBoss	messaging	subsystem
Creating	and	using	connection	factories
Using	JMS	destinations
Adding	message-driven	beans	to	your	application

Cooking	message-driven	beans
Adding	the	JMS	producer
Compiling	and	deploying	the	application
Specifying	which	message	to	receive	using	selectors

Transaction	and	acknowledgment	modes
Using	JMS	to	integrate	with	external	systems
A	real-world	example	–	HornetQ	and	ActiveMQ	integration

Installing	the	ActiveMQ	resource	adapter
Consuming	ActiveMQ	messages

Summary

7.	Adding	Web	Services	to	Your	Applications

Developing	SOAP-based	web	services
Strategies	to	build	SOAP-based	web	services
JBoss	SOAP-based	web	services	stack
A	brief	look	at	the	JAX	WS	architecture
Coding	SOAP	web	services	with	WildFly

Developing	a	POJO	web	service
Inspecting	the	web	service	from	the	console
Testing	our	simple	web	service
EJB3	Stateless	Session	Bean	(SLSB)	web	services
Developing	a	web	service	consumer

Developing	REST-based	web	services
Accessing	REST	resources
JBoss	REST	web	services

Activating	JAX-RS
Adding	REST	to	our	ticket	example
Adding	filters
Consuming	our	REST	service
Compiling	our	ticket	example
Adding	AngularJS

Choosing	between	SOAP	and	REST	services
Summary

8.	Adding	WebSockets

An	overview	of	WebSockets
How	do	WebSockets	work
Creating	our	first	endpoint
Expanding	our	client	application

www.it-ebooks.info

http://www.it-ebooks.info/

Transforming	POJOs	to	JSON
An	alternative	to	WebSockets
Summary

9.	Managing	the	Application	Server

Entering	the	WildFly	CLI
Launching	the	CLI

Connecting	from	remote	hosts
Using	a	CLI	in	the	graphical	mode

Constructing	CLI	commands
Determining	the	resource	address
Performing	operations	on	resources
Using	the	tab	completion	helper

Deploying	applications	using	the	CLI
Deploying	applications	to	a	WildFly	domain
Deploying	to	all	server	groups
Deploying	to	a	single	server	group

Creating	CLI	scripts
Deploying	an	application	to	several	WildFly	nodes
Restarting	servers	in	a	domain
Installing	a	data	source	as	a	module
Adding	JMS	resources

Using	advanced	languages	to	create	powerful	CLI	scripts
Using	scripting	languages	to	wrap	CLI	execution

Using	the	raw	management	API	to	manage	the	application	server
Reading	management	model	descriptions	via	the	raw	management	API

Creating	your	resource	watches	using	the	detyped	API
Role-based	security
Auditing	administrative	operations

Patching	a	running	instance
Summary

10.	Securing	WildFly	Applications

Approaching	the	Java	security	API
The	WildFly	security	subsystem
Setting	up	your	first	login	module
Using	the	login	module	in	the	Ticket	web	application
Switching	to	FORM-based	security
Creating	a	Database	login	module

Encrypting	passwords
Using	the	Database	login	module	in	your	application

Securing	EJBs
Securing	web	services

Securing	the	transport	layer
Enabling	the	Secure	Socket	Layer	on	WildFly

Certificate	management	tools

www.it-ebooks.info

http://www.it-ebooks.info/

Securing	the	HTTP	communication	with	a	self-signed	certificate
Generating	the	server	and	client	certificates
Creating	an	SSL-aware	security	realm
Securing	HTTP	communication	with	a	certificate	signed	by	a	CA
Securing	EJB	communication
Connecting	to	an	SSL-aware	security	realm

Summary

11.	Clustering	WildFly	Applications

Clustering	basics
WildFly	clustering
Starting	a	cluster	of	standalone	nodes
Starting	a	cluster	of	domain	nodes

The	domain	controller	configuration
Host	configurations

Deploying	clustered	applications
Creating	HA	Stateful	Session	Beans

Clustering	the	Ticket	example
Turning	your	cache	into	a	distributed	cache
Coding	the	cluster-aware	remote	client
Deploying	and	testing	high	availability

Web	application	clustering
Load	balancing	your	web	applications

Installing	mod_cluster
Clustering	your	web	applications
Programming	considerations	to	achieve	HA
Achieving	HA	in	JSF	applications

Summary

12.	Long-term	Tasks’	Execution

The	overview	of	the	batching	framework
Our	first	batch	job

Creating	a	chunk-based	batch	step
Creating	a	job-based	batch	step

Using	concurrency	utilities	in	Java	EE
Introducing	threads	to	enterprise	beans

Summary

13.	Testing	Your	Applications

Test	types
Instruments	used	for	testing

Getting	started	with	Arquillian
Writing	an	Arquillian	test
Configuring	the	pom.xml	file
Writing	your	first	Arquillian	test
Running	Arquillian	TicketTest

www.it-ebooks.info

http://www.it-ebooks.info/

Running	Arquillian	tests	using	Spock
ShrinkWrap	Resolver
ShrinkWrap	Descriptors
Persistence	testing
Arquillian	Warp
WebSockets	testing
Enhancing	your	Arquillian	test
Additional	information

Summary

A.	Rapid	Development	Using	JBoss	Forge

Installing	Forge
Starting	Forge
Creating	your	first	Java	EE	7	application	with	JBoss	Forge
Building	and	deploying	the	application

Your	Forge-demo	application	in	action

Index

www.it-ebooks.info

http://www.it-ebooks.info/

Java	EE	7	Development	with	WildFly

www.it-ebooks.info

http://www.it-ebooks.info/

Java	EE	7	Development	with	WildFly
Copyright	©	2014	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	June	2013

Second	edition:	December	2014

Production	reference:	1241214

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78217-198-0

www.packtpub.com

Cover	image	by	Michael	Jasej	(<milak6@wp.pl>)

www.it-ebooks.info

http://www.packtpub.com
mailto:milak6@wp.pl
http://www.it-ebooks.info/

Credits
Authors

Michał	Ćmil

Michał	Matłoka

Francesco	Marchioni

Reviewers

Dustin	Kut	Moy	Cheung

Adam	Dudczak

Maxime	Gréau

Bartosz	Majsak

Jakub	Marchwicki

Commissioning	Editor

James	Jones

Acquisition	Editor

James	Jones

Content	Development	Editor

Mohammed	Fahad

Technical	Editors

Indrajit	A.	Das

Rohit	Kumar	Singh

Copy	Editors

Gladson	Monteiro

Adithi	Shetty

Project	Coordinator

Akash	Poojary

Proofreaders

Ting	Baker

Simran	Bhogal

Ameesha	Green

Indexers

Rekha	Nair

www.it-ebooks.info

http://www.it-ebooks.info/

Priya	Sane

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

www.it-ebooks.info

http://www.it-ebooks.info/

About	the	Authors
Michał	Ćmil	is	a	Java	developer	with	experience	in	web	and	desktop	application
development.	In	the	past,	he	has	worked	for	the	e-commerce	sector.	Currently,	he	is
developing	manufacturing	execution	systems	for	industry	clients.	He	has	been	a	volunteer
at	GeeCON.	Michał	works	as	a	software	designer/developer	for	PSI	Poland.

Michał	Matłoka	is	a	Java	developer	with	experience	in	both	Java	EE	and	Spring
technologies.	He	is	a	JBoss	community	contributor,	focusing	mainly	on	Arquillian	and
ShrinkWrap,	and	is	also	a	winner	of	the	JBoss	Community	Recognition	Award	in	2013	for
his	contributions	to	ShrinkWrap.	He	has	spoken	at	Poznan	Java	User	Group	and
volunteered	at	GeeCON.	Michał	is	currently	one	of	the	20	CEOs	at	SoftwareMill,	a	fully
distributed	company	with	no	main	office	and	a	completely	flat	organization	structure.

Francesco	Marchioni	is	a	Sun	Certified	Enterprise	architect	employed	for	an	Italian
company	based	in	Rome.	He	started	learning	Java	in	1997,	and	since	then	he	has	followed
the	path	to	the	newest	Application	Program	Interfaces	released	by	Sun.	In	2000,	he	joined
the	JBoss	community	when	the	application	server	was	running	the	2.x	release.

He	has	spent	many	years	as	a	software	consultant,	where	he	has	envisioned	many
successful	software	migrations	from	vendor	platforms	to	the	open	source	products	such	as
JBoss	AS,	fulfilling	the	tight	budget	requirements	of	current	times.

For	the	past	5	years,	he	has	been	authoring	technical	articles	for	O’Reilly	Media	and	also
runs	an	IT	portal	focused	on	JBoss	products	(http://www.mastertheboss.com).

In	December	2009,	he	authored	JBoss	AS	5	Development,	Packt	Publishing,	which
describes	how	to	create	and	deploy	Java	Enterprise	applications	on	JBoss	AS.

In	December	2010,	he	authored	his	second	title,	JBoss	AS	5	Performance	Tuning,	Packt
Publishing,	which	describes	how	to	deliver	fast	and	efficient	applications	on	JBoss	AS.

In	December	2011,	he	authored	yet	another	title,	JBoss	AS	7	Configuration	Deployment
Administration,	Packt	Publishing,	which	covers	all	the	aspects	of	the	newest	application
server	release.

In	August	2012,	he	coauthored	the	book,	Infinispan	Data	Grid	Platform,	Packt
Publishing,	with	Manik	Surtani,	which	covers	all	aspects	related	to	the	configuration	and
development	of	applications	using	the	Infinispan	data	grid	platform.

I’d	like	to	thank	Packt	Publishing	for	sharing	the	vision	of	this	new	book	and	for	all	the
effort	they	put	in	it.	I’d	also	like	to	thank	my	family	for	being	always	on	my	side,
particularly,	my	wife	for	allowing	me	to	follow	my	book	author	ambitions,	and	my	father
for	buying	me	a	C-64	instead	of	a	motorcycle	when	I	was	young.

www.it-ebooks.info

http://www.mastertheboss.com
http://www.it-ebooks.info/

About	the	Reviewers
Dustin	Kut	Moy	Cheung	was	born	and	raised	in	the	island	of	Mauritius.	His	interest	in
computers	was	sparked	when	he	got	his	first	computer	at	the	age	of	nine.	He	went	on	to
study	Electrical	Engineering	at	McGill	University	in	Montreal,	Canada.	Dustin	is	currently
working	as	a	productization	engineer	in	the	JBoss	productization	team	at	Red	Hat.

I	would	like	to	thank	the	authors	for	giving	me	the	opportunity	to	be	one	of	the	reviewers
for	this	book.	Java	EE	7	has	certainly	made	web	development	in	Java	easier	and	more
elegant.	Using	the	Wildfly	application	server	will	enable	users	to	fully	unlock	all	the
capabilities	that	Java	EE	has	to	offer	while	providing	easy	administration,	configuration,
deployment,	clustering,	and	much	more!

Adam	Dudczak	is	an	experienced	software	engineer	working	with	Java	and	related
technologies	since	2004.	He	is	interested	in	the	creation	of	lightweight,	bulletproof,	and
scalable	applications.	He	has	a	strong	background	in	information	retrieval	and	text	mining.
Currently,	he	is	working	on	a	better	search	experience	in	one	of	the	major	east	European	e-
commerce	portals.	He	is	one	of	the	leaders	of	Poznań	JUG	(http://www.jug.poznan.pl)	and
a	co-organizer	of	the	GeeCON	conference	(http://geecon.org).	Adam	is	a	father	and
husband	and	occasionally	blogs	at	http://dudczak.info/dry.	His	Twitter	handle	is	@maneo.

Maxime	Gréau	has	been	building	software	professionally	for	about	12	years,	mostly	for
the	Web	and	most	of	it	with	Java.	He	wrote	a	French	book	about	Apache	Maven	3	in	2011.
He	currently	works	as	a	Java	EE	architect.

Maxime	is	a	speaker	at	conferences	on	Java	and	web	technologies	such	as	DevNation	and
DevFest.	He	is	also	a	technical	reviewer.

He	blogs	at	http://mgreau.com/blog/	and	can	be	found	on	Twitter	and	GitHub	at	@mgreau.

Bartosz	Majsak	works	as	a	software	developer	at	Cambridge	Technology	Partners,	based
in	Zurich.	He	is	passionate	about	open	source	technologies	and	testing	methodologies.	He
is	a	proud	JBoss	Community	Recognition	award	recipient	for	2012	and	2013.	He’s	also	an
Arquillian	team	member	and	the	lead	for	two	modules:	Persistence	Extension	(makes
writing	database-oriented	tests	easier)	and	Spock	Test	Runner	(gives	your	Arquillian	tests
some	BDD	and	Groovy	love).	One	thing	that	perhaps	proves	Bartosz	is	not	a	total	geek	is
his	addiction	to	alpine	skiing.

Jakub	Marchwicki	has	been	in	the	software	development	industry	for	the	past	10	years—
wearing	multiple	hats,	getting	his	hands	dirty	in	multiple	environments,	and	securing	both
technical	as	well	as	the	business	side	of	The	Thing,	which	is	an	engineer	with	a	human-
friendly	interface.	Additionally,	he	has	worked	with	a	variety	of	languages	and
frameworks.

Jakub	has	always	considered	programming	a	tool	to	solve	real-life	problems	in	a
pragmatic	way.	He	has	always	stayed	close	to	the	business	side	of	the	solution,	focusing
on	the	technology.	He	combines	his	daily	job	of	managing	a	horde	of	software	engineers
at	Young	Digital	Planet	with	lectures,	technical	trainings,	and	commitment	to	Gdańsk	Java
User	Group.

www.it-ebooks.info

http://www.jug.poznan.pl
http://geecon.org
http://dudczak.info/dry
http://mgreau.com/blog/
http://www.it-ebooks.info/

www.PacktPub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.it-ebooks.info/

Why	subscribe?
	

Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

www.it-ebooks.info

http://www.it-ebooks.info/

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.it-ebooks.info/

Instant	updates	on	new	Packt	books
Get	notified!	Find	out	when	new	books	are	published	by	following	@PacktEnterprise	on
Twitter	or	the	Packt	Enterprise	Facebook	page.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
WildFly,	the	newest	release	of	the	JBoss	Application	Server,	provides	developers	with	a
full	implementation	of	the	Java	EE	7	platform.	It	is	built	on	solid	foundations	of	the
modular	architecture	introduced	with	JBoss	AS	7,	but	it	has	grown	in	terms	of	flexibility
and	performance.	The	newest	version	of	the	Enterprise	Java	focuses	on	developers’
productivity,	and	so	does	WildFly.

This	book	will	introduce	Java	developers	to	the	world	of	enterprise	applications.	We	will
use	modern	development	techniques	and	tools	that	are	battle-tested	in	real-life	projects.
We’ll	also	utilize	the	features	provided	by	the	WildFly	platform,	such	as	security,	caching,
testing,	and	clustering.	Finally,	you	will	learn	how	to	manage	your	server	using	dedicated
tools,	created	specifically	for	WildFly.

The	learning	process	will	be	concentrated	around	a	ticket	booking	application,	which	is	a
sample	project	that	will	get	more	features	(and	sometimes	completely	different	user
interfaces)	with	every	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

What	this	book	covers
Chapter	1,	Getting	Started	with	WildFly,	is	an	introduction	to	the	Java	EE	platform	and
new	Java	EE	7	version	specifications.	It	also	focuses	on	presenting	WildFly’s	new
features,	the	developer	environment	setup,	and	basic	server	management.

Chapter	2,	Your	First	Java	EE	Application	on	WildFly,	describes	the	basics	of	the	WildFly
server	usage,	presenting	information	required	to	deploy	your	first	application.

Chapter	3,	Introducing	Java	EE	7	–	EJBs,	introduces	Java	EE	business	objects	called
Enterprise	Java	Beans.	In	this	chapter,	we	create	the	foundations	of	the	ticket	booking
application.

Chapter	4,	Learning	Context	and	Dependency	Injection,	covers	the	CDI	technology	that
connects	the	building	blocks	of	your	applications.

Chapter	5,	Combining	Persistence	with	CDI,	is	a	look	into	the	database	world	and	object
mapping	in	Java	EE.

Chapter	6,	Developing	Applications	with	JBoss	JMS	Provider,	is	a	dive	into	HornetQ	and
enterprise	system	integration	using	JCA.

Chapter	7,	Adding	Web	Services	to	Your	Applications,	discusses	not	only	the	old-style
SOAP	web	services	but	also	the	modern	and	popular	approach	based	on	JAX-RS	(REST).
We’ll	also	take	a	look	at	how	to	integrate	a	Java	EE	7	backend	with	an	AngularJS	browser
application.

Chapter	8,	Adding	WebSockets,	introduces	a	completely	new	asset	to	the	Java	EE	7
platform:	WebSockets.	We	will	look	at	them	in	our	sample	AngularJS	application.

Chapter	9,	Managing	the	Application	Server,	discusses	WildFly	management	features.

Chapter	10,	Securing	WildFly	Applications,	focuses	on	security-related	aspects	of	the
server	and	your	application.

Chapter	11,	Clustering	WildFly	Applications,	discusses	making	Java	EE	applications
highly	available	and	scalable.

Chapter	12,	Long-term	Tasks’	Execution,	describes	the	new	area	of	enterprise	Java	batch
applications	and	concurrency	management	on	the	server.

Chapter	13,	Testing	Your	Applications,	demonstrates	how	we	can	write	integration	tests	for
for	our	applications	using	Arquillian	after	covering	the	most	important	Java	EE
technologies.

Appendix,	Rapid	Development	Using	JBoss	Forge,	covers	the	JBoss	Forge	tool.	It	shows
how	you	can	use	this	application	to	speed	up	your	work	with	its	code	generation	features
on	starting	Java	EE-based	projects.

www.it-ebooks.info

http://www.it-ebooks.info/

What	you	need	for	this	book
This	book	is	a	code-oriented	guide	into	the	Java	EE	and	WildFly	worlds.	To	fully	benefit
from	this	book,	you	will	need	access	to	an	Internet	connection	in	order	to	download	all	the
required	tools	and	libraries.	Knowledge	of	Java	is	required.	We	will	also	use	Maven	as	a
build	automation	tool,	but	thanks	to	its	verbosity,	the	examples	provided	in	this	book	are
self-explanatory.

Although	we	will	use	AngularJS,	additional	JS	knowledge	is	not	required.	All	examples
for	the	framework	will	be	showcase-based,	and	their	aim	is	to	show	how	different	parties
can	interact	with	Java	EE	in	typical	scenarios.

www.it-ebooks.info

http://www.it-ebooks.info/

Who	this	book	is	for
If	you	are	a	Java	developer	who	wants	to	learn	about	Java	EE	basics	or	if	you	are	already	a
Java	EE	developer	who	wants	to	learn	what’s	new	in	WildFly	or	Java	EE	7,	this	book	is
for	you.	This	book	covers	basics	of	the	described	technologies	and	also	ensures	to	bring
some	more	interesting,	advanced	topics	for	those	who	already	have	some	knowledge.

www.it-ebooks.info

http://www.it-ebooks.info/

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“After	an
MDB	instance’s	onMessage()	method	returns,	the	request	is	complete,	and	the	instance	is
placed	back	in	the	free	pool.”

A	block	of	code	is	set	as	follows:
<jms-destinations>

			<jms-queue	name=“TicketQueue”>

						<entry	name=“java:jboss/jms/queue/ticketQueue”/>

									<durable>false</durable>

			</jms-queue>

</jms-destinations>

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:
@Stateless

public	class	SampleEJB	{

				@Resource(mappedName	=	“java:/ConnectionFactory”)

				private	ConnectionFactory	cf;	

}

Any	command-line	input	or	output	is	written	as	follows:

CREATE	DATABASE	ticketsystem;

CREATE	USER	jboss	WITH	PASSWORD	‘jboss’;

GRANT	ALL	PRIVILEGES	ON	DATABASE	ticketsystem	TO	jboss;

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes,	for	example,	appear	in	the	text	like	this:	“For	example,	the
Eclipse’s	File	menu	includes	an	option	JPA	Entities	from	Table	that	(once	a	connection
has	been	set	up	to	the	database)	allows	reversing	your	DB	schema	(or	part	of	it)	into	Java
entities.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

www.it-ebooks.info

http://www.it-ebooks.info/

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

www.it-ebooks.info

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.it-ebooks.info/

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

www.it-ebooks.info

mailto:questions@packtpub.com
http://www.it-ebooks.info/

Chapter	1.	Getting	Started	with	WildFly
Java	Enterprise	Edition	provides	a	standard	to	develop	enterprise	software,	but	allows	the
developers	to	choose	its	specific	implementation.	For	every	technology	that	is	included	in
the	Java	EE	(Enterprise	Edition)	specification,	there	is	a	reference	implementation;	an
open	source	library	or	component	that	fulfills	all	of	the	requirements.	Companies	and
organizations	can	create	their	own	versions	of	the	components,	which	means	that	there	is
no	central	Java	EE	platform	that	everybody	uses.	In	place	of	that,	we	get	multiple
approaches	on	the	implemented	specification,	with	improvements	and	optimizations	for
specific	cases.	At	the	time	of	writing	this,	there	are	about	20	certified	(full)
implementations	of	Java	EE	6	and	three	implementations	of	Java	EE	7.

An	application	server	is	a	runtime	environment	that	provides	applications	with	all	the	Java
EE	components.	Glassfish	is	the	reference	implementation	sponsored	by	Oracle,	but
beginning	from	Version	4	(created	for	Java	EE	7),	there	is	no	longer	commercial	support
for	it.	In	this	book,	you	will	learn	how	to	develop	applications	on	the	WildFly	Application
Server,	previously	known	as	the	JBoss	Application	Server.

JBoss	is	a	division	of	Red	Hat,	which	seeks	to	provide	a	developer-friendly	open	source
ecosystem	for	enterprise	development.	Currently,	the	company	supports	multiple	projects
(around	100),	and	some	of	them	are	implementations	of	Java	EE	specifications.	The
enterprise	elements	are	combined	in	JBoss’s	own	application	server,	WildFly.

It	is	worth	noting	that	the	name	change	from	JBoss	AS	to	WildFly	was	made	to	separate
the	application	server	from	the	company	and	other	subprojects.	The	name	was	chosen	in	a
public	vote	(more	information	on	this	is	available	at	http://jbossas.jboss.org/rename/vote).

The	new	release	features	a	scalable	and	high	performing	web	server	called	Undertow,
which	supports	the	HTTP	upgrade	mechanism	and	WebSocket	protocol.	What’s	more,	the
new	version	of	the	container	is	even	faster	than	JBoss	Application	Server	7,	and	offers	a
unified	configuration	mechanism.	However,	the	main	essence	of	the	latest	release	is	the
Java	EE	7	compliance,	which	allows	developers	to	use	technologies	from	the	newest
version	of	the	Java	EE	specification.

The	focus	of	this	book	is	on	application	development;	therefore,	we	will	first	need	to
gather	all	resources	required	to	deliver	our	applications.	In	this	chapter,	we	will	cover	the
following	topics	in	detail:

	
An	overview	of	Java	EE	and	WildFly
Preparing	your	environment	for	the	installation	of	software
Downloading	and	installing	WildFly
Verifying	the	WildFly	installation
Installing	other	resources	needed	for	development

www.it-ebooks.info

http://jbossas.jboss.org/rename/vote
http://www.it-ebooks.info/

An	overview	of	Java	EE	and	WildFly
Java	EE	(formerly	called	J2EE)	is	an	umbrella	specification	embracing	a	standard	set	of
technologies	for	server-side	Java	development.	Java	EE	technologies	include	Java	Servlet,
JavaServer	Pages	(JSPs),	JavaServer	Faces	(JSFs),	Enterprise	JavaBeans	(EJB),
Contexts	and	Dependency	Injection	(CDI),	Java	Messaging	Service	(JMS),	Java
Persistence	API	(JPA),	Java	API	for	XML	Web	Services	(JAX-WS),	and	Java	API	for
RESTful	Web	Services	(JAX-RS),	among	others.	The	newest	version	of	Java	EE	extends
the	range	of	available	technologies	even	further	by	providing	support	for	Batch
Applications,	Concurrency	Utilities,	JSON	Processing	(JSON-P)	and	WebSocket.
Several	commercial	and	open	source	application	servers	exist,	which	allow	developers	to
run	applications	compliant	with	Java	EE;	WildFly	(formerly	known	as	JBoss	AS)	is	the
leading	open	source	solution	adopted	by	developers	and,	although	this	is	difficult	to
measure	in	exact	terms,	it	is	likely	to	be	the	most	widely	used	application	server	in	the
market.

As	with	all	application	servers	compliant	with	Java	EE,	WildFly	ships	with	all	the
required	libraries	to	allow	us	to	develop	and	deploy	Java	applications	that	are	built	on	the
Java	EE	platform.

www.it-ebooks.info

http://www.it-ebooks.info/

WildFly	and	Enterprise	Application	Platform
WildFly	and	previous	JBoss	Application	Servers	were	freely	available	for	the	community
in	the	form	of	downloadable	binary	packages	(for	major	releases)	or	buildable	source	code
(for	bug	fixing	releases).	These	versions	are	called	community	releases	and	are	free	to	use
for	development	and	production.

JBoss	also	releases	more	stable	and	hardened	versions	of	software	of	the	community
builds,	which	are	called	Enterprise	Application	Platform	(EAP),	a	commercial	product
with	support	service	from	Red	Hat.	Red	Hat	calls	this	kind	of	relationship	between
projects	as	upstream/downstream.	The	community	builds	are	the	source	of	changes	and
innovations	for	the	downstream,	the	code	is	downstream.	The	commercial	version
numeration	differed	from	the	community	line,	but	it	was	an	extended	variant	of	the
community	releases	(for	example,	EAP	6.1.0	was	built	on	JBoss	7.2.0,	which	was
available	only	on	GitHub	in	the	form	of	buildable	source	code;	the	same	goes	for	EAP
6.2.0	and	JBoss	7.3.0).	EAP	builds	have	a	more	complex	licensing	system;	the	usage
terms	depend	on	the	maturity	of	the	build	and	are	as	follows:

	
EAP	Alpha	is	free	for	the	developers	and	production	use,	as	they	are	an	equivalent	of
the	standard	community	version	with	optional	fixes	included.	The	corresponding
community	binaries	may	not	be	available	for	download,	as	they	would	be	similar	to
the	EAP	Alpha	version.
EAP	Beta	is	available	to	developers	for	free	(after	registration	to	a	subscription
program),	but	cannot	be	used	in	production.
EAP	Final	is	also	available	to	developers	for	free,	but	additionally,	new	security
patches	are	available	only	in	the	paid	subscription.

The	distribution	model	proposed	by	JBoss	allows	the	developers	to	work	for	free	on	the
same	version	as	the	one	used	in	production.	This	is	a	huge	benefit,	especially	since	the
competitive	solution	from	Oracle	(Glassfish:	the	reference	implementation	of	a	Java	EE
compliant	server)	no	longer	has	a	version	with	commercial	support.

www.it-ebooks.info

http://www.it-ebooks.info/

Welcome	to	Java	EE	7
Java	EE	7	includes	several	improvements	and	additions	to	the	existing	version.	The	new
version	is	focused	on	three	themes:	developer	productivity,	HTML5,	and	providing	new
features	required	by	enterprise	applications.	The	following	sections	list	the	major
improvements	to	the	specifications	that	are	of	interest	to	enterprise	application	developers.

If	you	are	starting	your	adventure	with	Java	EE,	feel	free	to	skip	this	section.	The
technologies	described	in	the	following	sections	will	be	covered	in	future	chapters	in	more
detail.

JavaServer	Faces	2.2	–	JSR	344
Java	EE	7	includes	a	new	version	of	the	JSF	specification,	which	is	not	so	revolutionary	as
2.0,	but	still	provides	some	appealing	additions	for	developers.	The	key	features	delivered
by	JSF	2.2	are	as	follows:

	
The	HTML5	markup	is	now	supported	by	the	usage	of	pass-through	elements	and
attributes.	Earlier,	custom	attributes	would	have	to	be	supported	by	an	extended
renderer	for	every	component.	The	new	constructs	allow	the	developer	to	pass
additional	HTML	attributes	to	the	markup	generated	by	JSF	components.
The	flow	scope	has	been	introduced	with	@FlowScoped,	which	makes	the	creation	of
wizards	(dialogs	with	multiple	steps)	easier.
The	Ajax-based	file	upload	is	now	supported	out	of	the	box.
Also,	stateless	views	have	been	presented	as	a	way	to	improve	performance.

Enterprise	JavaBeans	3.2	–	JSR	345
Compared	to	EJB	3.1,	the	Version	3.2	is	a	minor	update	of	the	existing	version.	It
concentrates	mainly	on	marking	some	older	features	as	obsolete	(they	are	now	optional,
which	means	that	not	every	Java	EE	7-compliant	application	server	will	support	them).
The	optional	features	are	connected	with	persistence	to	web	services	based	on	EJB	2.1	and
JAX-RPC.	The	main	enhancements	provided	by	the	new	specification	are	as	follows:

	
Life	cycle	methods	for	stateful	session	beans	can	now	be	transactional.
The	Timer	Service	API,	now	allows	you	to	access	all	active	timers	in	the	current	EJB
module.
A	new	container	provided	role	(**)	has	been	introduced.	It	can	be	used	to	indicate
any	authenticated	user	(without	taking	his	or	her	actual	roles	into	account).
Passivation	of	stateful	session	beans	can	now	be	disabled.

Transactional	parts	of	the	EJB	specification	have	been	extracted	and	reused	in	other	parts
of	the	Java	EE	platform	(the	transaction	support	has	been	placed	in	the	JTA	1.2
specification).	For	instance,	the	transactional	behavior	can	now	be	used	in	CDI	beans,
thanks	to	the	introduction	of	the	@Transactional	annotation.

Java	Persistence	API	2.1	–	JSR	338

www.it-ebooks.info

http://www.it-ebooks.info/

JPA	was	introduced	as	a	standard	part	of	Java	EE	in	Version	5	of	the	specification.	JPA
was	intended	to	replace	entity	beans	as	the	default	object-relational	mapping	framework
for	Java	EE.	JPA	adopted	ideas	from	third-party	object-relational	frameworks,	such	as
Hibernate	and	JDO,	and	made	them	a	part	of	the	standard	version.

JPA	2.1	is	an	improvement	over	JPA	2.0	as	it	provides	several	facilities	for	developers,
which	are	as	follows:

	
It	provides	a	standardized	schema	generation	mechanism,	thanks	to	an	extended	set
of	annotations	and	persistence.xml	properties
It	adds	support	for	type	conversion,	by	the	introduction	of	the	@Converter	annotation
Stored	procedures	are	now	supported	by	the	Entity	Manager	API,	so	that	the	use	of
the	SQL	query	mechanism	for	them	is	no	longer	required
Criteria	API	has	been	extended	by	bulk	updates	and	deletes
Injection	is	possible	into	entity	listener	classes	along	with	the	usage	of	life	cycle
callback	methods
Named	queries	can	now	be	created	during	runtime
The	JPA	Query	Language	(JPQL)	has	been	extended	with	new	database	functions

Additionally,	Java	EE	7-compliant	containers	must	now	support	preconfigured	data
sources	(along	with	other	resources),	which	can	be	instantly	used	by	JPA	entities.

WildFly	uses	Hibernate	as	its	JPA	provider	and	is	shipped	with	a	ready-to-use	H2	in-
memory	database.	The	default	data	source	points	to	the	H2	instance	hosted	inside	of	the
application	server.

Contexts	and	Dependency	Injection	for	Java	EE	1.1	–	JSR	346
Version	1.1	of	Contexts	and	Dependency	Injection	(CDI)	provides	improvements	for
the	issues	identified	in	CDI	after	its	introduction	in	Java	EE	6.	The	process	of	simplifying
the	programming	model	started	in	Version	1.0	and	is	now	being	continued.	The	areas
covered	by	the	update	are	as	follows:

	
CDI	is	now	enabled	by	default	(without	the	need	to	add	the	bean.xml	file	to	the
deployment),	with	the	possibility	to	specify	the	desired	component	scanning	mode.
More	fine-grained	control	over	the	bean	discovery	mechanism	is	now	available	for
the	developer,	thanks	to	the	use	of	the	@Vetoed	annotation	and	class	or	packages
filters	in	beans.xml.	Interceptors,	decorators,	and	alternatives	can	now	be	globally
enabled	for	the	whole	application	using	the	@Priority	annotation,	instead	of
enabling	every	module.
Event	metadata	can	now	be	examined	when	a	CDI	event	is	handled.
Interceptors	have	been	enhanced	with	the	possibility	to	be	executed	around
constructor	invocation.
Finally,	the	new	version	contains	a	significant	number	of	enhancements	for	the
development	of	portable	extensions.

Weld	is	the	CDI	implementation	internally	used	in	WildFly.

www.it-ebooks.info

http://www.it-ebooks.info/

Java	Servlet	API	3.1	–	JSR	340
The	new	version	of	the	Java	Servlet	API	has	a	clear	focus	on	new	features.	The	most
important	of	them	is	the	HTTP	upgrade	mechanism,	which	allows	the	client	and	server	to
start	a	conversation	in	HTTP	1.1,	and	negotiate	another	protocol	for	subsequent	requests.
This	feature	was	used	to	implement	the	WebSockets	mechanism	in	Java	EE	7.	Other
features	of	the	new	version	of	specification	are	as	follows:

	
Non-blocking	I/O	API	for	Servlets	has	been	provided	to	improve	scalability	of	web
applications
Multiple	security	improvements	have	been	introduced;	the	most	notable	of	them	is
the	possibility	to	set	the	default	security	semantics	for	all	HTTP	methods

JAX-RS,	the	Java	API	for	RESTful	Web	Services	2.0	–	JSR	339
In	Java	EE	7,	the	JAX-RS	specification	has	been	enriched	with	some	long-awaited
features.	The	version	has	changed	from	1.1	to	2.0	because	of	the	major	impact	of	the
improvements	that	came	with	the	new	specification.	The	most	important	features	are	listed
as	follows:

	
The	client	API	is	now	part	of	the	specification,	so	the	usage	of	third-party	libraries	is
no	longer	needed.	The	implementation	of	the	specification	is	required	to	provide	a
REST	client	that	conforms	to	the	common	API.
Asynchronous	requests	are	now	supported	so	that	the	client	does	not	have	to
passively	wait	for	the	completion	of	the	task.
Filters	and	handlers	have	been	introduced	as	a	common	mechanism	to	provide
extension	points	for	the	developer.	They	can	be	used	for	cross-cutting	concerns,	such
as	auditing	and	security.
Bean	Validation	has	been	integrated	into	JAX-RS,	making	constraint	annotations
usable	for	request	parameters.

WildFly	comes	bundled	with	RESTEasy,	an	implementation	of	JAX-RS	2.0.

Java	Message	Service	2.0	–	JSR	343
The	JSR	343	is	the	first	update	for	the	JMS	specification	in	over	a	decade.	Once	more,	the
main	theme	of	the	update	is	the	simplification	of	the	API.	The	new	API	dramatically
decreases	the	amount	of	boilerplate	code	that	has	to	be	written	by	the	programmer	while
still	maintaining	backwards	compatibility.	Other	new	features	are	listed	as	follows:

	
Asynchronous	message	sending	is	now	supported,	so	the	application	does	not	have	to
be	blocked	until	an	acknowledgment	from	the	server	is	received
Messages	can	now	be	sent	with	a	scheduled	delay	for	the	delivery

HornetQ	is	the	JMS	provider	used	and	developed	by	JBoss.	It	is	possible	to	use	it	outside
of	WildFly	as	a	standalone	message	broker.

www.it-ebooks.info

http://www.it-ebooks.info/

Bean	Validation	1.1	–	JSR	349
The	process	of	updating	the	Bean	Validation	in	Java	EE	7	concentrates	on	two	main
features:

	
Methods	validation,	which	allows	the	developer	to	validate	parameters	and	return
values
Tighter	CDI	integration,	which	changes	the	life	cycle	of	the	elements	of	the
validation	framework,	allowing	the	developer	to	use	dependency	injection	in	his	or
her	own	ConstraintValidator	implementations

Concurrency	utilities	for	Java	EE	1.0	–	JSR	236
Concurrency	utilities	is	a	new	feature	pack	to	use	multithreading	in	Java	EE	application
components.	The	new	specification	provides	ManagedExecutorService	(a	container-aware
version	of	ExecutorService	known	from	Java	SE),	which	can	be	used	to	delegate	the
execution	of	tasks	to	a	separate	thread.	These	managed	tasks	could	use	most	of	the
features	that	are	available	for	application	components	(such	as	EJBs	or	Servlets).	It	is	also
possible	to	schedule	cyclic	or	delayed	tasks	using	new
ManagedScheduledExecutorService.	These	new	additions	to	the	platform	are	filling	a
functional	gap	for	Java	EE,	which	was	very	hard	to	overcome	within	its	architecture
earlier	on.

Batch	applications	for	the	Java	Platform	1.0	–	JSR	352
Batch	jobs	were	another	area	of	enterprise	application	development,	which	was	not
covered	by	earlier	versions	of	Java	EE.	The	new	batch	processing	framework	is	used	to
provide	a	common	solution	to	run	tasks	that	are	executed	without	user	interaction.	Java	EE
provides	the	developer	with	the	following	options:

	
Batch	runtime	for	the	execution	of	jobs
A	job	description	language	(based	on	XML)
The	Java	API	for	the	implementation	of	the	business	logic	for	the	batch	tasks
jBeret,	which	is	the	batching	framework	used	in	WildFly

Java	API	for	JSON	Processing	1.0	–	JSR	353
Java	EE	7	now	comes	with	out-of-the-box	JSON	processing,	so	the	developer	is	no	longer
forced	to	use	external	libraries	for	this	task.	The	new	API	allows	JSON	processing	to	use
two	approaches:	object	model	(DOM	based)	and	streaming	(event-based).

Java	API	for	WebSocket	1.0	–	JSR	356
To	fully	support	the	development	of	applications	based	on	HTML5,	Java	EE	7	requires	a
standardized	technology	for	two-way	communication	between	the	server	and	the	user’s
browser.	The	WebSocket	API	allows	the	developer	to	define	server-side	endpoints,	which
will	maintain	a	TCP	connection	for	every	client	that	will	connect	to	them	(using,	for
instance,	a	JavaScript	API).	Before	the	new	specification,	developers	had	to	use	vendor-

www.it-ebooks.info

http://www.it-ebooks.info/

specific	libraries	and	not	portable	solutions	to	achieve	the	same	goal.

www.it-ebooks.info

http://www.it-ebooks.info/

New	features	in	WildFly
The	eighth	release	of	WildFly	is	based	on	modular	architecture	introduced	in	the	previous
release	named	JBoss	AS	7.	It	has	improved	on	several	key	points,	including	areas	of
performance	and	management.	The	most	important	change	for	the	developers	is	that	this
release	implements	the	Java	EE	7	standard	completely.	Some	of	the	most	notable
improvements	include	the	following:

	
WildFly	8	implements	all	standards	presented	by	Java	EE	7	specifications,	which	are
also	described	in	this	chapter.
The	web	server	module	was	completely	rewritten	under	the	name	Undertow.	It
supports	both	blocking	and	non-blocking	operations.	Early	performance	tests	(for
example,	http://www.techempower.com/benchmarks/#section=data-
r6&hw=i7&test=plaintext)	show	major	performance	improvements	in	HTTP	request
handling.	Undertow	is	also	available	as	a	separate	project	and	is	possible	to	be	used
without	WildFly.
The	final	WildFly	release	has	reduced	the	number	of	used	ports.	Now,	it	uses	only
two	of	them,	one	(9990)	for	management,	JMX,	and	web	administration,	and	the
second	one	(8080)	for	standard	services,	including	HTTP,	WebSockets,	remote	JNDI,
and	EJB	invocations.
Now,	it	is	possible	to	limit	a	user’s	management	permissions	using	the	Management
role	based	access	control	(RBAC).	All	configuration	changes	can	be	tracked	using
the	audit	log.
For	previous	releases,	any	upgrade	operation	requires	a	completely	new	server
installation.	WildFly	brings	the	patching	feature,	allowing	to	install	and	rollback
modules	using	management	protocols.

In	the	next	section,	we	will	describe	all	the	required	steps	to	install	and	start	a	new
application	server.

www.it-ebooks.info

http://www.techempower.com/benchmarks/#section=data-r6&hw=i7&test=plaintext
http://www.it-ebooks.info/

Installing	the	server	and	client	components
The	first	step	in	learning	about	the	application	server	will	be	to	install	all	the	necessary
components	on	your	machine	in	order	to	run	it.	The	application	server	itself	requires	just	a
JDK	environment	to	be	installed.

As	far	as	hardware	requirements	are	concerned,	you	should	be	aware	that	the	server
distribution,	at	the	time	of	writing	this,	requires	about	130	MB	of	hard	disk	space,	and
allocates	a	minimum	of	64	MB	and	a	maximum	of	512	MB	for	a	standalone	server.

In	order	to	get	started,	we	will	need	to	go	over	this	checklist:

	
Install	JDK	where	WildFly	will	run
Install	WildFly
Install	the	Eclipse	development	environment
Install	the	Maven	build	management	tool

At	the	end	of	this	chapter,	you	will	have	all	the	instruments	to	get	started	with	the
application	server.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing	Java	SE
The	first	mandatory	requirement	is	to	install	a	JDK	8	environment.	The	Java	SE	download
site	can	be	found	at
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

Choose	the	latest	version	of	Java	SE	8	and	install	it.	If	you	don’t	know	how	to	install	it,
please	take	a	look	at
http://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html.

Testing	the	installation
Once	you	have	completed	your	installation,	run	the	java	-version	command	from	a
command	prompt	to	verify	that	it	is	correctly	installed.	Here	is	the	expected	output	from	a
Windows	machine:
C:\>java	–version

java	version	“1.8.0_11”

Java(TM)	SE	Runtime	Environment	(build	1.8.0_11-b12)

Java	HotSpot(TM)	64-Bit	Server	VM	(build	25.11-b03,	mixed	mode)

Installing	WildFly
The	JBoss	WildFly	application	server	can	be	downloaded	for	free	from
http://wildfly.org/downloads/.

As	you	can	see	in	the	following	screenshot,	at	the	moment	of	writing	this	book,	the	latest
stable	release	of	WildFly	is	8.1.0.Final,	which	features	a	Certified	Java	EE	7	full	profile:

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html
http://wildfly.org/downloads/
http://www.it-ebooks.info/

Once	you	have	chosen	the	appropriate	server	distribution,	you	will	then	be	warned	that
this	download	is	part	of	a	community	release	and,	as	such,	is	not	supported.

Note
If	you	need	Enterprise	support	for	your	applications,	you	can	opt	for	the	Red	Hat
Enterprise	Application	Platform.

Compared	to	the	community	version,	the	EAP	has	gone	through	different	quality	tests	and
might	be	different	in	terms	of	features/packaging.	More	information	about	the	differences
between	EAP	and	the	community	version	can	be	found	at	the	beginning	of	this	chapter.
However,	at	the	time	of	writing	this	book,	EAP	does	not	yet	support	Java	EE	7,	and	no
road	map	is	publicly	available.

Installing	WildFly	is	a	piece	of	cake;	it	does	not	require	anything	else	besides	unpacking
the	wildfly-8.1.0.Final.zip	archive.

Windows	users	can	simply	use	any	uncompressing	utility,	such	as	built-in	compressed
folders	(in	newer	Windows	releases),	WinZip,	WinRAR,	or	7-Zip	taking	care	to	choose	a
folder	name	that	does	not	contain	empty	spaces	and	white	spaces.	Unix/Linux	should	use
the	$	unzip	wildfly-8.1.0.Final.zip	unzip	shell	command	to	explode	the	archive.

Note

www.it-ebooks.info

http://www.it-ebooks.info/

Security	warning

Unix/Linux	users	should	be	aware	that	WildFly	does	not	require	root	privileges,	as	none
of	the	default	ports	used	by	WildFly	are	below	the	privileged	port	range	of	1024.	To
reduce	the	risk	of	users	gaining	root	privileges	through	WildFly,	install	and	run	WildFly	as
a	non-root	user.

Starting	WildFly
After	you	have	installed	WildFly,	it	is	wise	to	perform	a	simple	start	up	test	to	validate	that
there	are	no	major	problems	with	your	Java	VM	/	operating	system	combination.	To	test
your	installation,	move	to	the	bin	directory	of	your	JBOSS_HOME	(the	path	to	which	you
have	unzipped	your	application	server)	directory	and	issue	the	following	command:

standalone.bat				#	Windows	users

$./standalone.sh			#	Linux/Unix	users

The	following	is	a	screenshot	of	a	sample	WildFly	start-up	console:

The	preceding	command	starts	up	a	WildFly	standalone	instance,	which	is	equivalent	to
starting	the	application	server	with	the	run.bat/run.sh	script	used	by	earlier	JBoss	AS
releases.	You	will	notice	how	amazingly	fast	the	new	release	of	the	application	server	is;
this	is	due	to	the	modular	architecture	introduced	in	Version	7	of	JBoss	AS,	which	only
starts	up	necessary	parts	of	the	application	server	container	needed	by	the	loaded
applications.

If	you	need	to	customize	the	start-up	properties	of	your	application	server,	open	the

www.it-ebooks.info

http://www.it-ebooks.info/

standalone.conf	file	(or	standalone.conf.bat	for	Windows	users),	where	the	memory
requirements	of	Wildfly	have	been	declared.	Here	is	the	Linux	core	section	of	this	file:
if	[“x$JAVA_OPTS”	=	“x”];	then

				JAVA_OPTS=”-Xms64m	-Xmx512m	-XX:MaxPermSize=256m

							-Djava.net.preferIPv4Stack=true”

				JAVA_OPTS=”$JAVA_OPTS

								-Djboss.modules.system.pkgs=$JBOSS_MODULES_SYSTEM_PKGS

								-Djava.awt.headless=true”

else

				echo	“JAVA_OPTS	already	set	in	environment;	overriding	default	settings

with	values:	$JAVA_OPTS”

So,	by	default,	the	application	server	starts	with	a	minimum	memory	requirement	of	64
MB	of	heap	space	and	a	maximum	of	512	MB.	This	will	be	just	enough	to	get	started;
however,	if	you	need	to	run	more	robust	Java	EE	applications	on	it,	you	will	likely	require
at	least	1	GB	of	heap	space	or	2	GB	or	more,	depending	on	your	application	type.
Generally	speaking,	32-bit	machines	cannot	execute	a	process	whose	space	exceeds	2	GB;
however,	on	64-bit	machines,	there	is	essentially	no	limit	to	the	process	size.

You	can	verify	that	the	server	is	reachable	from	the	network	by	simply	pointing	your
browser	to	the	application	server’s	welcome	page,	which	can	be	accessed	from	the	well-
known	address,	http://localhost:8080.	The	welcome	page	of	WildFly	is	shown	in	the
following	screenshot:

Connecting	to	the	server	with	the	command-line	interface

www.it-ebooks.info

http://www.it-ebooks.info/

If	you	have	been	using	previous	releases	of	the	application	server,	you	might	have	heard
about	the	twiddle	command-line	utility	that	queried	MBeans	installed	on	the	application
server.	This	utility	has	been	replaced	by	a	more	sophisticated	interface	named	the
command-line	interface	(CLI);	it	can	be	found	in	JBOSS_HOME/bin.

Just	launch	the	jboss-cli.bat	script	(or	jboss-cli.sh	for	Linux	users),	and	you	will	be
able	to	manage	the	application	server	via	a	shell	interface.	This	is	shown	in	the	following
screenshot:

We	started	an	interactive	shell	session	that	can	also	use	the	command-line	completion	(by
pressing	the	Tab	key)	to	match	partly	typed	command	names.	No	more	searches	are
needed	to	find	the	exact	syntax	of	commands!

Note
In	the	previous	screenshot,	we	connected	to	the	server	using	the	connect	command;	it
uses	the	loopback	server	address	and	plugs	into	port	9990	by	default.

The	command-line	interface	is	discussed	in	depth	in	Chapter	9,	Managing	the	Application
Server,	which	is	all	about	server	management	interfaces;	we	will,	however,	get	an	initial
taste	of	its	basic	functionalities	in	the	next	sections	to	get	you	accustomed	to	this	powerful
tool.

Stopping	WildFly
The	easiest	way	to	stop	WildFly	is	by	sending	an	interrupt	signal	with	Ctrl	+	C.

However,	if	your	WildFly	process	was	launched	in	the	background	or,	rather,	is	running	on
another	machine,	you	can	use	the	CLI	interface	to	issue	an	immediate	shutdown
command:

[disconnected	/]	connect

Connected	to	localhost:9990

[standalone@localhost:9990	/]	:shutdown

Locating	the	shutdown	script

There	is	actually	one	more	option	to	shut	down	the	application	server	that	is	pretty	useful,
if	you	need	to	shut	down	the	server	from	within	a	script.	This	option	consists	of	passing
the	—	connect	option	to	the	admin	shell,	thereby	switching	off	the	interactive	mode	as
shown	in	the	following	command	line:

www.it-ebooks.info

http://www.it-ebooks.info/

jboss-cli.bat	—connect	command=:shutdown						#	Windows

./jboss-cli.sh	—connect	command=:shutdown							#	Unix	/	Linux

Stopping	WildFly	on	a	remote	machine

Shutting	down	the	application	server	that	is	running	on	a	remote	machine	is	just	a	matter
of	providing	the	server’s	remote	address	to	the	CLI,	and	for	security	reasons,	a	username
and	password,	as	shown	in	the	following	code	snippet	(see	the	next	chapter	to	learn	more
about	user	creation):
[disconnected	/]	connect	192.168.1.10

Authenticating	against	security	realm:	ManagementRealm

Username:	admin1234

Password:

Connected	to	192.168.1.10:9990

[standalone@192.168.1.10:9990	/]	:shutdown

However,	you	have	to	remember	that	you	need	access	to	a	given	port	because	often,	it	may
be	blocked	by	a	firewall.

Restarting	WildFly
The	command-line	interface	contains	many	useful	commands.	One	of	the	most	interesting
options	is	the	ability	to	reload	the	AS	configuration	or	parts	of	it	using	the	reload
command.

When	issued	on	the	root	node	path	of	the	AS	server,	the	reload	command	can	reload	the
services’	configuration:
[disconnected	/]	connect

Connected	to	localhost:9990

[standalone@localhost:9990	/]	:reload

www.it-ebooks.info

http://www.it-ebooks.info/

Installing	the	Eclipse	environment
The	development	environment	used	in	this	book	is	Eclipse,	which	is	known	by	Java
developers	worldwide,	and	it	contains	a	huge	set	of	plugins	to	expand	its	functionalities.
Besides	this,	Eclipse	is	the	first	IDE	that	is	compatible	with	the	new	application	server.

So,	let’s	move	to	the	download	page	of	Eclipse,	which	is	located	at	http://www.eclipse.org.

From	here,	download	the	latest	Enterprise	Edition	(at	the	time	of	writing	this	book,	it	is
Version	4.4	and	is	also	known	as	Luna).	The	compressed	package	contains	all	the	Java	EE
plugins	already	installed.	This	is	shown	in	the	following	screenshot:

Once	you	have	unzipped	the	previously	downloaded	file,	you	will	see	a	folder	named
eclipse.	In	this	folder,	you	will	find	the	Eclipse	application	(a	big	blue	dot).	It	is
recommended	that	you	create	a	shortcut	on	the	desktop	to	simplify	the	launching	of
Eclipse.	Note	that,	just	as	with	WildFly,	Eclipse	does	not	have	an	installation	process.
Once	you	have	unzipped	the	file,	you	are	done!

Installing	JBoss	Tools
The	next	step	will	be	installing	the	JBoss	AS	plugin	that	is	a	part	of	the	suite	of	plugins
named	JBoss	Tools.	Installing	new	plugins	in	Eclipse	is	pretty	simple;	just	follow	these
steps:

	
1.	 From	the	menu,	navigate	to	Help	|	Install	New	Software.
2.	 Then,	click	on	the	Add	button,	where	you	will	enter	JBoss	Tools’	download	URL

(along	with	a	description),
http://download.jboss.org/jbosstools/updates/development/luna/.	This	is	shown	in	the
following	screenshot:

www.it-ebooks.info

http://www.eclipse.org
http://download.jboss.org/jbosstools/updates/development/luna/
http://www.it-ebooks.info/

3.	 As	you	can	see	in	the	preceding	screenshot,	you	need	to	check	the	JBossAS	Tools
plugin	and	move	forward	to	the	next	option	to	complete	the	installation	process.

Note
Enter	JBossAS	into	the	filter	field	to	quickly	find	the	JBoss	AS	Tools	plugin	among
the	large	set	of	JBoss	Tools.

4.	 Once	done,	restart	the	process	when	prompted.

Note
You	can	also	download	JBoss	Tools	as	individual	zip	files	for	an	offline	installation.
See	JBoss	Tools	Downloads	at	http://tools.jboss.org/downloads/.

5.	 Now,	you	should	be	able	to	see	WildFly	listed	as	a	server	by	navigating	to	New	|
Server	from	the	upper	menu	and	expanding	the	JBoss	Community	option,	as	shown
in	the	following	screenshot:

www.it-ebooks.info

http://tools.jboss.org/downloads/
http://www.it-ebooks.info/

Completing	the	server	installation	in	Eclipse	is	quite	straightforward	as	it	just	requires
pointing	to	the	folder	where	your	server	distribution	is;	we	will	therefore	leave	this	to	you
to	implement	as	a	practical	exercise.

www.it-ebooks.info

http://www.it-ebooks.info/

Alternative	development	environments
Since	this	book	is	all	about	development,	we	should	also	account	for	some	other
alternatives	that	might	suit	your	programming	style	or	your	company	standards	better.	So,
another	valid	alternative	is	IntelliJ	IDEA,	which	is	available	at
http://www.jetbrains.com/idea/index.html.

IntelliJ	IDEA	is	a	code-centric	IDE	focused	on	developer	productivity.	The	editor	exhibits
a	nice	understanding	of	your	code	and	makes	great	suggestions	right	when	you	need	them
and	is	always	ready	to	help	you	shape	your	code.

Two	versions	of	this	product	exist—Community	edition	and	Ultimate	edition—that
require	a	license.	In	order	to	use	Java	EE	and	the	WildFly	plugin,	you	need	to	download
the	ultimate	edition	from	http://www.jetbrains.com/idea/download/index.html	and	then
simply	install	it	using	the	installation	wizard.

Once	you	have	installed	the	Ultimate	edition,	you	will	be	able	to	get	started	with
developing	applications	with	WildFly	by	going	to	File	|	Settings	and	choosing	the	IDE
Settings	option.	Here,	you	can	choose	to	add	new	application	server	environments.	This	is
shown	in	the	following	screenshot:

Another	development	option	that	is	quite	popular	among	developers	is	NetBeans
(http://netbeans.org),	which	has	support	for	WildFly	in	its	releases	7.4	and	8.0,	but
requires	installation	of	additional	plugins	available	in	the	NetBeans	plugins	registry.

www.it-ebooks.info

http://www.jetbrains.com/idea/index.html
http://www.jetbrains.com/idea/download/index.html
http://netbeans.org
http://www.it-ebooks.info/

Installing	Maven
Besides	graphical	tools,	you	are	strongly	encouraged	to	learn	about	Maven,	the	popular
build	and	release	management	tool.	By	using	Maven,	you	will	enjoy	the	following	things:

	
A	standard	structure	for	all	your	projects
A	centralized	and	automatic	management	of	dependencies

Maven	is	distributed	in	several	formats,	for	your	convenience,	and	can	be	downloaded
from	http://maven.apache.org/download.html.

Once	the	download	is	complete,	unzip	the	distribution	archive	(for	example,	apache-
maven-3.1.1-bin.zip	for	Windows)	to	the	directory	in	which	you	wish	to	install	Maven
3.1.0	(or	the	latest	available	version),	for	example,	C:\Programs\apache-maven-3.1.1.
Some	operating	systems	such	as	Linux	or	OS	X	offer	Maven	packages	in	their	application
repositories.

Once	done,	add	the	M2_HOME	environment	variable	to	your	system	so	that	it	will	point	to
the	folder	where	Maven	has	been	unpacked.

Next,	update	the	PATH	environment	variable	by	adding	the	Maven	binaries	to	your	system
path.	For	example,	on	the	Windows	platform,	you	should	include	%M2_HOME%/bin	in	order
to	make	Maven	available	on	the	command	line.

Some	additional	Maven	learning	materials	are	available	on	the	Sonatype	website	in	the
form	of	free	books;	refer	to	http://www.sonatype.com/resources/books.

Testing	the	installation
Once	you	have	completed	your	installation,	run	the	mvn	version	to	verify	that	Maven	has
been	correctly	installed.	Refer	to	the	following	code	snippet	to	verify	the	correct
installation:
>	mvn	–version

Apache	Maven	3.1.1	(0728685237757ffbf44136acec0402957f723d9a;	2013-09-17

17:22:22+0200)

Maven	home:	C:\Programs\Dev\apache-maven-3.1.1

Java	version:	1.8.0_11,	vendor:	Oracle	Corporation

Java	home:	C:\Programs\Java\jdk1.8.0\jre

Default	locale:	en_US,	platform	encoding:	Cp1250

OS	name:	“windows	8.1”,	version:	“6.3”,	arch:	“amd64”,	family:	“dos”

Note
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

www.it-ebooks.info

http://maven.apache.org/download.html
http://www.sonatype.com/resources/books
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Summary
In	this	chapter,	we	ran	our	first	mile	on	the	track	to	application	server	development.	We
introduced	the	new	features	of	the	application	server	and	had	an	overview	of	the	Java
Platform	Enterprise	Edition	in	Version	7,	also	known	as	Java	EE	7.

Next,	we	discussed	the	installation	of	the	WildFly	AS	and	all	the	core	components	that
include	JDK	and	a	set	of	development	tools,	such	as	Eclipse	and	Maven,	which	will	be
your	companions	on	this	journey.

In	the	next	chapter,	we	will	summarize	all	the	application	server	features	with	a	special
focus	on	the	components	and	commands	needed	to	deliver	an	application,	which	is	the
main	aim	of	this	book.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	2.	Your	First	Java	EE	Application	on
WildFly
This	chapter	will	provide	you	with	a	crash	course	in	the	new	application	server	so	that	you
will	be	able	to	create	a	deployable	skeleton	of	our	first	Java	EE	7	application	in	the	next
chapter.	More	specifically,	we	will	cover	the	following	topics:

	
An	introduction	to	the	WildFly	8	core	concepts
The	anatomy	of	the	WildFly	8	filesystem
An	introduction	to	the	available	management	instruments
Deploying	your	first	Hello	World	application

www.it-ebooks.info

http://www.it-ebooks.info/

WildFly	8	core	concepts
Now	that	we	have	downloaded	and	installed	WildFly	8,	it	is	worth	spending	a	few	minutes
familiarizing	ourselves	with	some	basic	concepts.	The	architecture	and	most	of	the	core
ideas	are	taken	straight	from	JBoss	AS	7;	although,	there	are	some	new	mechanisms	that
were	introduced	with	the	newest	version	(for	example,	role-based	security	for	the
management	system,	reduced	number	of	used	ports,	and	a	new	patching	system).	Just	like
JBoss	AS	7,	WildFly	can	be	run	in	two	modes:	the	standalone	mode	and	domain	mode.

In	the	standalone	mode,	each	WildFly	instance	is	an	independent	process	(similar	to	the
previous	JBoss	AS	versions,	such	as	Version	4,	Version	5,	Version	6,	and	the	standalone
mode	in	Version	7).	The	standalone	configuration	files	are	located	under	the
standalone/configuration	directory	of	the	application	server.

In	the	domain	mode,	you	can	run	multiple	application	servers	and	manage	them	from	a
central	point.	A	domain	can	span	multiple	physical	(or	virtual)	machines.	On	each
machine,	we	can	install	several	instances	of	WildFly	that	are	under	the	control	of	a	Host
Controller	process.	The	configuration	files	in	the	domain	mode	are	located	under	the
domain/configuration	folder	of	the	application	server.

From	the	process	point	of	view,	a	domain	is	made	up	of	three	elements:

	
Domain	Controller:	The	domain	controller	is	the	management	control	point	of	your
domain.	A	WildFly	instance	running	in	the	domain	mode	will	have	at	the	most	one
process	instance	acting	as	a	domain	controller.	The	domain	controller	holds	a
centralized	configuration,	which	is	shared	by	the	node	instances	that	belong	to	that
domain.
Host	Controller:	This	is	the	process	that	is	responsible	for	coordinating	the	life	cycle
of	server	processes	and	the	distribution	of	deployments	from	the	domain	controller	to
the	server	instances.
Application	server	nodes:	These	are	regular	Java	processes	that	map	instances	of	the
application	server.	Each	server	node,	in	turn,	belongs	to	a	server	group.	Domain
groups	are	explained	in	detail	when	we	will	discuss	the	domain	configuration	file.

Additionally,	when	starting	a	domain,	you	will	see	another	JVM	process	running	on	your
machine.	This	is	the	Process	Controller.	It	is	a	very	lightweight	process	whose	primary
function	is	to	spawn	server	processes	and	Host	Controller	processes,	and	manage	their
input/output	streams.	Since	Process	Controller	is	not	configurable,	we	will	not	discuss	it
any	further.

The	following	diagram	depicts	a	typical	domain	deployment	configuration:

www.it-ebooks.info

http://www.it-ebooks.info/

As	you	can	see	in	the	preceding	diagram,	one	host	(Host1)	acts	as	a	dedicated	domain
controller.	This	is	a	common	practice	adopted	in	domain-managed	servers	in	order	to
logically	and	physically	separate	the	administration	unit	from	the	servers	where	the
applications	are	hosted.

The	other	hosts	(Host2	and	Host3)	contain	the	domain	application	servers,	which	are
divided	into	two	server	groups:	main-server-group	and	other-server-group.	A	server
group	is	a	logical	set	of	server	instances	that	will	be	managed	and	configured	together.
Each	server	group	can,	in	turn,	be	configured	with	different	profiles	and	deployments;	for
example,	in	the	preceding	domain,	you	can	provide	some	services	with	main-server-
group	and	other	services	with	other-server-group.

This	has	some	advantages.	For	example,	when	you	don’t	want	to	shut	down	your
application	for	a	new	version,	you	can	start	by	redeploying	only	one	server	group	at	a
time.	When	one	server	is	not	fully	operational,	requests	can	be	handled	by	the	second	one.

Getting	into	the	details	of	the	domain	configuration	is	beyond	the	scope	of	this	book;
however,	by	the	end	of	this	chapter,	we	will	see	how	to	deploy	application	units	in	a
domain	using	the	command-line	interface	available	in	WildFly.

www.it-ebooks.info

http://www.it-ebooks.info/

The	WildFly	8	directory	layout
The	difference	between	standalone	and	domain	reflects	in	the	directory	layout	of	the
application	server	is	shown	in	the	following	diagram:

As	you	can	see	in	the	preceding	diagram,	the	WildFly	directory	layout	is	divided	into	two
main	parts:	the	first	one	is	pertinent	to	a	standalone	server	mode	and	the	other	is	dedicated
to	a	domain	server	mode.	Common	to	both	server	modes	is	the	modules	directory,	which
is	the	heart	of	the	application	server.

WildFly	is	based	on	the	JBoss	Modules	project,	which	provides	an	implementation	of	a
modular	(nonhierarchical)	class	loading	and	an	execution	environment	for	Java.	In	other
words,	rather	than	a	single	class	loader	that	loads	all	JARs	into	a	flat	class	path,	each
library	becomes	a	module,	which	only	links	to	the	exact	modules	it	depends	on	and
nothing	more.	It	implements	a	thread	safe,	fast,	and	highly	concurrent	delegating	class
loader	model,	coupled	with	an	extensible	module	resolution	system.	This	combines	to
form	a	unique,	simple,	and	powerful	system	for	application	execution	and	distribution.

www.it-ebooks.info

http://www.it-ebooks.info/

The	following	table	details	the	content	of	each	folder	present	in	the	root	folder	of
JBOSS_HOME:

Folder Description

bin
This	folder	contains	the	startup	scripts,	startup	configuration	files,	and	various	command-line	utilities,	such	as	vault,	add-user,	and	Java	diagnostic	reports	available	for	Unix	and	Windows
environments

bin/client This	folder	contains	a	client	Jar	for	use	by	the	remote	EJB	and	CLI	and	clients	not	using	any	build	systems	with	automatic	dependency	management	such	as	Maven,	Ant	with	Ivy,	or	Gradle

bin/init.d New	in	WildFly,	this	folder	contains	scripts	for	Red	Hat	Linux	and	Debian,	which	registers	WildFly	as	a	Linux	service

bin/service New	in	WildFly,	this	folder	contains	a	script	that	allows	to	register	WildFly	as	a	Windows	service

docs/examples This	folder	contains	some	sample	standalone	configurations	such	as	a	minimal	standalone	configuration	(standalone-minimalistic.xml)

docs/schema This	folder	contains	XML	schema	definition	files

domain This	folder	contains	the	configuration	files,	deployment	content,	and	writable	areas	used	by	the	domain	mode	processes	run	from	this	installation

modules This	folder	contains	all	the	modules	installed	on	the	application	server

standalone This	folder	contains	the	configuration	files,	deployment	content,	and	writable	areas	used	by	the	single	standalone	servers	run	from	this	installation

appclient This	folder	contains	the	configuration	files,	deployment	content,	and	writable	areas	used	by	the	application	client	container	run	from	this	installation

welcome-

content
This	folder	contains	the	default	Welcome	page	content

Digging	into	the	standalone	mode	tree,	we	can	find	folders	that	are	pertinent	to	standalone
independent	processes.	If	you	have	experience	with	earlier	server	releases,	you	will	find
these	folders	quite	intuitive	to	you:

Directory Description

configuration
This	directory	contains	the	configuration	files	for	the	standalone	server	that	runs	from	this	installation.	All	configuration	information	for	the	running	server	is	located	here	and	is	the	single	place	for
configuration	modifications	for	the	standalone	server.

data This	directory	contains	the	persistent	information	written	by	the	server	to	survive	a	restart	of	the	server.

deployments The	end	user	deployment	content	can	be	placed	in	this	directory	for	automatic	detection	and	deployment	of	that	content	into	the	server’s	runtime.

lib/ext This	directory	is	the	location	for	the	installed	library	Jar	files,	referenced	by	the	applications	using	the	Extension-List	mechanism.

log This	directory	contains	the	standalone	server	logfiles.

tmp This	directory	contains	the	location	of	the	temporary	files	written	by	the	server.

The	domain	directory	structure	is	quite	similar	to	the	standalone	equivalent,	with	one
important	difference.	As	you	can	see	from	the	following	table,	the	deployments	folder	is
not	present	since	the	domain	mode	does	not	support	deploying	content	based	on	scanning
a	filesystem.	We	need	to	use	the	WildFly	managed	instruments	(CLI	and	web	admin
console)	in	order	to	deploy	applications	to	a	domain.

Directory Description

This	directory	contains	the	configuration	files	for	the	domain	Host	Controller	and	any	servers	running	on	this	installation.	All	the	configuration	information	for	the	servers	managed	within	the	domain	is

www.it-ebooks.info

http://www.it-ebooks.info/

configuration located	here	and	is	the	single	place	for	configuration	information.

data/content
This	directory	is	an	internal	working	area	for	the	Host	Controller,	which	controls	this	installation.	This	is	where	it	internally	stores	the	deployment	content.	This	directory	is	not	meant	to	be	manipulated
by	the	end	users.	It	is	created	after	the	first	server	startup.

log
This	directory	is	the	location	where	the	Host	Controller	process	writes	its	logs.	The	Process	Controller,	a	small,	lightweight	process	that	actually	spawns	other	Host	Controller	processes	and	any
application	server	processes,	also	writes	logs	here.	It	is	created	after	the	first	server	startup.

servers

This	directory	is	a	writable	area	used	by	each	application	server	instance	that	runs	from	this	installation.	Each	application	server	instance	will	have	its	own	subdirectory,	created	when	the	server	is	first
started.	In	each	server’s	subdirectory,	the	following	subdirectories	will	be	present:

	
data:	This	is	the	information	written	by	the	server	that	needs	to	survive	a	restart	of	the	server

log:	This	is	the	server’s	logfiles

tmp:	This	is	the	location	of	the	temporary	files	written	by	the	server.	This	folder	is	created	after	the	first	server	startup.

tmp This	directory	contains	the	location	of	the	temporary	files	written	by	the	server.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing	the	application	server
WildFly	provides	three	different	means	to	configure	and	manage	servers:	a	web	interface,
a	command-line	client,	and	a	set	of	XML	configuration	files.	No	matter	what	approach
you	choose,	the	configuration	is	always	synchronized	across	the	different	views	and
finally	persisted	to	the	XML	files.	After	saving	the	changes	using	the	web	interface,	you
will	instantly	see	an	updated	XML	file	in	your	server’s	configuration	directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing	WildFly	8	with	the	web	interface
The	web	interface	is	a	Google	Web	Toolkit	(GWT)	application,	which	can	be	used	to
manage	a	standalone	or	domain	WildFly	distribution.	The	GWT	application	known	in
JBoss	AS	7	has	been	updated	to	match	the	new	visual	theme.	It	was	also	extended	with
new	features,	such	as	role-based	security	and	patching	support.	By	default,	it	is	deployed
on	a	localhost	on	the	9990	port;	the	property	that	controls	the	port	socket	binding	is
jboss.management.http.port,	as	specified	in	the	server	configuration
(standalone.xml/domain.xml).	The	server	configuration	is	given	in	the	following	code
snippet:
<socket-binding-group	name=“standard-sockets”	default-interface=“public”>

								<socket-binding	name=“management-http”	interface=“management”

port=”${jboss.management.http.port:9990}”/>

								…	…	…

</socket-binding-group>

Note
Wildfly	8	is	secured	out	of	the	box	and	the	default	security	mechanism	is	based	on	a
username	or	password,	making	use	of	HTTP	Digest.	The	reason	for	securing	the	server	by
default	is	that	if	the	management	interfaces	are	accidentally	exposed	on	a	public	IP
address,	authentication	is	required	to	connect.	For	this	reason,	there	is	no	default	user	in
the	distribution.

The	users	are	stored	in	a	properties	file	called	mgmt-users.properties	under
standalone/configuration	or	domain/configuration	depending	on	the	running	mode	of	the
server.	This	file	contains	the	username	information	along	with	a	precalculated	hash	of	the
username,	plus	the	name	of	the	realm	and	user’s	password.

To	manipulate	the	files	and	add	users,	the	server	has	provided	utilities	such	as	add-
user.sh	and	add-user.bat	to	add	the	users	and	generate	hashes.	So	just	execute	the	script
and	follow	the	guided	process.	This	is	shown	in	the	following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

In	order	to	create	a	new	user,	you	need	to	provide	the	following	information:

	
Type	of	user:	The	type	of	user	will	be	Management	User,	since	it	will	manage	the
application	server.
Realm:	This	must	match	the	realm	name	used	in	the	configuration,	so	unless	you
have	changed	the	configuration	to	use	a	different	realm	name,	leave	this	set	to
ManagementRealm.
Username:	This	is	the	username	of	the	user	you	are	adding.
Password:	This	is	the	user’s	password.
User	groups:	This	is	a	list	of	comma-separated	groups	that	should	be	assigned	to	the
newly	created	user;	they	are	used	for	the	role-based	access	control	and	auditing
system,	which	was	introduced	in	WildFly.	The	information	about	user	groups	is
stored	in	the	mgmt-groups.properties	file.

If	the	validation	is	successful,	you	will	be	asked	to	confirm	whether	you	want	to	add	the
user;	only	then	the	properties	files	will	be	updated.

The	final	question	(Is	this	new	user	going	to	be	used	to	connect	one	AS	process	to
another?)	can	be	used	to	add	the	slave	Host	Controllers	that	authenticate	against	a

www.it-ebooks.info

http://www.it-ebooks.info/

master	domain	controller.	This,	in	turn,	requires	adding	the	secret	key	to	your	slave	host’s
configuration	in	order	to	authenticate	with	the	master	domain	controller.	(For	more
information	about	domain	configuration,	please	visit
https://docs.jboss.org/author/display/WFLY8/Admin+Guide#AdminGuide-
ManagedDomain.)

www.it-ebooks.info

https://docs.jboss.org/author/display/WFLY8/Admin+Guide#AdminGuide-ManagedDomain
http://www.it-ebooks.info/

Launching	the	web	console
Now	that	we	have	added	at	least	one	user,	we	can	launch	the	web	console	at	the	default
address,	http://<host>:9990/console	(keep	in	mind	that	you	have	to	start	the	server
first,	for	example,	with	standalone.bat	or	standalone.sh).

The	login	screen	will	be	prompted.	Enter	data	into	the	User	Name	and	Password	fields,
which	we	had	formerly	created.	This	is	shown	in	the	following	screenshot:

Once	logged	in,	you	will	be	redirected	to	the	web	administration	main	screen.	The	web
console,	when	running	in	the	standalone	mode,	will	be	divided	into	three	main	tabs:
Configuration,	Runtime,	and	Administration.	This	is	shown	in	the	following
screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

The	Configuration	tab	contains	all	the	single	subsystems	that	are	part	of	a	server	profile.
So,	once	you	select	the	Configuration	tab	on	the	left	frame,	you	can	access	all	the
subsystems	and	edit	their	configurations	(in	the	previous	screenshot,	we	saw	the	Data
Sources	subsystem).

The	other	tab	named	Runtime	can	be	used	for	two	main	purposes:	to	manage	the
deployment	of	applications	and	check	the	server	metrics.	This	is	shown	in	the	following
screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

The	Administration	tab	has	been	introduced	with	WildFly	and	Red	Hat	JBoss	EAP	6.2
and	currently	contains	only	the	options	associated	with	role	based	access	control.	You	can
now	limit	permissions	of	management	users,	for	example,	so	that	not	every	administrator
can	undeploy	an	application	using	the	web	console.	By	default,	this	feature	is	disabled.
You	have	to	enable	it	manually	using	the	CLI	mechanism.	This	is	shown	in	the	following
screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Once	you	have	learned	how	to	access	the	web	console,	it	is	about	time	you	try	your	first
application	example.

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying	your	first	application	to	WildFly	8
In	order	to	test	launch	our	first	application,	we	will	create	a	HelloWorld	web	project	using
Eclipse.	The	main	part	will	be	a	servlet	class,	used	to	generate	HTML	markup.	So,
launch	Eclipse	and	choose	to	create	a	new	web	project	by	navigating	to	File	|	New	|
Dynamic	Web	Project.	This	is	shown	in	the	following	screenshot:

Choose	a	name	for	your	application	and	check	the	Use	default	location	box	if	you	want	to
create	your	project	within	the	same	location	of	your	Eclipse	workspace.	If	you	have
correctly	configured	a	new	WildFly	server	in	Eclipse,	you	should	see	the	WildFly	8.0
Runtime	option	selected	by	default,	and	Target	Runtime	and	Default	Configuration	for
WildFly	8.0	Runtime	preselected	in	the	Configuration	box.

Select	3.1	as	the	Dynamic	web	module	version,	which	makes	development	easy	by	using
the	Servlet	3.1	specifications,	and	also	leave	the	EAR	membership	and	Add	project	to

www.it-ebooks.info

http://www.it-ebooks.info/

working	sets	checkboxes	unselected.

Click	on	Finish	to	continue.

Now,	let’s	add	a	quintessential	simple	servlet	to	our	project,	which	merely	dumps	a	Hello
World	message	as	an	HTML	page.	From	the	File	menu,	go	to	New	|	Servlet	and	enter	a
meaningful	name	and	package	for	your	servlet,	such	as	TestServlet	as	the	name	and
com.packtpub.wflydevelopment.chapter2	as	the	package	name.	This	is	shown	in	the
following	screenshot:

The	wizard	will	generate	a	basic	servlet	skeleton	that	needs	to	be	enhanced	with	the
following	set	of	code	lines:
@WebServlet(“/test”)

public	class	TestServlet	extends	HttpServlet	{

				private	static	final	long	serialVersionUID	=	1L;

				private	static	final	String	CONTENT_TYPE	=	

						“text/html;charset=UTF-8”;

				private	static	final	String	MESSAGE	=	“<!DOCTYPE	html><html>”	+

												“<head><title>Hello!</title></head>”	+

												“<body>Hello	World	WildFly</body>”	+

												“</html>”;

				@Override

				protected	void	doGet(HttpServletRequest	request,	

																									HttpServletResponse	response)

												throws	ServletException,	IOException	{

								response.setContentType(CONTENT_TYPE);

								try	(PrintWriter	out	=	response.getWriter())	{

												out.println(MESSAGE);

								}

www.it-ebooks.info

http://www.it-ebooks.info/

				}

}

The	servlet	will	respond	with	a	static	HTML	page	(we	defined	the	content	type	as
Text/HTML	with	an	UTF-8	charset)	for	every	GET	HTTP	request	that	will	be	issued
against	its	URL	address.

Note
Notice	that	TextServlet	bears	the	@WebServlet	annotation,	which	has	been	introduced	by
the	Servlet	3.0	API,	and	it	allows	registering	a	servlet	without	using	the	web.xml
configuration	file.	In	our	example,	we	used	it	to	customize	the	servlet	URL	binding	to
employ	/test,	which	would	otherwise	be	defaulted	by	Eclipse	to	the	class	name.

We	will	complete	the	application	with	the	creation	of	a	JBoss	file	descriptor	named
jboss-web.xml	in	/WebContent/WEB-INF/	directory;	although	this	is	not	mandatory,	it
can	be	used	to	redefine	the	context	root,	as	shown	in	the	following	code	snippet:
<jboss-web>

				<context-root>/hello</context-root>

</jboss-web>

Note
The	schema	definition	file	for	jboss-web.xml	is	named	jboss-web_8_0.xsd	and	can	be
located	in	the	JBOSS_HOME/docs/schema	folder.

Keep	in	mind	that	creating	jboss-web.xml	makes	the	application	non-portable	to	other
Java	EE	Application	Servers.	The	default	application	path	when	such	a	file	is	not	defined
is	a	concatenation	of	the	application	name	and	its	version,	for	example,	for	application
TestServlet	with	Version	1.0,	it	would	be	TestServlet-1.0.

Now,	we	will	add	the	web	application	to	the	list	of	deployed	resources	by	right-clicking	on
the	Eclipse	Server	tab	and	selecting	Add	and	Remove.	This	is	shown	in	the	following
screenshot:

Next,	click	on	Add	to	add	the	project	to	the	list	of	configured	resources	on	the	server	as
shown	in	the	following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

If	you	have	started	WildFly	from	inside	Eclipse,	the	resource	will	be	automatically
deployed	by	checking	the	flag	to	see	whether	the	server	has	started,	and	publish	changes
immediately.

If,	on	the	other	hand,	you	have	started	the	application	server	externally,	then	you	can	fully
publish	your	resource	by	right-clicking	on	the	application	and	selecting	Full	Publish	as
shown	in	the	following	screenshot:

Now,	move	to	the	browser	and	check	that	the	application	responds	at	the	configured	URL,
as	shown	in	the	following	screenshot:

This	example	is	also	available	in	the	form	of	a	Maven	(will	be	introduced	in	the	next
chapter)	project	in	your	Packt	Publishing	account.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced	Eclipse	deployment	options
As	it	is,	Eclipse	has	published	a	HelloWorld.war	folder	in
JBOSS_HOME/standalone/deployments.

Note
You	might	have	noticed	that	Eclipse	has	also	added	a	marker	file	named
HelloWorld.war.dodeploy.	This	step	is	necessary	because,	by	default,	exploded
deployments	in	WildFly	aren’t	automatically	deployed.	Autodeployment	of	the	exploded
content	is	disabled	by	default	because	the	deployment	scanner	could	try	to	deploy	the
copied	directory	partially,	which	would	cause	a	lot	of	errors.	The	deployment	of	the
exploded	archives	can	be	manually	triggered	with	a	marker	file	named	application.
[jar/war/ear].dodeploy.

Once	the	application	is	deployed,	the	application	server	replaces	the	.dodeploy	marker
file	with	HelloWorld.war	deployed,	or	with	a	HelloWorld.war.failed	file,	should	the
deployment	fail.

You	can	change	the	default	deployment	options	by	double-clicking	on	WildFly	8.0	(in	the
Server	tab),	and	selecting	the	Deployment	tab	as	shown	in	the	following	screenshot:

In	the	Deployment	tab,	you	can	choose	to	deploy	your	application	on	a	custom	deploy
folder	by	checking	the	Use	a	custom	deploy	folder	option	and	entering	an	appropriate
value	into	the	corresponding	textbox.

Please	note	that	the	custom	deployment	folder	also	needs	to	be	defined	in	WildFly;	check
the	next	section	for	more	information	about	it.

Also,	take	note	of	the	Deploy	projects	as	compressed	archives	option,	which	can	be
useful	in	some	circumstances,	for	example,	if	you	are	distributing	the	application	via	other

www.it-ebooks.info

http://www.it-ebooks.info/

instruments	such	as	the	CLI,	which	can	deploy	only	compressed	archives.

Managing	deployments	with	the	web	console
Deploying	the	application	using	Eclipse	is	a	straightforward	task	and	is	likely	to	be	your
option	when	you	are	developing	apps.	We	will	see	here	how	to	use	the	web	console	to
deploy	the	application,	which	can	be	one	more	arrow	in	your	quiver.

Note
A	typical	scenario	for	this	example	could	be	if	you	are	running	the	AS	in	the	domain
mode,	or	simply	deploying	your	application	on	a	remote	WildFly	instance.

Start	the	web	console	and	click	on	the	Runtime	tab.	From	the	panel	on	the	left,	go	to
Server	|	Manage	Deployments	as	shown	in	the	following	screenshot:

In	the	central	panel,	we	can	manage	deployments	using	the	Add,	Remove,	En/Disable,
and	Update	buttons.	Select	the	Add	button	to	add	a	new	deployment	unit.	In	the	next
screen,	pick	up	the	file	you	want	to	deploy	(for	example,	the	HelloWorld.war	artifact,
which	can	be	created	from	our	test	project	in	Eclipse	by	navigating	to	File	|	Export	|	Web

www.it-ebooks.info

http://www.it-ebooks.info/

|	WAR	File)	from	your	local	filesystem,	as	shown	in	the	following	screenshot:

Complete	the	wizard	by	verifying	the	deployment’s	name	and	clicking	on	Save,	as	shown
in	the	following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Now,	the	deployment	is	listed	in	the	Deployments	table.	It	is,	however,	not	enabled	by
default.	Click	on	the	En/Disable	button	to	enable	the	deployment	of	the	application,	as
shown	in	the	following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Changing	the	deployment	scanner	properties

As	we	have	seen	before,	applications	running	in	the	standalone	mode	are	scanned	in	the
deployments	folder	by	default.	You	can	change	this	behavior	(and	also	the	deployment
scanner’s	properties)	by	clicking	on	the	Configuration	tab	and	navigating	to	Subsystems
|	Core	|	Deployment	Scanners	from	the	left	menu.	This	is	shown	in	the	following
screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

In	Deployment	Scanners,	you	can	set	the	core	deployment’s	attributes.	You	can	click	on
the	Edit	button	to	define	new	values	for	these	properties.	Most	of	them	are	self-
explanatory;	however,	the	following	table	summarizes	them:

Attribute Description

name This	is	the	deployment	scanner’s	name	(by	default,	the	name	default	is	provided).

path This	is	the	absolute	path	where	deployments	are	scanned.	If	the	attribute	Path	Relative	to	is	set,	then	it’s	appended	to	the	relative	path	definition.

Enabled This	attribute	determines	whether	the	deployment	scanner	is	enabled	or	not.

Path	Relative	to If	included,	this	attribute	must	point	to	a	system	path	that	will	be	used	to	build	the	relative	path	expression.

Scan	Interval This	is	the	time	frequency	(in	milliseconds)	for	which	deployments	will	be	scanned.

Auto-deploy	Zipped Setting	this	to	true	will	enable	automatic	deployments	for	zipped	applications.	Its	default	value	is	true.

www.it-ebooks.info

http://www.it-ebooks.info/

Auto-deploy	Exploded Setting	this	to	true	will	enable	automatic	deployments	for	exploded	applications.	Its	default	value	is	true.

Deployment	timeout This	refers	to	the	time-out	after	which	a	deployment	action	will	be	marked	as	failed.

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying	applications	using	the	command-line	interface
Another	way	to	deploy	an	application	is	via	the	WildFly	Command-line	Interface	(CLI),
which	can	be	started	from	jboss-cli.bat	(or	jboss-cli.sh	for	Linux	users).	Don’t	be
afraid	of	using	a	textual	interface	to	manage	your	application	server;	as	a	matter	of	fact,
the	console	provides	built-in	autocomplete	features	and	you	can	display	the	available
commands	at	any	time	by	simply	hitting	the	Tab	key,	as	shown	in	the	following
screenshot:

As	you	might	have	guessed,	in	order	to	deploy	an	application,	you	need	to	issue	the
deploy	shell	command.	When	used	without	arguments,	the	deploy	shell	command
provides	a	list	of	applications	that	are	currently	deployed.	Refer	to	the	following	code:

[standalone@localhost:9990	/]	deploy

ExampleApp.war

If	you	feed	a	resource	archive	such	as	.war	to	shell,	it	will	deploy	it	on	the	standalone
server	right	away,	as	shown	in	the	following	command	line:

[standalone@localhost:9990	/]	deploy	../HelloWorld.war	

As	you	can	see	from	the	preceding	command	line,	the	CLI	uses	the	folder	where	your
deployments	were	actually	launched	at	its	initial	location,	which	is	JBOSS_HOME/bin	by
default.	You	can,	however,	use	absolute	paths	when	specifying	the	location	of	your
archives;	the	CLI	expansion	facility	(using	the	Tab	key)	makes	this	option	fairly	simple.
This	is	demonstrated	in	the	following	command	line:

[standalone@localhost:9990	/]	deploy	c:\deployments\HelloWorld.war

There	is	no	error	message	after	issuing	the	command;	therefore,	the	application	is
deployed	and	activated	so	that	the	user	can	access	it.	If	you	want	to	just	perform	the
deployment	of	the	application	and	defer	the	activation	to	a	later	time,	you	have	to	add	the
—disabled	switch,	as	shown	in	the	following	command	line:

[standalone@localhost:9990	/]	deploy	../HelloWorld.war	—disabled	

In	order	to	activate	the	application,	simply	issue	another	deploy	shell	command	without

www.it-ebooks.info

http://www.it-ebooks.info/

the	—disabled	switch,	as	shown	in	the	following	command	line:

[standalone@localhost:9990	/]	deploy	-–name=HelloWorld.war	

Redeploying	the	application	requires	an	additional	flag	for	the	deploy	shell	command.
Use	the	-f	argument	to	force	the	application’s	redeployment,	as	shown	in	the	following
command	line:

[localhost:9990	/]	deploy	-f	../HelloWorld.war

Undeploying	the	application	can	be	done	with	the	undeploy	command,	which	takes	the
application	that	is	deployed	as	an	argument.	This	is	shown	in	the	following	command	line:

[localhost:9990	/]	undeploy	HelloWorld.war

Deploying	applications	to	a	domain
Deploying	applications	when	running	in	the	domain	mode	is	slightly	different	from	doing
this	in	the	standalone	mode.	The	difference	boils	down	to	the	fact	that	an	application	can
be	deployed	just	to	one	server	group	or	to	all	the	server	groups.	As	a	matter	of	fact,	one
reason	why	you	might	split	your	domain	into	different	server	groups	might	be	that	you	are
planning	to	offer	different	types	of	services	(and	hence	applications)	to	each	server	group.

So,	in	order	to	deploy	your	HelloWorld.war	application	to	all	server	groups,	issue	the
following	command:

[domain@localhost:9990	/]	deploy	HelloWorld.war	—all-server-groups

If,	on	the	other	hand,	you	want	to	undeploy	an	application	from	all	server	groups
belonging	to	a	domain,	you	have	to	issue	the	undeploy	command,	as	shown	in	the
following	command	line:

[domain@localhost:9990	/]	undeploy	HelloWorld.war	—all-relevant-server-

groups

You	can	also	deploy	your	application	just	to	one	server	group	of	your	domain	by
specifying	one	or	more	server	groups	(separated	by	a	comma)	with	the	—server-groups
parameter,	as	shown	in	the	following	command	line:

[domain@localhost:9990	/]	deploy	HelloWorld.war	—server-groups=main-server-

group

You	can	use	the	tab	completion	facility	in	order	to	complete	the	value	for	the	list	of	—
server	groups	elected	for	deployment.

Now,	suppose	we	wish	to	undeploy	the	application	from	just	one	server	group.	There	can
be	two	possible	scenarios.	If	the	application	is	available	just	on	that	server	group,	you	will
just	need	to	feed	the	server	group	to	the	—server-groups	flag,	as	shown	in	the	following
command	line:

[domain@localhost:9990	/]	undeploy	HelloWorld.war	—server-groups=main-

www.it-ebooks.info

http://www.it-ebooks.info/

server-group

On	the	other	hand,	if	your	application	is	available	on	other	server	groups	as	well,	you	need
to	provide	the	additional	—keep-content	flag;	otherwise,	the	CLI	will	complain	that	it
cannot	delete	an	application	that	is	referenced	by	other	server	groups,	as	shown	in	the
following	command	line:

[domain@localhost:9990	/]	undeploy	HelloWorld.war	—server-groups=main-

server-group	—keep-content

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	went	through	a	crash	course	on	the	application	server,	focusing	on	the
available	management	instruments:	the	web	interface	and	Command-line	interface.	We
then	saw	how	to	use	these	tools	to	deploy	a	sample	application	to	a	standalone
environment	and	domain	environment.

In	the	next	chapter,	we	will	dive	deep	into	Java	EE	7	components,	starting	from	Enterprise
JavaBeans,	which	still	plays	an	important	role	in	the	evolving	scenario	of	Java	Enterprise
applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	3.	Introducing	Java	EE	7	–	EJBs
In	the	previous	chapter,	you	learned	some	basics	about	how	to	set	up	and	deploy	a	Hello
World	application	on	WildFly.	In	this	chapter,	we	will	go	a	little	deeper	and	learn	how	to
create,	deploy,	and	assemble	Enterprise	JavaBeans,	which	are	at	the	heart	of	most
Enterprise	applications.	Additionally,	you	will	learn	how	to	use	Maven,	a	popular	build
tool,	which	can	ease	the	packaging	process	of	our	beans.

In	more	detail,	here	is	what	you	will	learn	in	this	chapter:

	
What	changes	are	introduced	by	the	new	EJB	3.2	specification
How	to	create	a	Java	EE	7	Maven	project
How	to	develop	a	singleton	EJB
How	to	create	stateless	and	stateful	Enterprise	JavaBeans
How	to	add	and	manage	schedulers	and	timers	to	your	application
How	to	make	use	of	asynchronous	APIs	in	an	EJB	project

www.it-ebooks.info

http://www.it-ebooks.info/

EJB	3.2	–	an	overview
Based	on	the	Enterprise	JavaBeans	(EJB)	specification,	Enterprise	JavaBeans	are
components	that	typically	implement	the	business	logic	of	Java	Enterprise	Edition
applications	(for	Java	EE,	note	that	Oracle	advises	against	using	JEE	as	the	acronym	for
Java	Enterprise	Edition;	for	more	information	about	acronyms	for	Java-related
technologies,	visit	https://java.net/projects/javaee-spec/pages/JEE).	Because	of	their
transactional	nature,	EJBs	are	also	commonly	used	for	the	construction	of	the	data	access
layer	in	many	applications.	However,	in	the	newest	version	of	the	specification,	container-
managed	transactions	are	no	longer	exclusive	for	Enterprise	JavaBeans	and	can	be	reused
in	other	parts	of	the	Java	EE	platform.

There	are	basically	three	types	of	Enterprise	JavaBeans:

	
Session	beans:	This	is	the	most	commonly	used	EJB	type.	The	container	manages
multiple	instances	of	every	class	that	is	defined	as	a	session	bean	(with	an	exception
for	singletons,	which	have	only	one	instance).	When	an	operation	implemented	by
EJB	must	be	executed	(for	example,	because	a	user	has	requested	an	update	of	an
entity	in	the	database),	the	container	assigns	a	session	bean	instance	for	the	specific
user.	This	code	is	then	executed	on	behalf	of	the	calling	client.	The	container	is
responsible	for	providing	session	beans	with	multiple	system-level	services,	for
example,	security,	transactions,	or	distribution	of	beans.
Message-driven	beans	(MDB):	MDBs	are	Enterprise	beans	that	can	asynchronously
process	messages	sent	by	any	JMS	producer.	(We	will	discuss	MDBs	in	Chapter	6,
Developing	Applications	with	JBoss	JMS	Provider.)
Entity	objects:	An	EJB	is	used	to	represent	entities	in	a	database.	The	newest	version
of	the	specification	made	this	type	of	Enterprise	JavaBeans	optional,	so	they	may	not
be	supported	in	all	containers	(their	support	has	also	been	dropped	in	WildFly).
Entity	objects	will	be	removed	from	the	specification	in	Java	EE	8.	Currently,	in	Java
EE	7,	the	main	persistence	technology	is	Java	Persistence	API.	We	will	discuss	JPA
in	Chapter	5,	Combining	Persistence	with	CDI.

Additionally,	session	beans	can	be	divided	into	three	subtypes	based	on	their
characteristics	and	usage	scenarios.

	
Stateless	session	beans	(SLSB):	These	are	objects	whose	instances	have	no
conversational	state	with	the	client	that	has	invoked	an	operation	on	them.	This
means	that	all	these	bean	instances	are	equal	when	they	are	not	servicing	a	client,	and
the	container	can	prepare	a	pool	for	them	to	handle	multiple	requests	in	parallel.
Because	they	do	not	store	any	state,	their	performance	overhead	is	quite	low.	A
common	usage	scenario	for	an	SLSB	would	be	a	stateless	service	responsible	for
retrieving	objects	from	a	database.
Stateful	session	beans	(SFSB):	SFSB	supports	conversational	services	with	tightly
coupled	clients.	A	stateful	session	bean	accomplishes	a	task	for	a	particular	client	and
it	cannot	be	shared	between	multiple	callers.	It	maintains	the	state	for	the	duration	of

www.it-ebooks.info

https://java.net/projects/javaee-spec/pages/JEE
http://www.it-ebooks.info/

a	client	session.	After	session	completion,	the	state	is	not	retained.	The	container	may
decide	to	passivate	(serialize	and	store	for	future	usage)	a	stale	SFSB.	This	is	done	to
save	resources	of	the	application	server	or	in	some	cases,	to	support	SFSB	failover
mechanism	in	a	domain	of	application	servers	(this	is	the	case	in	JBoss	AS	7	and
WildFly).	Starting	from	EJB	3.2,	it	is	possible	to	disable	passivation	for	a	specific
SFSB,	although	it	may	affect	the	server’s	stability	and	failover	capability.	A	shopping
cart	could	serve	as	a	simple	use	case	for	an	SFSB.
Singleton	EJB:	This	is	essentially	similar	to	a	stateless	session	bean;	however,	it	uses
a	single	instance	to	serve	client	requests.	So,	you	can	guarantee	the	use	of	the	same
instance	across	invocations.	Singletons	can	use	a	richer	life	cycle	for	a	set	of	events,
along	with	the	possibility	to	control	when	a	bean	is	initialized.	Also,	a	more	strict
locking	policy	to	control	concurrent	access	to	the	instance	can	be	enforced,	so	that
the	shared	state	of	the	singleton	bean	can	be	used	by	multiple	clients.	If	the
application	is	distributed	on	multiple	nodes	of	a	domain,	then	every	running	JVM
will	have	its	own	instance	of	the	singleton	bean.	We	will	discuss	this	a	little	further	in
Chapter	11,	Clustering	WildFly	Applications.	Because	of	their	special	characteristics,
singletons	can	be	used	to	save	the	state	of	the	application,	cache,	or	initialize	some
resources	during	the	application’s	startup.

As	we	mentioned	earlier,	the	container	manages	the	instances	of	the	beans,	but	the	clients
should	call	them	through	business	interfaces.	There	are	three	types	of	a	session	bean’s
views	available:

	
Local	business	interface:	This	session	bean	is	used	when	the	bean	and	its	client	are
in	the	same	container.	It	uses	the	pass-by-reference	semantic,	so	the	return	values	and
method	parameters	are	based	on	references	and	not	copies	of	the	objects.
Remote	business	interface:	In	this	session	bean,	the	locations	of	the	client	and	the
bean	are	independent	(the	client	may	reside	in	another	container	or	without	a
container	at	all,	for	example,	as	a	standalone	application).	Every	parameter	and	return
value	is	serialized	and	copied.
No-interface	view:	This	session	bean	is	a	variant	of	the	local	business	view	that	does
not	require	a	separate	interface,	that	is,	all	public	methods	of	the	bean	class	are
automatically	exposed	to	the	caller.

Since	EJB	3.1,	it	is	possible	to	use	asynchronous	methods.	These	are	able	to	process	client
requests	asynchronously,	just	like	MDBs,	except	that	they	expose	a	typed	interface	and
follow	a	more	complex	approach	to	process	client	requests.	It	is	possible	to	use	two
approaches	to	achieve	this	kind	of	behavior:

	
Fire-and-forget	asynchronous	void	methods,	which	are	invoked	by	the	client
Retrieve-result-later	asynchronous	methods,	which	have	the	Future<?>	return	type

What	more	should	you	know	about	EJBs	before	proceeding?	When	you	develop	an
Enterprise	JavaBean,	you	have	to	follow	some	general	rules,	which	are	as	follows:

	

www.it-ebooks.info

http://www.it-ebooks.info/

Avoid	using	nonfinal	static	fields
Don’t	manually	create	threads	(we	will	cover	this	topic	more	deeply	in	Chapter	12,
Long-term	Tasks’	Execution)
Don’t	use	synchronization	primitives	(except	in	singletons	with	bean-managed
concurrency)
Manual	file	operations	on	the	filesystem	and	listening	on	sockets	are	forbidden
Native	libraries	should	not	be	loaded

Disobeying	these	rules	could	cause	security	and	stability	issues	with	the	EJB	container.	A
comprehensive	list	of	disallowed	activities	can	be	found	at
http://www.oracle.com/technetwork/java/restrictions-142267.html	along	with	some
explanations	for	specific	points.

Since	it’s	easier	to	grasp	the	concepts	with	real	examples,	in	the	next	section,	we	will
provide	a	concrete	application	example	that	introduces	some	of	the	features	that	we
described	in	this	section.

www.it-ebooks.info

http://www.oracle.com/technetwork/java/restrictions-142267.html
http://www.it-ebooks.info/

Developing	singleton	EJBs
As	the	name	implies,	javax.ejb.Singleton	is	a	session	bean	that	guarantees	that	there	is
at	most	one	instance	in	the	application.

Note
Besides	this,	singleton	EJBs	fill	a	well-known	gap	in	EJB	applications,	that	is,	the	ability
to	have	an	EJB	notified	when	the	application	starts	and	also	when	the	application	stops.
So,	you	can	do	all	sorts	of	things	with	an	EJB	that	you	previously	(before	EJB	3.1)	could
only	do	with	a	load-on-startup	servlet.	EJB	also	gives	you	a	place	to	hold	data	that	pertains
to	the	entire	application	and	all	the	users	using	it,	without	the	need	for	static	class	fields.

In	order	to	turn	your	EJB	into	a	singleton,	all	that	is	needed	is	to	apply	the
@javax.ejb.Singleton	annotation	on	top	of	it.

Note
A	singleton	bean	is	similar	to	a	stateful	bean,	in	that,	state	information	is	maintained
across	method	invocations.	However,	there	is	just	one	singleton	bean	for	each	server	JVM,
and	it	is	shared	by	all	of	the	EJBs	and	clients	of	an	application.	This	type	of	bean	provides
a	convenient	means	to	maintain	the	overall	state	of	an	application.	However,	if	the
application	is	distributed	on	multiple	machines	(and	therefore	multiple	JVMs),	the
singleton	is	unique	on	every	one	of	them.	Any	application	state	must	be	synchronized
between	the	nodes.

Another	annotation	that	is	worth	learning	is	@javax.ejb.Startup,	which	causes	the	bean
to	be	instantiated	by	the	container	when	the	application	starts.	This	invokes	the	method
decorated	with	the	@javax.annotation.PostConstruct	annotation	if	you	have	defined
one	in	your	EJB.

We	now	have	enough	information	to	understand	our	first	EJB	example.	There	is	more	than
one	alternative	to	create	a	Java	Enterprise	project.	In	the	earlier	chapter,	we	illustrated	how
to	start	from	a	project	based	on	Eclipse	Java	EE	(a	dynamic	web	project),	binding	it	later
to	a	WildFly	runtime	installation.	This	is	obviously	the	simplest	choice,	and	you	can	easily
run	the	examples	contained	in	this	book	using	this	pattern;	however,	when	it	comes	to
enterprise	solutions,	it’s	no	surprise	that	almost	every	project	now	uses	some	kind	of	build
automation	tool.	For	this	book,	we	will	propose	Apache	Maven,	as	it	is	one	of	the	most
popular	choices,	but	not	the	only	one.	Gradle	is	a	similar	project	that	uses	the	Groovy
language	to	describe	project	structure,	dependencies,	and	build	workflow.

Some	of	the	benefits	that	you	will	achieve	when	turning	to	Maven	projects	include	a	well-
defined	dependency	structure,	the	conventions	of	a	project	build’s	best	practices,	and
project	modular	design,	just	to	mention	a	few.	Additionally,	when	you	have	an	automated
build	process,	you	can	use	continuous	integration	tools	(such	as	Jenkins)	to	schedule
automated	tests	and	deployments	of	your	applications.

All	major	IDEs	have	built-in	Maven	support.	This	includes	the	Eclipse	Java	EE	Luna
release.

So,	let’s	create	our	first	Maven	project	directly	from	Eclipse.	Navigate	to	File	|	New	|

www.it-ebooks.info

http://www.it-ebooks.info/

Other	|	Maven	|	Maven	Project.	This	is	shown	in	the	following	screenshot:

Click	on	Next;	you	will	be	taken	to	the	following	intermediary	screen:

Maven	allows	the	use	of	archetypes	when	creating	a	new	project.	They	define	a	project’s
basic	dependencies,	resources,	structure,	and	so	on.	For	example,	you	can	use	a	web
application	archetype	in	order	to	get	an	empty	project	skeleton,	which	you	can	just	build
and	deploy.	Unfortunately,	archetypes	are	often	outdated,	and	you	still	need	to	adjust	them
for	your	needs.	In	order	to	use	some	Java	EE	7	archetypes,	you	have	to	first	define	a

www.it-ebooks.info

http://www.it-ebooks.info/

repository	and	archetypes	you	would	like	to	use,	and	then	you	can	create	a	project.	In	real
life,	you	will	probably	create	every	new	project	by	just	looking	at	your	previous	ones,
without	using	any	archetypes.	So,	here	we	will	show	how	to	create	a	project	from	scratch.
You	might	also	be	interested	in	some	additional	Java	EE-related	tools	such	as	JBoss	Forge,
whose	description	you	will	find	in	the	Appendix,	Rapid	Development	Using	JBoss	Forge.

On	the	visible	screen,	check	the	Create	a	simple	project	checkbox.	With	this	option,	we
will	skip	the	archetype	selection.	You	can	click	on	Next.	Now,	you	have	to	complete	some
basic	project	information.	We	are	creating	a	server-side	EJB	application,	which	also	has	a
standalone	client.	These	two	projects	can	share	some	common	information,	for	example,
about	dependencies	and	their	versions.	Hence,	we	want	to	create	a	Maven	multimodule
project.	In	this	first	step,	let’s	create	a	parent	project	that	has	a	POM	packaging.	POM	is	a
Maven	convention	used	to	describe	the	structure	of	a	project	and	its	modules.	More
information	on	this	can	be	found	in	Sonatype	free	books	that	we	mentioned	in	previous
chapters.

You	can	complete	the	wizard	by	entering	some	package-specific	information,	as	shown	in
the	following	screenshot:

For	Group	ID	(an	abstract	identifier	with	a	similar	role	as	in	Java	packages),	you	can	use
com.packtpub.wflydevelopment.chapter3.	For	Artifact	ID	(a	simplified	name	of	our
project),	just	use	ticket-agency.	Set	the	Packaging	field	to	pom,	and	you	can	leave	the
default	selection	for	the	project’s	Version	field.	Click	on	Finish	in	order	to	complete	the
wizard.

Take	a	look	at	our	newly	created	project.	At	the	moment,	it	contains	only	pom.xml,	which

www.it-ebooks.info

http://www.it-ebooks.info/

will	be	the	base	for	new	modules.	Navigate	again	to	File	|	New	|	Other	|	Maven	but	now
choose	the	New	Maven	Module.	You	can	now	see	the	following	screenshot:

Again,	we	want	to	skip	the	archetype	selection,	so	check	the	Create	a	simple	project
option.	Under	the	Parent	Project,	click	on	Browse	and	select	the	parent	we	created	a
while	ago.	Under	Module	Name,	enter	ticket-agency-ejb.	Click	on	Next.	You	will	be
presented	with	the	following	screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Now,	let’s	discuss	the	packaging	type.	There	are	a	few	possible	archive	types	for	Java	EE
deployments:

	
The	EJB	module:	This	module	usually	contains	classes	for	EJBs,	packed	as	a	.jar
file.
The	web	module:	This	archive	can	additionally	contain	web	elements	such	as
servlets,	static	web	files,	REST	endpoints,	and	so	on.	It	is	packed	as	a	.war	file	(web
archive)	file.
The	resource	adapter	module:	This	archive	contains	files	related	to	JCA	connectors
(described	in	Chapter	6,	Developing	Applications	with	JBoss	JMS	Provider).	It	is
packed	as	a	.rar	file.
The	Enterprise	archive:	This	archive	aggregates	multiple	Java	EE	modules	(EJB,
Web)	with	related	descriptors.	It	is	packed	as	a	.ear	file.

Here,	we	want	to	deploy	only	EJBs	without	any	web	elements,	so	let’s	set	the	packaging
to	EJB	(if	it	is	not	visible	in	the	Eclipse	drop-down	menu,	just	manually	type	it)	and	click
on	Finish.

Follow	the	same	steps	to	add	a	second	module	with	the	name	ticket-agency-ejb-client
and	JAR	packaging	.	This	will	be	a	simple	client	for	services	exposed	in	ticket-agency-
ejb.

Now,	look	at	our	parent	project	pom.xml.	It	should	define	two	recently	created	modules,

www.it-ebooks.info

http://www.it-ebooks.info/

which	are	as	follows:
				<modules>

								<module>ticket-agency-ejb</module>

								<module>ticket-agency-ejb-client</module>

				</modules>

The	expected	outcome	of	these	operations	should	match	the	following	screenshot,	which
has	been	taken	from	the	Project	Explorer	view:

As	you	can	see,	the	ticket-agency-ejb	and	ticket-agency-ejb-client	projects	have	been
organized	as	a	standard	Maven	project:

	
src/main/java	will	contain	our	source	code
src/main/resources	is	meant	for	the	configuration	(containing	a	bare-bones	ejb-
jar.xml	configuration	file	for	the	EJB	project)
src/test/java	is	used	to	store	the	test	classes

At	the	moment,	we	will	focus	on	the	main	file	pom.xml,	which	needs	to	be	aware	of	the
Java	EE	dependencies.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring	the	EJB	project	object	module	(pom.xml)
Before	digging	into	the	code,	first	you	need	to	configure	Maven’s	pom.xml	configuration
file	further.	This	file	is	quite	verbose,	so	we	will	illustrate	just	the	core	elements	here	that
are	required	to	understand	our	example,	leaving	the	full	listing	to	the	code	example
package	of	this	book.

The	first	thing	we	are	going	to	add	just	after	the	properties	section	is	a	reference	to	Java
EE	7	API,	which	is	as	follows:
<dependencies>

				<dependency>

								<groupId>javax</groupId>

								<artifactId>javaee-api</artifactId>

								<version>7.0</version>

								<scope>provided</scope>

				</dependency>

</dependencies>

This	dependency	will	add	all	Java	EE	7.0	APIs’	definitions.	Scope	is	set	to	be	provided,
which	means	the	dependency	is	available	on	the	target	environment	(in	our	case,	the
application	server),	and	does	not	need	to	be	included	in	the	built	archive.	This	dependency
is	universal,	and	should	work	with	all	Application	Servers	that	are	compatible	with	Java
EE	7.0,	not	only	with	WildFly.

We	also	want	to	add	a	second	dependency,	which	is	the	JBoss	logging	API.	Place	this
definition	in	the	same	<dependencies>	</dependencies>	tags,	for	example,	below
javaee-api,	as	follows:
<dependency>

				<groupId>org.jboss.logging</groupId>

				<artifactId>jboss-logging</artifactId>

				<version>3.1.4.GA</version>

				<scope>provided</scope>

</dependency>

Note
The	scope	provided	includes	the	enterprise	dependencies	and	corresponds	to	adding	a
library	to	the	compilation	path.	Therefore,	it	expects	the	JDK	or	a	container	to	provide	the
dependency	at	runtime.	Besides	dependencies,	we	would	like	to	configure	the	build
process.	The	created	project	specifies	the	EJB	packaging,	but	the	build	is	performed	with
the	JDK	1.5	compliance	level	and	an	old	EJB	version.	This	is	why	we	want	to	add	an
additional	block	to	pom.xml,	which	is	as	follows:
<build>

				<plugins>

								<plugin>

											<groupId>org.apache.maven.plugins</groupId>

											<artifactId>maven-compiler-plugin</artifactId>

												<version>3.1</version>

												<configuration>

																<!—	enforce	Java	8	—>

																<source>1.8</source>

www.it-ebooks.info

http://www.it-ebooks.info/

																<target>1.8</target>

											</configuration>

								</plugin>

								<plugin>

											<groupId>org.apache.maven.plugins</groupId>

											<artifactId>maven-ejb-plugin</artifactId>

											<version>2.3</version>

											<configuration>

																<ejbVersion>3.2</ejbVersion>

																<!—	Generate	ejb-client	for	client	project	—>

																<generateClient>true</generateClient>

											</configuration>

								</plugin>

				</plugins>

</build>

This	block	does	two	things,	which	are	as	follows:

	
The	maven-compiler-plugin	configuration	enforces	the	usage	of	Java	8
The	maven-ejb-plugin	configuration	defines	that	EJB	3.2	version	was	used,	and
enables	generation	of	the	EJB	client	(disabled	by	default)	package	for	EJB	client
applications

Also,	check	the	src/main/resources/META-INF/ejb-jar.xml	file.	It	might	contain	the
configuration	from	EJB	2.1.	Instead,	use	the	following	code:
<?xml	version=“1.0”	encoding=“UTF-8”?>

<ejb-jar	xmlns=“http://xmlns.jcp.org/xml/ns/javaee”

									xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”

									xsi:schemaLocation=“http://xmlns.jcp.org/xml/ns/javaee”

									version=“3.2”>

				<display-name>ticket-agency-ejb</display-name>

				<ejb-client-jar>ticket-agency-ejbClient.jar</ejb-client-jar>

</ejb-jar>

At	this	point,	you	will	be	able	to	compile	your	project;	so,	we	will	start	adding	classes,	but
we	will	return	to	the	pom.xml	file	when	it’s	time	to	deploy	your	artifact.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding	our	EJB	application
Creating	EJB	classes	does	not	require	getting	mixed	up	with	fancy	wizards;	all	you	need
to	do	is	add	bare	Java	classes.	Therefore,	from	the	File	menu,	go	to	New	|	Java	Class,	and
enter	TheatreBox	as	the	classname	and
com.packtpub.wflydevelopment.chapter3.control	as	the	package	name.

We	will	add	the	following	implementation	to	the	class:
@Singleton

@Startup

@AccessTimeout(value	=	5,	unit	=	TimeUnit.MINUTES)

public	class	TheatreBox	{

				private	static	final	Logger	logger	=

Logger.getLogger(TheatreBox.class);

				private	Map<Integer,	Seat>	seats;

				@PostConstruct

				public	void	setupTheatre()	{

								seats	=	new	HashMap<>();

								int	id	=	0;

								for	(int	i	=	0;	i	<	5;	i++)	{

												addSeat(new	Seat(++id,	“Stalls”,	40));

												addSeat(new	Seat(++id,	“Circle”,	20));

												addSeat(new	Seat(++id,	“Balcony”,	10));

								}	

								logger.info(“Seat	Map	constructed.”);

				}

				private	void	addSeat(Seat	seat)	{

								seats.put(seat.getId(),	seat);

				}

				@Lock(READ)

				public	Collection<Seat>	getSeats()	{

								return	Collections.unmodifiableCollection(seats.values());

				}

				@Lock(READ)

				public	int	getSeatPrice(int	seatId)	throws	NoSuchSeatException	{

								return	getSeat(seatId).getPrice();

				}

				@Lock(WRITE)

				public	void	buyTicket(int	seatId)	throws	SeatBookedException,

NoSuchSeatException	{

								final	Seat	seat	=	getSeat(seatId);

								if	(seat.isBooked())	{

												throw	new	SeatBookedException(“Seat	”	+	seatId	+	”	already

booked!”);

								}

								addSeat(seat.getBookedSeat());

				}

www.it-ebooks.info

http://www.it-ebooks.info/

				@Lock(READ)

				private	Seat	getSeat(int	seatId)	throws	NoSuchSeatException	{

								final	Seat	seat	=	seats.get(seatId);

								if	(seat	==	null)	{

												throw	new	NoSuchSeatException(“Seat	”	+	seatId	+	”	does	not

exist!”);

								}

								return	seat;

				}

}

Let’s	see	our	application	code	in	detail;	the	void	method	setupTheatre	is	invoked	as	soon
as	the	application	is	deployed	and	takes	care	of	assembling	the	theatre	seats,	creating	a
simple	map	of	the	Seat	objects.	Seat	identifiers	are	key	factors	in	this	map.	This	happens
right	after	deployment	because	our	bean	is	annotated	with	@Singleton	and	@Startup	that
force	the	container	to	initialize	the	bean	during	startup.	Each	Seat	object	is	constructed
using	a	set	of	three	field	constructors,	which	includes	the	seat	ID,	its	description,	and	the
price	(the	booked	field	is	initially	set	as	false).	This	is	given	in	the	following	code:
public	class	Seat	{

				public	Seat(int	id,	String	name,	int	price)	{

								this(id,	name,	price,	false);

				}

				private	Seat(int	id,	String	name,	int	price,	boolean	booked)	{

								this.id	=	id;

								this.name	=	name;

								this.price	=	price;

								this.booked	=	booked;

				}

				public	Seat	getBookedSeat()	{

								return	new	Seat(getId(),	getName(),	getPrice(),	true);

				}

				//	Other	Constructors,	Fields	and	Getters	omitted	for	brevity

}

Note	that	our	Seat	object	is	an	immutable	one.	After	we	create	an	instance,	we	will	not	be
able	to	change	its	state	(the	value	of	the	fields,	all	of	them	are	final,	and	no	setters	are
exposed).	This	means	that	when	we	return	a	Seat	object	to	the	client	(local	or	remote),	it
will	be	only	available	for	reading.

Next,	the	singleton	bean	exposes	four	public	methods;	the	getSeats	method	returns	an
unmodifiable	collection	of	Seat	objects,	which	will	return	the	information	regarding
whether	they	have	been	reserved	or	not	to	the	user.	The	collection	must	be	unmodifiable
because	our	Singleton	exposes	a	no-interface	view,	which	means	that	we	are	using	the
pass-by-reference	semantic.	If	we	will	not	protect	the	collection,	then	every	change	on	an
element	of	the	returned	collection	will	be	done	on	our	cache.	What’s	more,	the	client	can
add	or	remove	elements	to	our	internal	collection!

The	getSeatPrice	method	is	an	utility	method,	which	will	pick	up	the	seat	price	and
return	it	as	int,	so	it	can	be	used	to	verify	whether	the	user	can	afford	to	buy	the	ticket.

The	getSeat	method	returns	an	immutable	Seat	object	for	a	given	ID.	Once	more,	we
return	an	immutable	Seat	because	we	don’t	want	the	client	to	change	the	object	without

www.it-ebooks.info

http://www.it-ebooks.info/

using	the	TheatherBox	bean.

Finally,	the	buyTicket	method	is	the	one	that	actually	buys	the	ticket	and,	therefore,	sets
the	ticket	as	booked.	We	cannot	change	the	value	of	an	immutable	object,	but	we	can
replace	it	with	a	new	one,	which	contains	another	value.	The	newly	created	object	is
placed	in	the	hashmap	instead	of	the	old	one.

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling	bean	concurrency
As	you	might	have	noticed,	the	bean	includes	a	@Lock	annotation	on	top	of	the	methods
managing	our	collection	of	Seat	objects.	This	kind	of	annotation	is	used	to	control	the
concurrency	of	the	singleton.

Concurrent	access	to	a	singleton	EJB	is,	by	default,	controlled	by	the	container.
Read/write	access	to	a	singleton	is	limited	to	one	client	at	a	time.	However,it	is	possible	to
provide	a	finer	level	of	concurrency	control	through	the	use	of	annotations.	This	can	be
achieved	using	the	@Lock	annotation,	whose	arguments	determine	the	type	of	concurrency
access	permitted.

By	using	a	@Lock	annotation	of	type	javax.ejb.LockType.READ,	multithreaded	access
will	be	allowed	to	the	bean.	This	is	shown	in	the	following	code:

				@Lock(READ)

				public	Collection<Seat>	getSeats()	{

								return	Collections.unmodifiableCollection(seats.values());

				}

On	the	other	hand,	if	we	apply	javax.ejb.LockType.WRITE,	the	single-threaded	access
policy	is	enforced,	as	shown	in	the	following	code:

				@Lock(WRITE)

				public	void	buyTicket(int	seatId)	throws	SeatBookedException,

NoSuchSeatException	{

								final	Seat	seat	=	getSeat(seatId);

								if	(seat.isBooked())	{

												throw	new	SeatBookedException(“Seat	”	+	seatId	+	”	already

booked!”);

								}

								addSeat(seat.getBookedSeat());

				}

The	general	idea	is	to	use	READ	type	locks	on	methods	that	just	read	values	from	the	cache
and	WRITE	type	locks	for	methods	that	change	the	values	of	elements	contained	in	the
cache.	Keep	in	mind	that	WRITE	type	locks	block	all	methods	with	READ	type	locks.	It	is
crucial	that	the	singleton	will	have	exclusive	control	of	the	modifications	of	its	state.	Lack
of	proper	encapsulation	mixed	with	the	pass-by-reference	semantic	(used	in	local	and	no-
interface	views	of	EJBs)	can	lead	to	hard-to-find	concurrency	bugs.	Using	immutable
objects	as	return	values	for	singletons	is	a	good	strategy	to	solve	these	kind	of	problems.
Another	strategy	would	be	to	return	only	copies	of	our	objects	or	switching	to	the	pass-by-
value	semantic.	The	last	strategy	can	be	applied	by	switching	to	a	remote	business
interface	in	the	singleton.

In	the	TheatreBox	code,	you	have	probably	noticed	a	@AccessTimeout	annotation	(with
value	5	and	unit	TimeUnit.MINUTES).	When	you	execute	a	query	against	a	method	with
@Lock	(WRITE),	and	if	some	other	thread	is	already	accessing	it,	then	after	5	seconds	of
waiting,	you	will	get	a	timeout	exception.	In	order	to	change	this	behavior	(for	example,
by	prolonging	the	allowed	wait	time),	you	can	specify	a	@javax.ejb.AccessTimout
annotation	at	the	method	or	class	level.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	bean-managed	concurrency
The	other	possible	option	is	to	use	a	bean-managed	concurrency	strategy	that	can	be
pursued	by	applying	the	@javax.ejb.ConcurrencyManagement	annotation	with	an
argument	of	ConcurrencyManagementType.BEAN.	This	annotation	will	disable	the	effect	of
the	@Lock	annotation	we	have	used	so	far,	putting	the	responsibility	of	ensuring	that	the
singleton	cache	does	not	get	corrupted	on	the	developer.

So,	in	order	to	ensure	that	our	bookings	are	preserved,	we	will	need	to	use	a	well-known
synchronized	keyword	on	top	of	the	buyTicket	method,	which	is	as	follows:
@Singleton

@Startup

@ConcurrencyManagement(ConcurrencyManagementType.BEAN)

public	class	TheatreBox	{

…	.

		public	synchronized	void	buyTicket(int	seatId)	{

				final	Seat	seat	=	getSeat(seatId);

				if	(seat.isBooked())	{

								throw	new	SeatBookedException(“Seat	”	+	seatId	+	”	already

booked!”);

				}

				addSeat(seat.getBookedSeat());

}

Since	concurrent	access	is	restricted	when	a	thread	enters	the	synchronized	block,	no	other
methods	are	allowed	to	access	the	object	while	the	current	thread	is	in	the	block.	Using	a
synchronized	block	is	equivalent	to	having	a	container-managed	concurrency	with	default
locks	of	type	WRITE	on	all	methods.	This	is	one	of	the	few	places	in	Java	EE	when	the
developer	may	use	synchronization	primitives	without	affecting	the	stability	of	the
container.

www.it-ebooks.info

http://www.it-ebooks.info/

Cooking	session	beans
Our	singleton	EJB	is	equipped	with	the	methods	to	handle	our	store	of	theatre	seats.	We
will	now	add	a	couple	of	session	beans	to	our	project	to	manage	the	business	logic,	a
stateless	session	bean	that	will	provide	a	view	of	the	theatre	seats	and	stateful	beans	that
will	behave	as	a	payment	gateway	to	our	system.

Note
The	choice	of	splitting	our	information	system	into	two	different	beans	is	not	part	of	a
design	pattern	in	particular,	but	serves	a	different	purpose.	That	is,	we	would	like	to	show
how	to	look	up	both	types	of	beans	from	a	remote	client.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding	a	stateless	bean
So,	the	first	bean	we	will	create	is
com.packtpub.wflydevelopment.chapter3.boundary.TheatreInfo,	which	barely
contains	the	logic	to	look	up	the	list	of	theatre	seats.	In	practice,	this	bean	acts	as	a	facade
for	our	singleton	bean,	as	shown	in	the	following	code:
@Stateless

@Remote(TheatreInfoRemote.class)

public	class	TheatreInfo	implements	TheatreInfoRemote	{

				@EJB

				private	TheatreBox	box;

				@Override

				public	String	printSeatList()	{

								final	Collection<Seat>	seats	=	box.getSeats();

								final	StringBuilder	sb	=	new	StringBuilder();

								for	(Seat	seat	:	seats)	{

												sb.append(seat.toString());

												sb.append(System.lineSeparator());

								}

								return	sb.toString();

				}

}

Since	we	are	planning	to	invoke	this	EJB	from	a	remote	client,	we	defined	a	remote
interface	for	it	with	the	@Remote(TheatreInfoRemote.class)	annotation.

Next,	take	a	look	at	the	@EJB	TheatreBox	box,	which	can	be	used	to	safely	inject	an	EJB
into	your	class	without	the	need	of	a	manual	JNDI	lookup.	This	practice	can	be	used	to
increase	the	portability	of	your	application	between	different	application	servers,	where
different	JNDI	rules	might	exist.

The	remote	interface	of	your	bean	will	be	as	simple	as	the	following	code:
public	interface	TheatreInfoRemote	{

				String	printSeatList();

}

Note
If	you	are	planning	to	expose	your	EJB	to	local	clients	only	(for	example,	to	a	servlet),
you	can	leave	out	the	remote	interface	definition	and	simply	annotate	your	bean	with
@Stateless.	The	application	server	will	create	a	no-interface	view	of	your	session	bean,
which	can	safely	be	injected	into	your	local	clients	such	as	servlets	or	other	EJBs.	Be
mindful	that	this	also	changes	the	semantics	of	the	methods	parameters	and	return	values.
For	remote	views,	they	will	be	serialized	and	passed	by	value.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding	a	stateful	bean
In	order	to	keep	track	of	how	much	money	our	customer	has	got	in	his	pocket,	we	will
need	a	session-aware	component.	Turning	a	Java	class	into	a	stateful	session	bean	is	just	a
matter	of	adding	a	@Stateful	annotation	on	top	of	it,	as	in	our	example
com.packtpub.wflydevelopment.chapter3.boundary.TheatreBooker	class.	This	is
shown	in	the	following	code:
@Stateful

@Remote(TheatreBookerRemote.class)

@AccessTimeout(value	=	5,	unit	=	TimeUnit.MINUTES)

public	class	TheatreBooker	implements	TheatreBookerRemote	{

				private	static	final	Logger	logger	=

Logger.getLogger(TheatreBooker.class);

				@EJB

				private	TheatreBox	theatreBox;

				private	int	money;

				@PostConstruct

				public	void	createCustomer()	{

								this.money	=	100;

				}

				@Override

				public	int	getAccountBalance()	{

								return	money;

				}

				@Override

				public	String	bookSeat(int	seatId)	throws	SeatBookedException,

NotEnoughMoneyException,	NoSuchSeatException	{

								final	int	seatPrice	=	theatreBox.getSeatPrice(seatId);

								if	(seatPrice	>	money)	{

												throw	new	NotEnoughMoneyException(“You	don’t	have	enough	money

to	buy	this	”	+	seatId	+	”	seat!”);

								}

								theatreBox.buyTicket(seatId);

								money	=	money	-	seatPrice;

								logger.infov(“Seat	{0}	booked.”,	seatId);

								return	“Seat	booked.”;

				}

}

As	you	can	see,	the	previous	bean	bears	a	@PostConstruct	annotation	to	initialize	a
session	variable	(money)	that	will	be	used	to	check	whether	the	customer	has	enough
money	to	buy	the	ticket.	When	using	EJBs,	we	don’t	use	constructors	and	destructors
to	perform	actions	on	an	object	to	create	or	destroy.	The	reason	is	that	the	point	object
might	not	have	injected	all	objects	it	depends	on.	The	method	annotated	with
@PostConstruct	is	executed	when	object	creation	is	already	finished,	that	is,	all	objects
are	injected	to	it.	There	is	a	second	annotation	related	to	the	EJB	life	cycle,	@PreDestroy,

www.it-ebooks.info

http://www.it-ebooks.info/

which	is	executed	before	the	object	is	destroyed.

Besides	this,	the	ultimate	purpose	of	our	SFSB	is	to	invoke	the	buyTicket	method	of	our
singleton	after	having	performed	some	business	checks.

If	the	business	checks	do	not	pass,	the	application	will	issue	some	exceptions.	This	is	the
case,	for	example,	if	the	seat	has	already	been	booked	or	if	the	customer	hasn’t	got	enough
money	to	buy	the	ticket.	In	order	to	keep	our	conversation	going,	it’s	important	that	our
exception	will	be	an	extension	of	the	generic	Exception	class.	Refer	to	the	following	code
for	more	information:
public	class	SeatBookedException	extends	Exception	{

		//	some	code	

}

If	we	use	a	runtime	exception	(for	example,	EJBException),	the	bean	instance	will	be
discarded,	and	the	communication	between	the	remote	client	and	server	will	be	dropped.
So,	always	take	care	to	choose	the	appropriate	type	of	exception	when	dealing	with	EJBs
—choose	to	throw	a	runtime	exception	if	you	are	dealing	with	an	unrecoverable	scenario
(the	connection	with	the	enterprise	information	system	is	dropped).	This	kind	of	exception
is	called	a	System	Exception.	On	the	other	hand,	consider	throwing	a	checked	exception
(or	simply	not	throwing	exceptions	at	all),	if	you	are	dealing	with	a	business	kind	of
exception;	for	example,	if	the	booked	seat	is	already	engaged.	Recoverable	exceptions	are
called	Application	Exceptions.

There	is	also	a	possibility	to	mark	a	runtime	exception	(which	would	normally	be	a
System	Exception)	as	a	recoverable	exception,	using	the	@ApplicationException
annotation.	You	may	even	decide	if	the	current	transaction	should	be	rolled	back	(which	is
the	default	behavior	for	system	exceptions)	using	@ApplicationException	(with	rollback
true)	on	an	exception	class	or	the	EJBContext.setRollbackOnly	statement	inside	a
business	method.	The	decision	to	roll	back	a	transaction	is	up	to	the	developer,	and	in
most	cases,	it	depends	on	the	business	scenario.

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying	the	EJB	application
As	it	is,	you	should	be	able	to	package	your	EJB	project	by	issuing	the	following	Maven
goal	and	starting	a	command-line	prompt	from	your	project	root:

mvn	package

The	preceding	command	will	compile	and	package	the	application	that	needs	to	be	copied
into	the	deployments	folder	of	your	application	server.	This	is	fine;	however,	we	can
expect	lots	more	from	Maven	by	installing	just	a	couple	of	plugins.	In	our	case,	we	will
configure	our	project	to	use	Maven’s	WildFly	plugin	by	adding	the	following	section:
<build>

				<finalName>${project.artifactId}</finalName>

				<plugins>

								<!—	WildFly	plugin	to	deploy	the	application	—>

								<plugin>

												<groupId>org.wildfly.plugins</groupId>

												<artifactId>wildfly-maven-plugin</artifactId>

												<version>1.0.2.Final</version>

												<configuration>

																<filename>${project.build.finalName}.jar</filename>

												</configuration>

								</plugin>

								<plugin>

												<groupId>org.apache.maven.plugins</groupId>

												<artifactId>maven-compiler-plugin</artifactId>

												<version>3.1</version>

												<configuration>

																<!—	enforce	Java	8	—>

																<source>1.8</source>

																<target>1.8</target>

												</configuration>

								</plugin>

								<plugin>

												<groupId>org.apache.maven.plugins</groupId>

												<artifactId>maven-ejb-plugin</artifactId>

												<version>2.3</version>

												<configuration>

																<ejbVersion>3.2</ejbVersion>

																<!—	Generate	ejb-client	for	client	project	—>

																<generateClient>true</generateClient>

												</configuration>

								</plugin>

				</plugins>

</build>

In	the	first	part	of	the	XML	fragment,	we	specified	the	project’s	finalName	attribute,
which	will	dictate	the	name	of	the	packaged	artifact	(in	our	example,	the	project’s	name
corresponds	to	our	project’s	artifact	ID,	so	it	will	be	named	ticket-agency-ejb.jar).

The	artifact	ID	named	wildfly-maven-plugin	will	actually	trigger	the	WildFly	Maven
plugin	that	will	be	used	to	deploy	our	project.

www.it-ebooks.info

http://www.it-ebooks.info/

So,	once	you	have	configured	the	WildFly	plugin,	your	application	can	be	deployed
automatically	by	entering	from	your	project	root.	This	can	be	done	by	typing	the	following
command	in	the	console:

mvn	wildfly:deploy

Since	deployment	is	a	repetitive	task	for	a	developer,	it	would	be	convenient	to	execute
this	operation	from	within	the	Eclipse	environment.	All	you	need	is	to	create	a	new	Run
Configurations	setting	from	the	upper	menu	by	navigating	to	Run	|	Run	Configurations.

Enter	the	project’s	base	directory	(hint:	the	Browse	Workspace…	utility	will	help	you
pick	up	the	project	from	your	project	list)	and	type	your	Maven	goal	into	the	Goals
textbox,	as	shown	in	the	following	screenshot:

Once	this	is	done,	please	ensure	that	your	WildFly	instance	is	running.	Click	on	Apply	to
save	your	configuration	and	then	click	on	Run	to	execute	the	deployment	of	the
application.	The	Maven	plugin	will	activate	and	once	it	is	verified	that	all	classes	are	up	to
date,	start	deploying	the	applications	to	WildFly	using	the	remote	API.	Note	that	you	do
not	need	to	pass	any	username	or	password	for	the	deployment.	This	is	possible	because

www.it-ebooks.info

http://www.it-ebooks.info/

you	are	deploying	your	application	from	the	same	machine	that	WildFly	is	installed	on.	A
local	user	authentication	is	done	under	the	hood	so	that	programmers	will	not	need	to
cover	this	on	their	development	machines.

After	issuing	the	command,	you	should	expect	a	success	message	on	the	Maven	console,
as	shown	in	the	following	code:
INFO:	JBoss	Remoting	version	4.0.3.Final

[INFO]	–––––––––––––––––––––

[INFO]	BUILD	SUCCESS

[INFO]	–––––––––––––––––––––

On	the	other	hand,	on	the	WildFly	console,	you	have	quite	a	verbose	output	that	points	out
some	important	EJB	JNDI	bindings	(we	will	return	to	it	in	a	minute)	and	informs	us	that
the	application	has	been	deployed	correctly.	This	is	depicted	in	the	following	code:
09:09:32,782	INFO		[org.jboss.as.server]	(management-handler-thread	-	1)

JBAS018562:	Deployed	“ticket-agency-ejb.jar”

Despite	the	fact	that	we	are	working	on	WildFly,	we	can	quite	frequently	see	information
from	JBoss	AS	subsystems	on	the	console.	This	is	because	WildFly	is	built	straight	on	the
JBoss	AS	7	codebase,	and	should	not	be	worried	about.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	a	remote	EJB	client
Creating	a	remote	EJB	client	for	the	WildFly	application	server	is	very	similar	to	AS7.
The	big	difference	can	be	noticed	between	AS6	and	newer	releases.

As	a	matter	of	fact,	previous	versions	of	WildFly	(JBoss	AS	versions	before	7.x)	used	the
JBoss	naming	project	as	the	JNDI	naming	implementation,	so	developers	are	familiar	with
jnp://	PROVIDER_URL	to	communicate	with	the	application	server.

Starting	with	AS7,	the	JNP	project	is	no	longer	used—neither	on	the	server	side	nor	on	the
client	side.	The	client	side	of	the	JNP	project	has	now	been	replaced	by	the	jboss-remote-
naming	project.	There	were	various	reasons	why	the	JNP	client	was	replaced	by	the	jboss-
remote-naming	project.	One	of	them	was	that	the	JNP	project	did	not	allow	fine-grained
security	configurations	while	communicating	with	the	JNDI	server.	The	jboss-remote-
naming	project	is	backed	by	the	jboss-remoting	project	which	allows	much	more	and
better	control	over	security.

Besides	the	new	naming	implementation	in	AS7	and	WildFly,	there	is	no	longer	any
support	to	bind	custom	JNDI	names	to	EJBs.	So	the	beans	are	always	bound	to	the	spec’s
mandated	java:global,	java:app,	and	java:module	namespaces.	Therefore,	setting	the
JNDI	name	for	the	session	bean	element	via	an	annotation	or	configuration	file	is	no
longer	supported.

So,	what	will	be	the	JNDI	name	used	to	invoke	a	stateless	session	bean?	Here	it	is:
ejb:<app-name>/<module-name>/<distinct-name>/<bean-name>!<fully-qualified-

classname-of-the-remote-interface>

A	bit	verbose,	isn’t	it?	However,	the	following	table	will	help	you	get	through	it:

Element Description

app-name This	is	the	enterprise	application	name	(without	ear),	if	your	EJB	has	been	packed	in	an	EAR

module-name This	is	the	module	name	(without	.jar	or	.war),	where	your	EJB	has	been	packed

distinct-name Using	this,	you	can	optionally	set	a	distinct	name	for	each	deployment	unit

bean-name This	is	the	bean’s	class	name

fully-qualified-classname-of-the-remote-interface This	is	the	fully	qualified	class	name	of	the	remote	interface

So	the	corresponding	JNDI	binding	for	your	TheatreInfo	EJB,	packaged	into	a	file
named	ticket-agency-ejb.jar,	will	be:
ejb:/ticket-agency-ejb//TheatreInfo!

com.packtpub.wflydevelopment.chapter3.boundary.TheatreInfoRemote

On	the	other	hand,	stateful	EJBs	will	contain	one	more	attribute,	?stateful,	at	the	bottom
of	the	JNDI	string;	this	will	result	in	the	following	JNDI	naming	structure:
ejb:<app-name>/<module-name>/<distinct-name>/<bean-name>!<fully-qualified-

classname-of-the-remote-interface>?stateful

www.it-ebooks.info

http://www.it-ebooks.info/

Also,	here’s	the	corresponding	binding	for	the	TheatreBooker	class:
ejb:/ticket-agency-ejb//TheatreBooker!

com.packtpub.wflydevelopment.chapter3.boundary.TheatreBookerRemote?stateful

Note
If	you	pay	attention	to	the	server	logs,	you	will	see	that	once	your	application	is	deployed,
a	set	of	JNDI	bindings	will	be	displayed	on	the	server	console.	For	example:
java:global/ticket-agency-

ejb/TheatreInfo!com.packtpub.wflydevelopment.chapter3.boundary.TheatreInfoRemote

java:app/ticket-agency-

ejb/TheatreInfo!com.packtpub.wflydevelopment.chapter3.boundary.TheatreInfoRemote

java:module/TheatreInfo!com.packtpub.wflydevelopment.chapter3.boundary.TheatreInfoRemote

java:jboss/exported/ticket-agency-

ejb/TheatreInfo!com.packtpub.wflydevelopment.chapter3.boundary.TheatreInfoRemote

Some	of	these	bindings	reflect	the	standard	bindings	as	per	Java	EE	specifications	plus
JBoss	custom	bindings	(java:/jboss).	This	information,	as	it	is,	is	not	relevant	for	us	but
can	be	use	to	build	our	EJB	client	lookup	string	by	replacing	the	Java	EE	(or	JBoss-
specific	prefix)	with	ejb:/.	For	example,	replace	java:/global	with	ejb:,	and	you	will
save	yourself	the	headache	of	referring	to	the	EJB	lookup	string.

Once	we	are	done	with	decoding	the	JNDI	binding	string,	we	will	code	our	EJB	client.	We
have	already	created	a	separate	subproject	for	it	(ticket-agency-ejb-client)	at	the
beginning	of	this	chapter,	but	we	must	still	complete	its	configuration	before	we	dive	into
coding.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring	the	client’s	project	object	module
Configuring	the	client	dependencies	(in	pom.xml)	will	basically	require	all	the	libraries
that	connect	and	transport	data	to	the	server,	along	with	the	required	EJB	client
dependencies.	The	first	thing	we	will	add,	just	as	we	did	for	the	server	project,	is	the	BOM
for	the	EJB	client	dependencies,	which	is	demonstrated	in	the	following	code	snippet:
<dependencyManagement>

			<dependencies>

						<dependency>

									<groupId>org.wildfly</groupId>

									<artifactId>wildfly-ejb-client-bom</artifactId>

									<version>8.1.0.Final</version>

									<type>pom</type>

									<scope>import</scope>

						</dependency>

			</dependencies>

</dependencyManagement>

Next,	we	will	add	a	set	of	dependencies	that	are	needed	to	resolve	the	EJB	interfaces
(ticket-agency-ejb	artifact),	the	JBoss’	transaction	API	(needed	as	EJBs	are
transaction-aware	components),	the	jboss-ejb-api	and	ejb-client	APIs,	the
org.jboss.xnio	and	org.jboss.xnio	APIs	(which	provide	a	low-level	input/output
implementation),	the	org.jboss.remoting3	API	(the	core	transport	protocol),	which	in
turn	requires	org.jboss.sasl	(to	secure	the	transport),	and	finally,	the
org.jboss.marshalling	API	(to	serialize	the	objects	that	are	sent	to	and	received	from
the	server).	This	is	shown	in	the	following	code	snippet:
<dependencies>

			<dependency>

						<groupId>com.packtpub.wflydevelopment.chapter3</groupId>

						<artifactId>ticket-agency-ejb</artifactId>

						<type>ejb-client</type>

						<version>${project.version}</version>

			</dependency>

			<dependency>

						<groupId>org.jboss.spec.javax.transaction</groupId>

						<artifactId>jboss-transaction-api_1.2_spec</artifactId>

						<scope>runtime</scope>

			</dependency>

			<dependency>

						<groupId>org.jboss.spec.javax.ejb</groupId>

						<artifactId>jboss-ejb-api_3.2_spec</artifactId>

						<scope>runtime</scope>

			</dependency>

			<dependency>

						<groupId>org.jboss</groupId>

						<artifactId>jboss-ejb-client</artifactId>

						<scope>runtime</scope>

			</dependency>

www.it-ebooks.info

http://www.it-ebooks.info/

			<dependency>

						<groupId>org.jboss.xnio</groupId>

						<artifactId>xnio-api</artifactId>

						<scope>runtime</scope>

			</dependency>

			<dependency>

						<groupId>org.jboss.xnio</groupId>

						<artifactId>xnio-nio</artifactId>

						<scope>runtime</scope>

			</dependency>

			<dependency>

						<groupId>org.jboss.remoting3</groupId>

						<artifactId>jboss-remoting</artifactId>

									<version>3.3.3.Final</version>

									<scope>runtime</scope>

			</dependency>

			<dependency>

						<groupId>org.jboss.sasl</groupId>

						<artifactId>jboss-sasl</artifactId>

						<scope>runtime</scope>

			</dependency>

			<dependency>

						<groupId>org.jboss.marshalling</groupId>

						<artifactId>jboss-marshalling-river</artifactId>

						<scope>runtime</scope>

			</dependency>

</dependencies>

Many	of	these	dependencies	use	the	runtime	scope.	This	means	that	classes	that	are
provided	by	them	are	not	used	directly	by	our	code;	they	are	not	needed	to	be	bundled
within	our	application	package,	but	they	are	required	at	runtime.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding	the	EJB	client
We	are	done	with	the	configuration.	We	will	finally	proceed	with	adding	a	new	Java	class
com.packtpub.wflydevelopment.chapter3.client.TicketAgencyClient,	which	will
communicate	with	the	ticket	booking	machine’s	EJB	application.	This	is	shown	in	the
following	code	snippet:
public	class	TicketAgencyClient	{

				private	static	final	Logger	logger	=

Logger.getLogger(TicketAgencyClient.class.getName());

				public	static	void	main(String[]	args)	throws	Exception	{

								Logger.getLogger(“org.jboss”).setLevel(Level.SEVERE);		[1]

								Logger.getLogger(“org.xnio”).setLevel(Level.SEVERE);

								new	TicketAgencyClient().run();

				}

				private	final	Context	context;

				private	TheatreInfoRemote	theatreInfo;

				private	TheatreBookerRemote	theatreBooker;

				public	TicketAgencyClient()	throws	NamingException	{

								final	Properties	jndiProperties	=	new	Properties();	[2]

								jndiProperties.setProperty(Context.URL_PKG_PREFIXES,

“org.jboss.ejb.client.naming”);

								this.context	=	new	InitialContext(jndiProperties);

				}

				private	enum	Command	{	[3]

								BOOK,	LIST,	MONEY,	QUIT,	INVALID;

								public	static	Command	parseCommand(String	stringCommand)	{

												try	{

																return	valueOf(stringCommand.trim().toUpperCase());

												}	catch	(IllegalArgumentException	iae)	{

																return	INVALID;

												}

								}

				}

				private	void	run()	throws	NamingException	{

								this.theatreInfo	=	lookupTheatreInfoEJB();		[4]

								this.theatreBooker	=	lookupTheatreBookerEJB();		[5]

								showWelcomeMessage();	[6]

								while	(true)	{

												final	String	stringCommand	=	IOUtils.readLine(“>	“);

												final	Command	command	=	Command.parseCommand(stringCommand);

[7]

												switch	(command)	{

																case	BOOK:

																				handleBook();

																				break;

www.it-ebooks.info

http://www.it-ebooks.info/

																case	LIST:

																				handleList();

																				break;

																case	MONEY:

																				handleMoney();

																				break;

																case	QUIT:

																				handleQuit();

																				break;

																default:

																				logger.warning(“Unknown	command	”	+	stringCommand);

												}

								}

				}

				private	void	handleBook()	{

								int	seatId;

								try	{

												seatId	=	IOUtils.readInt(“Enter	SeatId:	“);

								}	catch	(NumberFormatException	e1)	{

												logger.warning(“Wrong	SeatId	format!”);

												return;

								}

								try	{

												final	String	retVal	=	theatreBooker.bookSeat(seatId);

												System.out.println(retVal);

								}	catch	(SeatBookedException	|	NotEnoughMoneyException	|

NoSuchSeatException	e)	{

												logger.warning(e.getMessage());

												return;

								}

				}

				private	void	handleList()	{

								logger.info(theatreInfo.printSeatList());

				}

				private	void	handleMoney()	{

								final	int	accountBalance	=	theatreBooker.getAccountBalance();

								logger.info(“You	have:	”	+	accountBalance	+	”	money	left.”);

				}

				private	void	handleQuit()	{

								logger.info(“Bye”);

								System.exit(0);

				}

				private	TheatreInfoRemote	lookupTheatreInfoEJB()	throws	NamingException

{

								return	(TheatreInfoRemote)	context.lookup(“ejb:/ticket-agency-

ejb//TheatreInfo!com.packtpub.wflydevelopment.chapter3.boundary.TheatreInfoRemote”);

				}

				private	TheatreBookerRemote	lookupTheatreBookerEJB()	throws

www.it-ebooks.info

http://www.it-ebooks.info/

NamingException	{

								return	(TheatreBookerRemote)	context.lookup(“ejb:/ticket-agency-

ejb//TheatreBooker!com.packtpub.wflydevelopment.chapter3.boundary.TheatreBookerRemote?

stateful”);

				}

				private	void	showWelcomeMessage()	{

								System.out.println(“Theatre	booking	system”);

								System.out.println(“=====================================”);

								System.out.println(“Commands:	book,	list,money,	quit”);

				}

}

Let’s	see	the	most	interesting	points.	First,	in	the	main	function,	we	set	some	logging	rules
[1]	in	order	to	avoid	mixing	the	JBoss	remoting	log	messages	with	the	console
application	information.

Next,	we	create	the	TicketAgencyClient	object	and	execute	its	run	method.	During
object	creation,	we	prepare	the	InitialContext	object	(further	used	to	lookup	remote
objects).	To	do	this,	we	will	need	a	set	of	[2]	properties,	which	specify	what	type	of	ejb-
client	is	used.

In	[3],	we	define	a	Command	enum,	which	represents	console	commands	that	users	can
send	to	this	application.	The	run()	method	first	performs	the	lookup	of	the	SLSB	and
SFSB	([4]	and	[5])	remote	EJBs,	and	then	shows	the	welcome	message	([6]).	In	the
infinite	loop,	we	wait	for	the	user	to	enter	a	command	and	parse	it	([7]).	Depending	on	the
user’s	choice	we	can	book	a	seat,	list	seats’	information,	get	available	money,	or	quit	the
application.

Adding	the	EJB	client	configuration
As	you	can	see	from	the	preceding	code	snippet,	there	is	no	indication	about	the	location
of	the	server	where	the	EJBs	are	running.	It	is	possible	to	specify	this	by	code,	but	in	this
sample,	we	will	choose	the	simpler	way	and	add	jboss-ejb-client.properties	file	in
the	client’s	classpath.

Note
In	Maven,	the	appropriate	location	for	most	of	the	resource	files	(like	mentioned
properties)	is	the	src/main/resources	directory.

The	contents	of	the	jboss-ejb-client.properties	file	are	as	follows:
remote.connections=default

remote.connection.default.host=localhost

remote.connection.default.port=8080

There	is	also	a	remote.connectionprovider.create.options.org
.xnio.Options.SSL_ENABLED	property,	which	enables	the	encryption	of	the	XNIO
connection;	otherwise,	plaintext	will	be	used.	(In	Chapter	10,	Securing	WildFly
Applications,	we	will	discuss	using	SSL	to	secure	the	connection	between	the	client	and
server.)

The	remote.connections	property	can	be	set	to	define	a	list	of	logical	names	that	will	be
used	for	connection	purposes	by	the	remote.connection.[name].host	and

www.it-ebooks.info

http://www.it-ebooks.info/

remote.connection.[name].port	attributes.	If	you	define	more	than	one	connection,	as
in	the	following	example,	the	connections	will	be	split	across	various	destinations,	as
shown	in	the	following	code	snippet:
remote.connections=host1,host2	

remote.connection.host1.host=192.168.0.1

remote.connection.host2.host=192.168.0.2

remote.connection.host1.port=8080

remote.connection.host2.port=8080

The	default	port	used	by	the	remoting	framework	is	8080.

You	may	wonder	how	EJB	remoting	can	work	on	the	same	port	as	the	HTTP	protocol.
Starting	from	WildFly,	remoting	uses	the	HTTP	protocol	upgrade	mechanism.	The	first
connection	is	done	on	the	8080	port	(via	HTTP),	then	it	is	upgraded	to	EJB	remoting,	and
switched	to	another	port	(chosen	by	WildFly).

www.it-ebooks.info

http://www.it-ebooks.info/

Running	the	client	application
In	order	to	run	your	client	application,	the	last	requirement	will	be	to	add	the	required
Maven	plugins,	which	are	needed	to	run	the	remote	EJB	client.	This	is	given	in	the
following	code	snippet:
<build>

			<finalName>${project.artifactId}</finalName>

			<plugins>

						<!—	maven-compiler-plugin	here	—>

						<plugin>

									<groupId>org.codehaus.mojo</groupId>

									<artifactId>exec-maven-plugin</artifactId>

									<version>1.2.1</version>

									<executions>

												<execution>

															<goals>

																		<goal>exec</goal>

															</goals>

												</execution>

									</executions>

									<configuration>

												<executable>java</executable>

												<workingDirectory>${project.build.directory}/exec-working-

directory</workingDirectory>

												<arguments>

															<argument>-classpath</argument>

															<classpath	/>

											

<argument>com.packtpub.wflydevelopment.chapter3.client.TicketAgencyClient</argument>

												</arguments>

									</configuration>

						</plugin>

			</plugins>

</build>

As	you	can	see	in	the	preceding	code	snippet,	besides	the	maven-compiler-plugin
configuration	that	we	omitted	for	the	sake	of	brevity	(we	discussed	it	in	the	server
project),	we	have	included	exec-maven-plugin,	which	adds	the	ability	to	execute	Java
programs	using	the	exec	goal.

Once	all	the	plugins	are	in	place,	you	can	compile	and	execute	your	project	by	issuing	the
following	Maven	goal:

mvn	package	exec:exec

The	preceding	command	can	be	executed	either	from	a	shell	(positioned	in	the	project’s
root	folder)	or	from	your	Eclipse	runtime	configuration,	as	shown	in	the	following
screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

If	executed	from	the	Eclipse	environment,	you	should	be	able	to	see	the	following	GUI
screenshot:

At	the	moment,	our	application	provides	three	functions:	a	book	to	book	a	seat,	a	list	to	list
all	the	theatre	seats,	and	money	to	retrieve	the	account	balance.	In	the	next	sections,	we

www.it-ebooks.info

http://www.it-ebooks.info/

will	enrich	our	application	by	adding	some	more	commands.

Adding	user	authentication
If	you	are	running	this	example	from	a	client	that	is	located	on	the	same	machine	as	the
application	server,	the	remoting	framework	will	silently	allow	communication	between	the
client	and	your	EJB’s	classes.	On	the	other	hand,	for	a	client	located	on	a	remote	system,
you	will	be	required	to	provide	authentication	for	your	requests.	In	order	to	add	an
application	user,	launch	the	add-user.sh	(or	add-user.bat)	script,	which	is	located	at
JBOSS_HOME/bin.

Here’s	a	transcript	of	a	user	creation	example:
What	type	of	user	do	you	wish	to	add?

a)	Management	User	(mgmt-users.properties)

b)	Application	User	(application-users.properties)

(a):	b

Enter	the	details	of	the	new	user	to	add.

Using	realm	‘ApplicationRealm’	as	discovered	from	the	existing	property

files.

Username	:	ejbuser

Password	requirements	are	listed	below.	To	modify	these	restrictions	edit

the	add-user.properties	configuration	file.

-	The	password	must	not	be	one	of	the	following	restricted	values	{root,

admin,	administrator}

-	The	password	must	contain	at	least	8	characters,	1	alphanumeric

character(s),	1	digit(s),	1	non-alphanumeric	symbol(s)

-	The	password	must	be	different	from	the	username

Password	:

Re-enter	Password	:

What	groups	do	you	want	this	user	to	belong	to?	(Please	enter	a	comma

separated	list,	or	leave	blank	for	none)[]:

About	to	add	user	‘ejbuser’	for	realm	‘ApplicationRealm’

Is	this	correct	yes/no?	yes

Added	user	‘ejbuser’	to	file	‘C:\Programs\Dev\Servers\wildfly-

8.0.0.Final\standalone\configuration\application-users.properties’

Added	user	‘ejbuser’	to	file	‘C:\Programs\Dev\Servers\wildfly-

8.0.0.Final\domain\configuration\application-users.properties’

Added	user	‘ejbuser’	with	groups		to	file	‘C:\Programs\Dev\Servers\wildfly-

8.0.0.Final\standalone\configuration\application-roles.properties’

Added	user	‘ejbuser’	with	groups		to	file	‘C:\Programs\Dev\Servers\wildfly-

8.0.0.Final\domain\configuration\application-roles.properties’

Is	this	new	user	going	to	be	used	for	one	AS	process	to	connect	to	another

AS	process?

e.g.	for	a	slave	host	controller	connecting	to	the	master	or	for	a	Remoting

connection	for	server	to	server	EJB	calls.

yes/no?	no

Press	any	key	to	continue	…

The	defined	user	will	be	added	for	you	in	the	application-user.properties	file	located
in	your	configuration	folder.

This	file	contains	the	default	security	realm	named	ApplicationRealm.	This	security
realm	uses	the	following	format	to	store	passwords:

www.it-ebooks.info

http://www.it-ebooks.info/

username=HEX(MD5(username	‘:’	realm	‘:’	password))

With	the	passwords	you’ve	just	entered,	the	file	will	contain	the	following	entry:
ejbuser=dc86450aab573bd2a8308ea69bcb8ba9

Now,	insert	the	username	and	password	information	into	jboss-ejb-client.properties:
remote.connection.default.username=ejbuser

remote.connection.default.password=ejbuser123

Now,	with	all	the	previous	information	in	the	right	place,	you	will	be	able	to	connect	to
your	EJB	application	from	a	client	that	does	not	reside	on	the	same	machine	as	the	server.

You	can	also	force	the	normal	authentication	process	on	your	local	machine,	by	adding	the
following	line	to	the	jboss-ejb-client	properties:
remote.connection.default.connect.options.org.xnio.Options.SASL_DISALLOWED_MECHANISMS=JBOSS-

LOCAL-USER

www.it-ebooks.info

http://www.it-ebooks.info/

Using	the	EJB	timer	service
Applications	that	model	business	workflows	often	rely	on	timed	notifications.	The	timer
service	of	the	enterprise	bean	container	enables	you	to	schedule	timed	notifications	for	all
types	of	enterprise	beans,	except	for	stateful	session	beans.	You	can	schedule	a	timed
notification	to	occur	according	to	a	calendar	schedule	either	at	a	specific	time,	after	the
duration	of	a	time	period,	or	at	timed	intervals.

There	can	be	two	main	types	of	EJB	timers:	programmatic	timers	and	automatic	timers.
Programmatic	timers	are	set	by	explicitly	calling	one	of	the	timer	creation	methods	of	the
TimerService	interface.	Automatic	timers	are	created	upon	the	successful	deployment	of
an	enterprise	bean,	which	contains	a	method	annotated	with	the	java.ejb.Schedule	or
java.ejb.Schedules	annotations.	Let’s	see	both	approaches	in	the	following	sections.

Programmatic	timer	creation
To	create	a	timer,	the	bean	invokes	one	of	the	create	methods	of	the	TimerService
interface.	These	methods	allow	for	either	single-action,	interval,	or	calendar-based	timers
to	be	created.

The	simplest	way	to	get	a	TimerService	instance	is	to	use	resource	injection.	For
example,	in	the	TheatreBox	singleton	EJB,	we	will	use	the	@Resource	annotation	to	inject
a	TimerService	object,	as	shown	in	the	following	code	snippet:

@Resource

TimerService	timerService;

private	static	final	long	DURATION	=	TimeUnit.SECONDS.toMillis(6);

The	duration	specifies	the	time	(in	milliseconds)	when	the	single	timer	is	fired.	The
method	that	will	fire	the	timer	will	use	the	TimerService	instance	to	invoke
createSingleActionTimer,	passing	the	duration	and	an	instance	of	the	TimerConfig	class
as	an	argument,	which	may	optionally	contain	some	basic	information	(such	as	the
description	of	the	timer).	This	is	shown	in	the	following	code	snippet:
public	void	createTimer(){

				timerService.createSingleActionTimer(DURATION,	new	TimerConfig());

}

Next,	we	will	create	a	callback	method	named	timeout	and	use	the	@Timeout	annotation
on	top	of	the	method.	In	the	timeout	method,	we	could,	for	example,	reinitialize	our
singleton	by	invoking	the	setupTheatre	method.	Nothing	fancy;	however,	this	should
give	you	an	idea	of	how	to	get	working	with	a	single	action	timer.	Refer	to	the	following
code	for	more	information:

@Timeout

public	void	timeout(Timer	timer){

				logger.info(“Re-building	Theatre	Map.”);	

				setupTheatre();

}

Scheduling	timer	events

www.it-ebooks.info

http://www.it-ebooks.info/

If	you	want	to	schedule	timed	notifications	at	fixed	intervals,	the	simplest	way	is	to	use	the
@Schedule	annotation.	The	@Schedule	annotation	takes	a	series	of	comma-delimited
settings	to	express	a	time	period	or	set	of	time	periods,	much	as	the	Unix	cron	utility	does.
Each	setting	corresponds	to	a	unit	of	time	such	as	an	hour	or	minute.	A	simple	repeating
event	occurring	every	minute	can	be	expressed	using	the	@Schedule	annotation	as	follows:
@Schedule(second=“0”,	minute=	“*”,	hour=	“*”)

You	can	find	some	more	details	about	building	the	time	string	at.

For	the	purpose	of	our	example,	we	will	create	a	stateless	session	bean,	which	will	act	as
an	automatic	buying	system	and	therefore,	buy	tickets	at	our	ticketing	store.	So,	we	will
add	one	competitor	in	our	quest	for	the	best	seat	in	the	theatre!	The	following	code	snippet
explains	this:
@Stateless

public	class	AutomaticSellerService	{

				private	static	final	Logger	logger	=

Logger.getLogger(AutomaticSellerService.class);

				@EJB

				private	TheatreBox	theatreBox;

				@Resource

				private	TimerService	timerService;		[1]

				@Schedule(hour	=	“*”,	minute	=	“*/1”,	persistent	=	false)		[2]

				public	void	automaticCustomer()	throws	NoSuchSeatException	{

								final	Optional<Seat>	seatOptional	=	findFreeSeat();

								if	(!seatOptional.isPresent())	{

												cancelTimers();

												logger.info(“Scheduler	gone!”);

												return;	//	No	more	seats

								}

								final	Seat	seat	=	seatOptional.get();

								try	{

												theatreBox.buyTicket(seat.getId());			[3]

								}	catch	(SeatBookedException	e)	{

												//	do	nothing,	user	booked	this	seat	in	the	meantime

								}

								logger.info(“Somebody	just	booked	seat	number	”	+	seat.getId());

				}

				private	Optional<Seat>	findFreeSeat()	{

								final	Collection<Seat>	list	=	theatreBox.getSeats();

								return	list.stream()

												.filter(seat	->	!seat.isBooked())

												.findFirst();

				}

				private	void	cancelTimers()	{		[4]

								for	(Timer	timer	:	timerService.getTimers())	{

www.it-ebooks.info

http://www.it-ebooks.info/

												timer.cancel();

								}

				}

}

The	first	thing	we	should	account	for	is	the	resource	injection	of	the	Timer	object	[1],
which	will	be	used	in	the	cancelTimers	method	[4]	to	cancel	all	the	scheduling	when	the
theatre	is	fully	booked.	Please	note	that	the	timerService.getTimers()	method	retrieves
all	active	timers	associated	only	with	the	current	bean.	In	order	to	get	all	timers	from	your
application	module,	you	have	to	use	the	timerService.getAllTimers()	method,	which
was	added	recently	in	EJB	3.2.

Next,	pay	attention	to	the	Schedule	annotation	[2]	we	are	using,	which	will	fire	a	non-
persistent	timer	each	minute.

Note
Persistent	timers	(the	default	option)	can	survive	application	and	server	crashes.	When	the
system	recovers,	any	persistent	timers	will	be	recreated	and	missed	callback	events	will	be
executed.

When	a	replay	of	missed	timer	events	is	not	desired,	a	non-persistent	timer	should	be	used,
as	shown	in	the	preceding	example.

When	an	action	is	fired,	the	automaticCustomer	method	starts	scanning	the	theatre	seats
for	an	available	seat.	(Nothing	too	complex;	findSeat	starts	looking	from	the	first
available	seat.)

Finally,	if	there	are	seats	still	available,	the	buyTicket	method	[3]	of	the	TheatreBox
singleton	will	be	used	to	short	circuit	the	purchase	of	the	seat	(obviously,	we	won’t	need	to
check	the	money	for	our	automatic	customer).

www.it-ebooks.info

http://www.it-ebooks.info/

Adding	asynchronous	methods	to	our	EJBs
Before	the	EJB	3.1	specification,	the	only	way	to	provide	asynchronous	capabilities	to
enterprise	applications	was	using	message-driven	bean	recipes.	This	remains	substantially
a	best	practice,	and	we	are	going	to	discuss	this	in	depth	in	Chapter	6,	Developing
Applications	with	JBoss	JMS	Provider;	however,	in	some	cases,	it	might	be	desirable	(and
easier)	to	use	these	asynchronous	features	from	a	component	that	follows	the	classical
request-reply	pattern.

You	can	make	the	EJB’s	method	asynchronous	by	simply	tagging	it	with	the
@Asynchronous	annotation.	Each	time	this	method	is	invoked,	it	will	immediately	return,
regardless	of	how	long	the	method	actually	takes	to	complete.

This	can	be	used	in	one	of	two	ways:

	
The	first	technique	is	a	fire-and-forget	manner,	where	the	request	is	made	up	of	the
EJB	and	the	client	is	not	concerned	about	the	success	or	failure	of	the	request.
The	second	modus	operandi	invokes	the	method	but	does	not	wait	for	the	method	to
be	completed.	The	method	returns	a	Future	object.	This	object	is	used	later	to
determine	the	result	of	the	request.

Using	fire-and-forget	asynchronous	calls
If	you	don’t	care	about	the	async	result,	you	can	just	have	your	async	method	return	void.
For	this	purpose,	we	will	add	a	new	method	named	bookSeatAsync	to	TheatreBooker	and
simply	tag	it	as	@Asynchronous.	This	is	shown	in	the	following	screenshot:
@Asynchronous

public	void	bookSeatAsync(int	seatId)	throws	NotEnoughMoneyException,

NoSuchSeatException,	SeatBookedException	{

								bookSeat(seatId);

}

As	you	can	see,	this	method	does	not	return	anything;	it	just	executes	our	synchronous
bookSeet	method.	We	will	need	to	use	some	other	instruments	to	check	whether	the
transaction	was	completed	successfully.	For	example,	we	can	check	from	the	theatre	list
whether	the	seat	has	been	booked	successfully.

Returning	a	Future	object	to	the	client
The	other	available	option	consists	of	returning	a	java.util.concurrent.Future	object,
which	can	later	be	inspected	by	our	clients	so	that	they	know	the	outcome	of	our
transaction.	This	is	shown	in	the	following	code	snippet:
@Asynchronous

@Override

public	Future<String>	bookSeatAsync(int	seatId)	{

								try	{

												Thread.sleep(10000);

												bookSeat(seatId);

												return	new	AsyncResult<>(“Booked	seat:	”	+	seatId	+	“.	Money

left:	”	+	money);

www.it-ebooks.info

http://www.it-ebooks.info/

								}	catch	(NoSuchSeatException	|	SeatBookedException	|

NotEnoughMoneyException	|	InterruptedException	e)	{

												return	new	AsyncResult<>(e.getMessage());

								}

				}

In	this	case,	calls	to	the	asynchronous	bookSeatAsync	method	simply	results,	behind	the
scenes,	in	a	Runnable	or	Callable	Java	object	being	created,	which	wraps	the	method
and	parameters	you	provide.	This	Runnable	(or	callable)	object	is	given	to	an	Executor
object,	which	is	simply	a	work	queue	attached	to	a	thread	pool.

After	adding	the	work	to	the	queue,	the	proxy	version	of	the	method	returns	a	Future
implementation	that	is	linked	to	Runnable,	which	is	now	waiting	in	the	queue.

When	Runnable	finally	executes	the	bookSeatAsync	method,	it	takes	the	return	value	and
sets	it	to	Future,	making	it	available	to	the	caller.

When	dealing	with	Future	objects,	the	client	code	needs	to	be	adapted.	As	a	matter	of
fact,	in	standard	synchronous	calls,	we	used	exceptions	to	intercept	some	events	such	as
when	the	customer	does	not	have	enough	money	to	complete	the	transaction.	When	using
Future	calls,	there’s	a	change	in	this	paradigm.	The	call	to	the	asynchronous	method	is
detached	from	the	client;	however,	we	have	the	option	to	check	if	the	Future	work	has
been	completed	with	the	isDone	method	issued	on	the	Future	return	value.

For	this	purpose,	let’s	add	a	bookasync	command	to	TicketAgencyClient,	which	will
issue	asynchronous	booking	and	a	mail	command	that	will	simulate	the	reading	of	the
outcome	by	e-mail,	as	shown	in	the	following	code	snippet:
private	final	List<Future<String>>	lastBookings	=	new	ArrayList<>();	[1]

//	Some	code

				case	BOOKASYNC:

								handleBookAsync();

								break;

				case	MAIL:

								handleMail();

								break;	

//	Some	code

private	void	handleBookAsync()	{

				String	text	=	IOUtils.readLine(“Enter	SeatId:	“);

				int	seatId;

				try	{

								seatId	=	Integer.parseInt(text);

				}	catch	(NumberFormatException	e1)	{

								logger.warning(“Wrong	seatId	format!”);

								return;

				}

				lastBookings.add(theatreBooker.bookSeatAsync(seatId));		[2]

				logger.info(“Booking	issued.	Verify	your	mail!”);

}

private	void	handleMail()	{

				boolean	displayed	=	false;

				final	List<Future<String>>	notFinished	=	new	ArrayList<>();

www.it-ebooks.info

http://www.it-ebooks.info/

				for	(Future<String>	booking	:	lastBookings)	{

								if	(booking.isDone())	{		[3]

												try	{

																final	String	result	=	booking.get();

																logger.info(“Mail	received:	”	+	result);

																displayed	=	true;

												}	catch	(InterruptedException	|	ExecutionException	e)	{

																logger.warning(e.getMessage());

												}

								}	else	{

												notFinished.add(booking);

								}

				}

				lastBookings.retainAll(notFinished);

				if	(!displayed)	{

								logger.info(“No	mail	received!”);

				}

}

As	you	can	see	from	the	previous	code	snippet,	we	issue	an	asynchronous	booking	[2]
and	add	Future<?>	to	lastBookings	list	[1].	On	the	EJB	side,	we	introduced	a	pause	of
10	seconds	to	complete	the	booking	so	that	later	on,	we	can	check	if	the	work	has	been
completed	by	checking	the	isDone	method	[3]	of	the	lastBookings	list	elements	object.

Here	is	a	screenshot	of	our	richer	client	application:

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	went	through	the	EJB	basics	and	changes	in	EJB	3.2	by	following	a
simple	lab	example,	which	was	enriched	progressively.	This	example	showed	how	the
Maven	project	can	be	used	from	within	the	Eclipse	environment	to	assist	you	in
assembling	the	project	with	all	the	necessary	dependencies.

Up	to	now,	we	have	just	coded	a	remote	standalone	client	for	our	application.	In	the	next
chapter,	we	will	see	how	to	add	a	web	frontend	to	our	example	using	the	context	and
dependency	injections,	to	bridge	the	gap	between	the	web	tier	and	enterprise	tier.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	4.	Learning	Context	and
Dependency	Injection
We	saw	that	Chapter	3,	Introducing	Java	EE	7	–	EJBs,	was	challenging	since	we	had	to
cover	lots	of	ground,	including	Java	Enterprise	enhancements	and	a	Maven-specific
configuration.	In	this	chapter,	we’ll	discuss	Contexts	and	Dependency	Injection	(CDI),
which	was	added	to	the	Java	EE	specification	in	Java	EE	6	(starting	from	JSR	299).	It
provides	several	benefits	to	Java	EE	developers	that	were	missing,	such	as	allowing	any
JavaBean	to	be	used	as	a	JSF	managed	bean,	including	stateless	and	stateful	session	beans.
You	can	find	more	information	on	CDI	and	the	newest	version	of	the	specification	itself
(JSR	346)	at	http://www.cdi-spec.org/.

Some	of	the	topics	that	will	be	covered	in	this	chapter	are	as	follows:

	
What	Contexts	and	Dependency	Injection	is	and	how	it	relates	to	EJB
How	to	rewrite	our	ticket-booking	example	to	use	the	CDI	and	JavaServer	Faces
technology
How	to	run	the	project	using	Maven

This	chapter	assumes	familiarity	with	JavaServer	Faces	(JSF),	which	will	be	used	to
provide	a	graphical	interface	for	our	applications.	If	you	are	looking	for	a	start	up	guide
for	JSF,	there	are	several	excellent	resources	available	online,	including	the	relevant
sections	in	the	official	Java	EE	7	tutorial	at
http://docs.oracle.com/javaee/7/tutorial/doc/jsf-develop.htm#BNATX.

www.it-ebooks.info

http://www.cdi-spec.org/
http://docs.oracle.com/javaee/7/tutorial/doc/jsf-develop.htm#BNATX
http://www.it-ebooks.info/

Introducing	Contexts	and	Dependency
Injection
CDI	for	the	Java	EE	platform	introduces	a	standard	set	of	component	management
services	to	the	Java	EE	platform.	As	a	component	of	Java	EE	7,	CDI	is	in	many	ways	a
standardization	of	concepts	that	have	been	brewing	in	Spring	for	a	long	time,	such	as
dependency	injection	and	interceptors.	In	fact,	CDI	and	Spring	3	share	many	similar
features.	There	are	also	other	dependency	injection	frameworks	available	for	developers
that	are	more	lightweight	and	easier	to	use	in	a	Java	SE	environment.	Google	Guice
(https://github.com/google/guice)	is	a	notable	example.	Providing	full-blown	support	for
the	CDI	container	in	a	standalone	Java	SE	application	and	separation	from	the	application
server	are	one	of	the	goals	of	the	upcoming	CDI	2.0	specification.	This	will	allow
developers	to	use	a	common	programming	model	on	both	client	and	server	sides.

CDI	lets	you	decouple	concerns	by	what	it	refers	to	as	loose	coupling	and	strong	typing.	In
doing	so,	it	provides	an	almost	liberating	escape	from	the	banalities	of	everyday	Java
programming,	allowing	injections	of	its	objects	and	controlling	their	lifetimes.

Tip
Why	is	CDI	required	for	Java	EE?

If	you	have	been	programming	with	Java	EE	5,	you	might	argue	that	it	already	features
resources	injection	of	resources.	However,	this	kind	of	injection	can	be	used	only	for
resources	known	to	the	container	(for	example,	@EJB,	@PersistenceContext,
@PersistenceUnit,	and	@Resource).	CDI,	on	the	other	hand,	provides	a	general-purpose
dependency	injection	scheme,	which	can	be	used	for	any	component.

The	CDI	elementary	unit	is	still	the	bean.	Compared	to	EJBs,	CDI	features	a	different,
more	flexible	kind	of	bean,	which	would	often	be	a	good	place	to	put	your	business	logic
in.	One	of	the	most	important	differences	between	the	two	approaches	is	that	CDI	Beans
are	contextual;	that	is,	they	live	in	a	well-defined	scope.

Consider	the	following	code	snippet:
public	class	HelloServlet	extends	HttpServlet	{

				@EJB

				private	EJBSample	ejb;

				public	void	doGet	(HttpServletRequestreq,

																							HttpServletResponse	res)

																throws	ServletException,	IOException	{

								try(PrintWriter	out	=	res.getWriter())	{

												out.println(ejb.greet());

								}

				}

}

Here,	the	injected	EJB	proxy	(let’s	just	assume	that	it	is	a	POJO	class	annotated	with	a
@Stateless	annotation)	just	points	to	a	pool	of	stateless	instances	(or	a	single	bean

www.it-ebooks.info

https://github.com/google/guice
http://www.it-ebooks.info/

instance	for	stateful	beans).	There	is	no	automatic	association	between	the	HTTP	request
or	HTTP	session	and	a	given	EJB	instance.

The	opposite	is	true	for	CDI	Beans,	which	live	in	well-defined	scopes.	For	example,	the
following	CDI	Bean	lives	in	RequestScoped;	that	is,	it	will	be	destroyed	at	the	end	of	the
request:
@RequestScoped

public	class	Customer	{

				private	String	name;

				private	String	surname;

				public	String	getName(){

								return	name;

				}

				public	String	getSurname(){

								return	surname;

				}

}

The	preceding	CDI	Bean	can	be	safely	injected	into	our	former	servlet;	at	the	end	of	an
HTTP	session	or	HTTP	request,	all	the	instances	associated	with	this	scope	are
automatically	destroyed,	and	thus,	garbage	collected:
public	class	HelloServlet	extends	HttpServlet	{

				@Inject

				private	Customer	customer;

				public	void	doGet	(HttpServletRequest	req,

																							HttpServletResponse	res)

																throws	ServletException,	IOException	{

								//	some	code

				}

}

www.it-ebooks.info

http://www.it-ebooks.info/

Named	beans
In	the	earlier	section,	we	came	across	the	@Named	annotation.	Named	beans	allow	us	to
easily	inject	our	beans	into	other	classes	that	depend	on	them	and	refer	to	them	from	JSF
pages	via	the	Unified	Expression	Language	(UEL).	Recall	the	earlier	example:
@RequestScoped

@Named	

public	class	Customer	{

				private	String	name;

				private	String	surname;

				public	String	getName(){

								return	name;

				}

				public	String	getSurname(){

								return	surname;

				}

}

This	class,	decorated	with	the	@Named	annotation,	can	then	be	referenced	from	a	JSF	page:
<?xml	version=“1.0”	encoding=“UTF-8”?>

<!DOCTYPE	html	PUBLIC	“-//W3C//DTD	XHTML	1.0	Transitional//EN”

								“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html	xmlns=“http://www.w3.org/1999/xhtml”	

						xmlns:h=“http://xmlns.jcp.org/jsf/html	“>

			<h:body>

						<h:form>

									<h:panelGrid	columns=“2”>

												<h:outputLabel	for=“name”	value=“Name”	/>

												<h:inputText	id=“name”	value=”#{customer.name}”	/>

												<h:outputLabel	for=“lastName”	value=“Surname”	/>

												<h:inputText	id=“surname”	value=”#{customer.surname}”	/>

												<h:panelGroup	/>

									</h:panelGrid>

						</h:form>

			</h:body>

</html>

Note
By	default,	the	name	of	the	bean	will	be	the	class	name	with	its	first	letter	switched	to
lowercase;	thus,	the	Customer	bean	can	be	referred	to	as	customer.

If	you	want	to	use	a	different	naming	policy	for	your	bean,	you	could	use	the	@Named
annotation	as	follows:
@Named(value=“customNamed”)

This	way,	we	will	be	able	to	reference	our	CDI	Beans	using	the	identified	customNamed
value.

Instead	of	two	@RequestScoped	and	@Named	annotations,	we	can	just	use	the	@Model

www.it-ebooks.info

http://www.it-ebooks.info/

annotation	that	aggregates	them.

www.it-ebooks.info

http://www.it-ebooks.info/

CDI	scopes
CDI	Beans	come	with	a	set	of	predefined	scopes	and	annotations,	and	each	CDI	Bean	has
a	distinct	life	cycle	determined	by	the	scope	it	belongs	to.	The	following	table	describes
the	built-in	CDI	scopes	and	annotations	required	to	set	these	scopes:

Scope Description

@RequestScoped
The	@RequestScoped	beans	are	shared	during	the	length	of	a	single	request.	This	could	be	an	HTTP	request,	a	remote	EJB	invocation,	a	web	services	invocation,	or	message	delivered	to	a
Message	Driven	Bean	(MDB).	These	beans	are	destroyed	at	the	end	of	the	request.

@ConversationScoped
The	@ConversationScoped	beans	are	shared	across	multiple	requests	in	the	same	HTTP	session	but	only	if	there	is	an	active	conversation	maintained.	Conversations	are	supported	for	JSF
requests	through	the	javax.enterprise.context.Conversation	bean.

@SessionScoped The	@SessionScoped	beans	are	shared	between	all	the	requests	that	occur	in	the	same	HTTP	session	and	destroyed	when	the	session	is	destroyed.

@ApplicationScoped An	@ApplicationScoped	bean	will	live	for	as	long	as	the	application	is	running	and	be	destroyed	when	the	application	is	shut	down.

@Dependent
The	@Dependent	beans	are	never	shared	between	injection	points.	Any	injection	of	a	dependent	bean	is	a	new	instance	whose	life	cycle	is	bound	to	the	life	cycle	of	the	object	it	is	being
injected	into.

Other	parts	of	Java	EE	can	extend	the	list	of	available	scopes.	In	Java	EE	7	(in	the	Java
Transaction	API	specification),	a	new	scope	has	been	introduced:	@TransactionScoped.	It
bounds	the	life	cycle	of	a	bean	with	the	current	transaction.	It	is	of	course	possible	to
introduce	your	own	custom	scopes.

In	this	chapter	example,	we	will	use	the	RequestScoped	and	SessionScoped	beans	to
drive	our	simple	ticket-booking	system.	In	the	next	chapter,	we	will	further	enhance	our
example	using	ConversationScoped	beans,	which	are	a	peculiar	scope	of	CDI	Beans.
Providing	a	detailed	explanation	of	all	the	named	beans	scopes	is	beyond	the	scope	of	this
book.	However,	you	can	quench	your	thirst	for	knowledge	by	having	a	look	at	CDI
Reference	Implementation	(JBoss	Weld)	docs	at
http://docs.jboss.org/weld/reference/latest/en-US/html/scopescontexts.html.

www.it-ebooks.info

http://docs.jboss.org/weld/reference/latest/en-US/html/scopescontexts.html
http://www.it-ebooks.info/

WildFly	CDI	implementation
Weld	is	the	CDI	Reference	Implementation	that	originated	as	part	of	the	Seam	3	project
(http://www.seamframework.org/).	Weld	provides	a	complete	CDI	implementation,	which
can	be	a	part	of	a	Java	EE	7	container	such	as	WildFly.

Therefore,	in	order	to	run	CDI-based	applications	on	WildFly,	you	don’t	need	to	download
any	extra	libraries	as	Weld	is	part	of	the	server	modules,	and	it	is	included	in	all	server
configurations	as	stated	by	the	following	extension:
<extension	module=“org.jboss.as.weld”/>

Having	your	module	installed,	however,	does	not	mean	that	you	can	blindly	use	it	in	your
applications.	The	general	rule	is	that	on	WildFly,	every	application	module	is	isolated
from	other	modules;	this	means,	by	default,	it	does	not	have	visibility	on	the	AS	modules,
nor	do	the	AS	modules	have	visibility	on	the	application.

To	be	accurate,	we	could	state	that	all	WildFly	modules	fall	into	the	following	three
categories:

	
Modules	that	are	implicitly	added	to	your	applications:	This	category	includes	the
most	common	APIs	such	as	javax.activation,	javax.annotation,
javax.security,	javax.transaction,	javax.jms,	and	javax.xml.	Using	these
modules	does	not	require	any	extra	effort	as	WildFly	will	add	them	for	you	if	you	are
referencing	them	in	your	application.
Modules	that	are	added	on	conditions:	This	category	includes	javax.ejb,
org.jboss.resteasy	and	org.hibernate,	org.jboss.as.web,	and	finally
org.jboss.as.weld.	All	these	modules	will	be	added	on	the	condition	that	you
supply	its	core	annotations	(such	as	@Stateless	for	EJB)	or	its	core	configuration
files,	for	example,	web.xml	for	a	web	application.
Modules	that	need	to	be	explicitly	enabled	by	the	application	deployer:	This
includes	all	other	modules,	such	as	your	custom	modules,	that	you	can	add	to	the
application	server.	The	simplest	way	to	allow	you	to	have	visibility	to	these	modules
is	adding	an	explicit	dependency	to	your	META-INF/MANIFEST.MF	file.	For	example,	if
you	want	to	trigger	the	log4j	dependency,	you	have	to	code	your	manifest	file	as
follows:
Dependencies:	org.apache.log4j

There	is	also	a	custom	descriptor	file	available,	which	is	used	by	WildFly	to	resolve
dependencies	–	jboss-deployment-structure.xml.	It	allows	the	developer	to	configure
the	required	dependencies	in	a	fine-grained	matter.	The	file	is	placed	in	the	top-level
deployment	file,	in	the	META-INF	directory	(or	WEB-INF	for	a	web	archive).	A	sample
content	of	the	XML	file	(along	with	the	XSD	schema)	is	available	at
https://docs.jboss.org/author/display/WFLY8/Class+Loading+in+WildFly.

So,	if	you	have	followed	our	checklist	carefully,	you	will	be	aware	that	in	order	to	let
Weld	libraries	kick	in	and	automatically	discover	your	CDI	beans,	you	should	add	its	core
configuration	file,	which	is	beans.xml.	This	file	can	be	placed	in	your	application	at	the

www.it-ebooks.info

http://www.seamframework.org/
https://docs.jboss.org/author/display/WFLY8/Class+Loading+in+WildFly
http://www.it-ebooks.info/

following	locations:

	
In	your	WEB-INF	folder	if	you	are	developing	a	web	application
In	your	META-INF	folder	if	you	are	deploying	a	JAR	archive

The	beans.xml	file	is	based	on	the	following	schema	reference:
<beans	xmlns=“http://xmlns.jcp.org/xml/ns/javaee”

							xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”

							xsi:schemaLocation=“http://xmlns.jcp.org/xml/ns/javaee	

							http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd”

							version=“1.1”	bean-discovery-mode=“all”>

</beans>

However,	it	is	perfectly	legal	to	place	an	empty	beans.xml	file	in	the	correct	location;	if
you	do	so,	CDI	will	be	enabled	in	your	application.	If	you,	however,	do	not	place	a
beans.xml	file,	then	only	an	annotated	subset	of	classes	will	be	considered	as	beans.	In
such	a	case,	the	container	will	create	beans	only	for	classes	that	are	annotated	with	CDI-
related	annotations	and	ignore	the	rest.	Most	of	the	times,	this	is	not	the	behavior	we
expect,	and	it	differs	from	the	default	mode	in	Java	EE	6	(when	the	beans.xml	file	was
required).

You	might	have	noticed	that	the	bean-discovery-mode	attribute	is	set	to	all	in	our
beans.xml	file.	This	allows	us	to	configure	the	CDI	discovery	mode	we	discussed	in	the
previous	paragraph.	It	states	that	every	legible	class	in	our	archive	will	be	treated	as	a
managed	bean.	You	can	place	a	@Vetoed	annotation	on	a	class	to	filter	it	out	from	the	bean
discovery	process.	It	is	also	possible	to	set	the	discovery	mode	to	annotated	so	that	you
can	place	a	scope	annotation	for	every	class	that	you	would	like	to	use	as	a	bean.	This	is
the	default	value	of	the	newest	CDI	version	(also	when	there	is	no	beans.xml),	so	be	sure
to	set	it	on	for	all	our	samples.

www.it-ebooks.info

http://www.it-ebooks.info/

Rethinking	your	ticketing	system
Once	you	have	learned	the	basics	of	CDI,	we	will	start	re-engineering	the	ticket-booking
system	using	CDI	Beans	wherever	necessary.	We	will	turn	it	into	a	leaner	application	by
dropping	a	few	items	such	as	remote	interfaces	or	asynchronous	methods,	which	are	not
needed	in	this	example.	By	doing	this,	you	will	be	able	to	focus	just	on	the	components
that	are	actually	used	in	the	web	application.

Let’s	create	a	new	Maven	project,	just	as	we	did	in	the	previous	chapter:

	
1.	 From	the	File	menu,	go	to	New	|	Maven	Project;	follow	the	wizard	as	we	did

previously	(remember	to	check	the	Create	a	simple	project	option).
2.	 On	the	next	screen,	enter	com.packtpub.wflydevelopment.chapter4	as	Group	Id,

ticket-agency-cdi	as	Artifact	Id,	and	set	packaging	to	war:

3.	 Click	on	Finish.	The	Maven	plugin	for	Eclipse	will	generate	a	project	structure	for
you	that	you	know	from	the	previous	chapter.

4.	 The	only	difference	is	that	besides	the	standard	java	(for	Java	classes)	and
resources	(for	configuration	files)	folders,	a	new	directory	named	webapp	that	will
host	the	web	application	views.

Adding	the	required	dependencies

www.it-ebooks.info

http://www.it-ebooks.info/

In	order	to	compile	and	run	the	project,	our	Maven’s	pom.xml	file	will	require	the
following	set	of	dependencies	known	from	the	previous	chapter:
				<dependencies>

								<dependency>

												<groupId>javax</groupId>

												<artifactId>javaee-api</artifactId>

												<version>7.0</version>

												<scope>provided</scope>

								</dependency>

								<dependency>

												<groupId>org.jboss.logging</groupId>

												<artifactId>jboss-logging</artifactId>

												<version>3.1.4.GA</version>

												<scope>provided</scope>	

								</dependency>

					</dependencies>

We	will	also	require	two	plugins	from	the	previous	chapter	(note	that	we	changed	the
extension	of	the	filename	from	jar	to	war):
				<build>

								<finalName>${project.artifactId}</finalName>

								<plugins>

												<!—	WildFly	plugin	to	deploy	the	application	—>

												<plugin>

																<groupId>org.wildfly.plugins</groupId>

																<artifactId>wildfly-maven-plugin</artifactId>

																<version>1.0.2.Final</version>

																<configuration>

																<filename>${project.build.finalName}.war</filename>

																</configuration>

												</plugin>

												<plugin>

																<groupId>org.apache.maven.plugins</groupId>

																<artifactId>maven-compiler-plugin</artifactId>

																<version>3.1</version>

																<configuration>

																				<!—	enforce	Java	8	—>

																				<source>1.8</source>

																				<target>1.8</target>

																</configuration>

												</plugin>

								</plugins>

				</build>

In	case	you	have	any	problems	with	the	POM	configuration	file,	be	sure	that	you	check	the
source	code	attached	to	this	book	and	the	material	from	the	previous	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	the	beans
Once	your	project	is	properly	configured,	we	can	start	modeling	our	beans.	The	first	bean
we	will	upgrade	is	TheatreBooker,	which	will	drive	the	user	session,	accessing	the	ticket
list	from	our	TheatreBox	bean:
package	com.packtpub.wflydevelopment.chapter4.controller;

import	com.packtpub.wflydevelopment.chapter4.boundary.TheatreBox;

import	org.jboss.logging.Logger;

import	javax.annotation.PostConstruct;

import	javax.enterprise.context.SessionScoped;

import	javax.faces.application.FacesMessage;

import	javax.faces.context.FacesContext;

import	javax.inject.Inject;

import	javax.inject.Named;

import	java.io.Serializable;

@Named	[1]

@SessionScoped	[2]

public	class	TheatreBooker	implements	Serializable	{

				@Inject

				private	Logger	logger;	[3]

					

				@Inject

				private	TheatreBox	theatreBox;	[4]

				@Inject

				private	FacesContext	facesContext;	[5]

				private	int	money;

				@PostConstruct

				public	void	createCustomer()	{

								this.money	=	100;

				}

				public	void	bookSeat(int	seatId)	{

								logger.info(“Booking	seat	”	+	seatId);

								int	seatPrice	=	theatreBox.getSeatPrice(seatId);

								if	(seatPrice	>	money)	{

												FacesMessage	m	=	new	FacesMessage(FacesMessage.SEVERITY_ERROR,

“Not	enough	Money!”,	“Registration	unsuccessful”);	[6]

												facesContext.addMessage(null,	m);

												return;

								}

								theatreBox.buyTicket(seatId);

								FacesMessage	m	=	new	FacesMessage(FacesMessage.SEVERITY_INFO,

“Booked!”,	“Booking	successful”);

								facesContext.addMessage(null,	m);

www.it-ebooks.info

http://www.it-ebooks.info/

								logger.info(“Seat	booked.”);

								money	=	money	-	seatPrice;

				}

				public	int	getMoney()	{

								return	money;

				}

}

As	you	can	see,	the	bean	has	been	tagged	as	Named	[1],	which	means	that	it	can	be
directly	referenced	in	our	JSF	pages.	The	bean	is	SessionScoped	[2]	since	it	stores	the
amount	of	money	available	to	the	customer	during	its	session.

We	would	also	like	to	inject	logger	[3]	and	FacesContextFacexContexts	[5]	instead	of
manually	defining	it.	To	do	this,	we	will	need	to	register	a	bean	that	produces	loggers,
which	are	parameterized	with	the	name	of	the	class.	We	will	cover	this	process	of
producing	beans	in	a	moment.

Finally,	notice	that	we	can	safely	inject	EJBs	into	our	CDI	Beans	using	the	Inject	[4]
annotation.	Also,	the	reverse	is	perfectly	legal,	that	is,	injecting	CDI	Beans	into	EJBs.

Compared	to	our	earlier	project,	here	we	don’t	raise	Java	exceptions	when	the	customer	is
not	able	to	afford	a	ticket.	Since	the	application	is	web	based,	we	simply	display	a	warning
message	to	the	client	using	JSF	Faces	Messages	[6].

The	other	bean	that	we	still	use	in	our	application	is	TheatreInfo,	which	has	been	moved
to	the	controller	package	as	it	will	actually	provide	the	application	with	the	list	of
available	seats:
package	com.packtpub.wflydevelopment.chapter4.controller;

import	com.google.common.collect.Lists;

import	com.packtpub.wflydevelopment.chapter4.boundary.TheatreBox;

import	com.packtpub.wflydevelopment.chapter4.entity.Seat;

import	javax.annotation.PostConstruct;

import	javax.enterprise.event.Observes;

import	javax.enterprise.event.Reception;

import	javax.enterprise.inject.Model;

import	javax.enterprise.inject.Produces;

import	javax.inject.Inject;

import	javax.inject.Named;

import	java.util.Collection;

@Model	[1]

public	class	TheatreInfo	{

				@Inject

				private	TheatreBox	box;

				private	Collection<Seat>	seats;

				@PostConstruct

				public	void	retrieveAllSeatsOrderedByName()	{

								seats	=	box.getSeats();

www.it-ebooks.info

http://www.it-ebooks.info/

				}

				@Produces	[2]

				@Named

				public	Collection<Seat>	getSeats()	{

								return	Lists.newArrayList(seats);

				}

				public	void	onMemberListChanged(@Observes(notifyObserver	=

Reception.IF_EXISTS)	final	Seat	member)	{

								retrieveAllSeatsOrderedByName();	[3]

				}

}

At	first,	have	a	look	at	the	@Model	annotation	[1],	which	is	an	alias	(we	call	this	kind	of
annotations	stereotypes)	for	two	commonly	used	annotations:	@Named	and
@RequestScoped.	Therefore,	this	bean	will	be	named	into	our	JSF	page	and	will	carry	a
request	scope.

Next,	pay	attention	to	the	getSeats	method.	This	method	returns	a	list	of	seats,	exposing
it	as	a	producer	method	[2].

Note
The	producer	method	allows	you	to	have	control	over	the	production	of	the	dependency
objects.	As	a	Java	factory	pattern,	they	can	be	used	as	a	source	of	objects	whose
implementation	may	vary	at	runtime	or	if	the	object	requires	some	custom	initialization
that	is	not	to	be	performed	in	the	constructor.

It	can	be	used	to	provide	any	kind	of	concrete	class	implementation;	however,	it	is
especially	useful	to	inject	Java	EE	resources	into	your	application.

One	advantage	of	using	a	@Producer	annotation	for	the	getSeats	method	is	that	its
objects	can	be	exposed	directly	via	JSF’s	Expression	Language	(EL),	as	we	will	see	in	a
minute.

Finally,	another	feature	of	CDI	that	was	unleashed	in	this	example	is	the	observer.	An
observer,	as	the	name	suggests,	can	be	used	to	observe	events.	An	observer	method	is
notified	whenever	an	object	is	created,	removed,	or	updated.	In	our	example,	it	allows	the
list	of	seats	to	be	refreshed	whenever	they	are	needed.

Note
To	be	precise,	in	our	example,	we	are	using	a	conditional	observer	that	is	denoted	by	the
expression	notifyObserver	=	Reception.IF_EXISTS.	This	means	that	in	practice,	the
observer	method	is	only	called	if	an	instance	of	the	component	already	exists.	If	not
specified,	the	default	option	(ALWAYS)	will	be	that	the	observer	method	is	always	called.	(If
an	instance	doesn’t	exist,	it	will	be	created.)

In	the	newest	CDI	version,	it	is	possible	to	get	additional	information	about	the	fired	event
in	the	observer	by	adding	an	EventMetadata	parameter	to	the	observer’s	method.

Whenever	a	change	in	our	list	of	seats	occurs,	we	will	use	the
javax.enterprise.event.Event	object	to	notify	the	observer	about	the	changes.	This
will	be	done	in	our	singleton	bean,	which	gets	injected	with	the	seat’s	event	[1],	and

www.it-ebooks.info

http://www.it-ebooks.info/

notifies	the	observer	by	firing	the	event	when	a	seat	is	booked	[2]:
package	com.packtpub.wflydevelopment.chapter4.boundary;

import	javax.enterprise.event.Event;

@Singleton

@Startup

@AccessTimeout(value	=	5,	unit	=	TimeUnit.MINUTES)

public	class	TheatreBox	{

				@Inject	[1]

				private	Event<Seat>	seatEvent;

				@Lock(WRITE)

				public	void	buyTicket(int	seatId)	{

								final	Seat	seat	=	getSeat(seatId);

								final	Seat	bookedSeat	=	seat.getBookedSeat();

								addSeat(bookedSeat);

								seatEvent.fire(bookedSeat);	[2]

				}		

				//	Rest	of	the	code	stays	the	same,	as	in	the	previous	chapter

}

Earlier,	we	mentioned	that	a	preconfigured	logger	should	be	injected	to	a	bean	if	it
requests	it.	We	will	create	a	simple	logger	producer	that	will	use	the	information	about	the
injection	point	(the	bean	that	requests	a	logger)	to	configure	an	instance:
package	com.packtpub.wflydevelopment.chapter4.util;

import	javax.enterprise.inject.Produces;

import	javax.enterprise.inject.spi.InjectionPoint;

import	org.jboss.logging.Logger;

public	class	LoggerProducer	{

				@Produces

				public	Logger	produceLogger(InjectionPoint	injectionPoint)	{

								return

Logger.getLogger(injectionPoint.getMember().getDeclaringClass().getName());

				}

}

We	also	allowed	the	injection	of	FacesContext	instead	of	using	the	standard
FacesContext.getCurrentInstance()	static	method.	This	context	is	used,	for	example,
to	display	the	stated	error	messages:
package	com.packtpub.wflydevelopment.chapter4.util;

import	javax.enterprise.context.RequestScoped;

import	javax.enterprise.inject.Produces;

import	javax.faces.context.FacesContext;

public	class	FacesContextProducer	{

				@Produces

				@RequestScoped

www.it-ebooks.info

http://www.it-ebooks.info/

				public	FacesContext	produceFacesContext()	{

								return	FacesContext.getCurrentInstance();

				}

}

The	last	class	we	will	include	in	our	project	is	the	Seat	bean,	known	from	the	previous
chapter,	which	will	be	used	as	our	model	without	any	change	(remember	to	include	it	in
your	project	with	a	proper	package).

Building	the	view
Once	we	have	coded	the	server	side	of	our	example,	creating	the	front	end	will	be	quite
easy,	as	we	have	made	all	our	resources	available	through	CDI	Beans.

One	notable	difference	between	some	of	the	earlier	editions	of	this	book	is	that	Facelets
are	now	the	preferred	view	technology	for	JSF.	Earlier	versions	of	JSF	used	JavaServer
Pages	(JSP)	as	their	default	view	technology.	As	JSP	technology	predates	JSF,	using	JSP
with	JSF	sometimes	felt	unnatural	or	created	problems.	For	example,	the	life	cycle	of	JSPs
is	different	from	the	life	cycle	of	JSF.

Note
Compared	to	the	simpler	request-response	paradigm	on	which	the	JSP	life	cycle	is	based,
the	JSF	life	cycle	is	much	more	complex	since	the	core	of	JSF	is	the	MVC	pattern,	which
has	several	implications.	User	actions	in	JSF-generated	views	take	place	in	a	client	that
does	not	have	a	permanent	connection	to	the	server.	The	delivery	of	user	actions	or	page
events	is	delayed	until	a	new	connection	is	established.	The	JSF	life	cycle	must	handle	this
delay	between	event	and	event	processing.	Also,	the	JSF	life	cycle	must	ensure	that	the
view	is	correct	before	rendering	it,	and	also	that	the	JSF	system	includes	a	phase	to
validate	inputs	and	another	to	update	the	model	only	after	all	the	inputs	pass	validation.

Most	of	the	time	Facelets	are	used	to	build	JavaServer	Faces	views	using	HTML-style
templates	and	component	trees.	Templating	is	a	useful	feature	available	with	Facelets	that
allows	you	to	create	a	page	that	will	act	as	the	template	for	the	other	pages	in	an
application	(something	like	Struts	Tiles).	The	idea	is	to	obtain	portions	of	reusable	code
without	repeating	the	same	code	on	different	pages.

So	here’s	the	main	application	structure	that	contains	a	template	page	named
default.xhtml	that	is	referenced	by	views	in	the	template	attribute	of	the	page’s
composition	element.	The	template	contains	two	main	HTML	div	elements	that	will	be
used	to	contain	the	main	application	panel	(content)	and	a	footer	div	(footer),	which	will
barely	output	the	application	title.

In	order	to	add	the	template	at	first,	add	a	new	JSF	page	to	the	WEB-INF/templates	folder
of	your	application	and	name	it	default.xhtml:
<?xml	version=‘1.0’	encoding=‘UTF-8’	?>

<!DOCTYPE	html	PUBLIC	“-//W3C//DTD	XHTML	1.0	Transitional//EN”

								“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html	xmlns=“http://www.w3.org/1999/xhtml”

						xmlns:h=“http://xmlns.jcp.org/jsf/html”

						xmlns:ui=“http://xmlns.jcp.org/jsf/facelets”>

<h:head>

www.it-ebooks.info

http://www.it-ebooks.info/

				<meta	http-equiv=“Content-Type”	content=“text/html;	charset=utf-8”/>

				<h:outputStylesheet	name=“style.css”/>

</h:head>

<h:body>

				<div	id=“container”>

								<div	id=“content”>

												<ui:insert	name=“content”>

																[Template	content	will	be	inserted	here]

												</ui:insert>

								</div>

								<div	id=“footer”>

												<p>

																WildFly	Development	Ticket	Booking	example.

												</p>

								</div>

				</div>

</h:body>

</html>

Next,	we	will	add	the	main	page	view,	which	will	be	embedded	into	your	template.	For
this	purpose,	add	a	JSF	page	named	index.xhtml	to	the	webapp	folder	of	your	Maven
project:
<?xml	version=“1.0”	encoding=“UTF-8”?>

<ui:composition	xmlns=“http://www.w3.org/1999/xhtml”

																xmlns:ui=“http://xmlns.jcp.org/jsf/facelets”

																xmlns:f=“http://xmlns.jcp.org/jsf/core”

																xmlns:h=“http://xmlns.jcp.org/jsf/html”

																template=”/WEB-INF/templates/default.xhtml”>	[1]

				<ui:define	name=“content”>

								<h1>TicketBooker	Machine</h1>

								<h:form	id=“reg”>

												<h3>Money:	$	#{theatreBooker.money}</h3>	[2]

												<h:messages	errorClass=“error”	infoClass=“info”

																								globalOnly=“true”/>

												<h:panelGrid	columns=“1”	border=“1”	styleClass=“smoke”>

																<h:dataTable	var=“_seat”	value=”#{seats}”	[3]

																													rendered=”#{not	empty	seats}”

styleClass=“simpletablestyle”>

																				<h:column>

																								<f:facet	name=“header”>Id</f:facet>

																								#{_seat.id}

																				</h:column>

																				<h:column>

																								<f:facet	name=“header”>Name</f:facet>

																								#{_seat.name}

																				</h:column>

																				<h:column>

																								<f:facet	name=“header”>Price</f:facet>

																								#{_seat.price}$

																				</h:column>

																				<h:column>

																							<f:facet	name=“header”>Booked</f:facet>

																							#{_seat.booked}

www.it-ebooks.info

http://www.it-ebooks.info/

																				</h:column>

																				<h:column>

																							<f:facet	name=“header”>Action</f:facet>

																							<h:commandButton	id=“book”

																	action=”#{theatreBooker.bookSeat(_seat.id)}”	[4]

																							disabled=”#{_seat.booked}”

																							value=”#{_seat.booked	?	‘Reserved’	:	‘Book’}”	/>

																				</h:column>

																</h:dataTable>

												</h:panelGrid>

								</h:form>

				</ui:define>

</ui:composition>

The	ui:composition	element	is	a	templating	tag	that	wraps	content	to	be	included	in
another	Facelet.	Specifically,	it	will	be	included	in	the	default.xhtml[1]	template.

The	creation	of	the	view	is	done	in	three	steps.	First,	we	will	display	the	customer’s
money	[2],	which	is	bound	to	the	session	variable	called	money.

Note
Notice	how	we	directly	reference	CDI	Beans	(for	example,	TheatreBooker)	from	JSF
expressions,	just	as	we	used	to	do	with	JSF	Managed	Beans.

The	next	thing	on	the	checklist	is	printing	all	JSF	messages	[3]	that	are	meant	to	be
produced	by	the	application	via	the	messages	element.

The	main	task	of	this	view	is	to	produce	a	view	of	all	tickets	and	let	the	users	purchase
them.	This	is	achieved	by	means	of	a	dataTable	object	[3]that	can	be	used	to	produce	a
tabular	list	of	objects,	which	are	generally	stored	as	java.util.List	in	your	beans.

Pay	attention	to	the	value	attribute	of	the	dataTable	object:
<h:dataTable	var=“_seat”	value=”#{seats}”	

rendered=”#{not	empty	seats}”	styleClass=“simpletablestyle”>

In	this	case,	we	don’t	directly	reference	a	CDI	Bean,	but	we	reference	an	object	that	has
been	produced	by	a	CDI	Bean.	To	be	precise,	it	has	been	produced	by	TheatreInfo	that,
as	we	have	seen,	has	a	@Produces	and	@Named	annotation	on	our	list	of	seats:
private	List<Seat>	seats;

@Produces

@Named

public	List<Seat>getSeats()	{

			return	seats;

}

This	dataTable	object	will	be	displayed	only	if	it	contains	some	data	in	it	(as	dictated	by
the	not	empty	seats	EL	expression).	In	one	of	the	dataTable	columns,	we	have	added
commandButton	[4]	that	will	be	used	to	book	the	seat	displayed	on	that	row.	Notice	one	of
the	JSF	2	goodies	here,	as	we	call	the	bookSeat	method	of	TheatreBooker	passing	an
argument	as	one	parameter,	which	is	the	seatId	field.

JSF	2	facet	suggestions

www.it-ebooks.info

http://www.it-ebooks.info/

By	enabling	JSF	2	facets	on	your	project	configuration,	you	can	enjoy	some	additional
benefits	while	designing	your	views.

Enabling	JSF	2	project	facets	takes	half	a	minute.	Right-click	on	your	project	and	navigate
to	Properties	|	Project	Facets.	Then,	select	the	JSF	2.2	Project	facets	checkbox	and
click	on	the	OK	button:

Note
Once	the	JSF	facet	is	enabled,	Eclipse	will	notify	you	that	the	JSF	library	configuration	is
missing;	just	disable	the	JSF	library	configuration	that	is	a	part	of	Maven’s	duty.

Once	JSF	2	facets	are	configured,	if	you	press	Ctrl	+	Space	bar	before	referencing	a	field
or	method,	a	suggestion	pop-up	window	will	let	you	choose	the	method	or	attribute	of	the
Bean	you	want	to	reference.

Getting	ready	to	run	the	application
OK,	now	your	application	is	almost	ready.	We	just	need	to	configure	a	JSF	mapping	in	a
web.xml	file	as	follows:
<web-app	xmlns=“http://xmlns.jcp.org/xml/ns/javaee”

									xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”

									xsi:schemaLocation=“http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd”

									version=“3.1”>

				<servlet>

								<servlet-name>Faces	Servlet</servlet-name>

								<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

								<load-on-startup>1</load-on-startup>

				</servlet>

				<servlet-mapping>

								<servlet-name>Faces	Servlet</servlet-name>

								<url-pattern>/faces/*</url-pattern>

				</servlet-mapping>

				<welcome-file-list>

								<welcome-file>faces/index.xhtml</welcome-file>

				</welcome-file-list>

</web-app>

www.it-ebooks.info

http://www.it-ebooks.info/

This	will	then	run	the	FacesServlet	servlet	for	all	the	pages	at	/faces/*	url.

Finally,	as	stated	previously,	in	order	to	activate	our	war	file	as	an	explicit	bean	archive,
we	need	to	add	an	empty	beans.xml	file	to	the	WEB-INF	folder	of	your	application.

So,	if	you	follow	the	same	naming	convention	used	in	this	chapter,	you	will	end	up	with
the	following	project	structure:

At	this	point,	you	must	be	familiar	with	building	and	deploying	your	Maven	applications
using	Eclipse	or	a	shell.	Assuming	that	you	are	managing	your	application	from	a	shell,
start	by	building	up	the	project	using	the	following:

mvn	package

Then,	publish	it	using	the	WildFly	Maven	plugin,	as	we	did	in	the	previous	chapter.

If	the	WildFly	server	is	started,	you	can	execute	the	following	command:

mvn	wildfly:deploy

If	the	WildFly	server	is	not	started,	you	can	execute	the	following	command	and	then	the
WildFly	Maven	plugin	will	automatically	start	an	instance:

mvn	wildfly:run

The	application	will	be	available	at	http://localhost:8080/ticket-agency-cdi.

www.it-ebooks.info

http://www.it-ebooks.info/

Then,	to	do	this	with	a	unique	command,	you	can	execute	the	following:

mvn	clean	package	wildfly:deploy

After	so	much	work,	you	will	be	pleased	to	have	your	application	running	on	your
browser:

Right	now,	you	will	be	able	to	book	tickets	up	to	the	budget	($	100)	defined	in	your
SessionScoped	bean.	So	enjoy	this	first	taste	of	JSF	and	CDI.

Of	course,	in	this	chapter,	we	only	scratched	the	surface	of	JSF	features.	There	is	also	a
new	higher-level	approach	introduced	in	JSF	2.2	that	can	be	used	for	flow-based	scenarios
such	as	a	shopping	cart.	The	new	feature	is	called	FacesFlow	and	comes	with	a
@FlowScoped	annotation.	However,	we	will	now	focus	on	adding	some	other	features	to
our	current	application.

Combining	the	scheduler	into	our	application
Up	to	now,	we	have	not	included	the	scheduler,	which	was	in	charge	of	simulating	other
customer-requesting	tickets,	into	our	application.	This	was	not	an	oversight;	as	a	matter	of
fact,	introducing	an	external	system	in	a	web	application	poses	some	challenges.	For
example,	what	if	the	scheduler	updates	some	data	used	by	the	application?	How	will	the

www.it-ebooks.info

http://www.it-ebooks.info/

user	know	it?

There	are	several	strategies	to	address	this	requirement;	however,	they	all	boil	down	to
using	some	intelligence	in	your	client	application.	For	example,	if	you	are	familiar	with
web	scripting	languages,	you	can	use	the	popular	jQuery	API	to	poll	the	server	for	some
updates.	The	newest	version	of	JSF	2.2	comes	with	great	support	for	HTML5	and
JavaScript	frameworks,	thanks	to	the	custom	data	attributes	and	pass-through	elements.
These	are	simple	mechanisms	that	allow	the	JSF’s	render	kit	to	render	parts	of	the	page
without	any	further	changes	so	that	custom	tags	may	be	interpreted	by	the	browser	(or	a
JavaScript	framework).

Since	not	all	Java	EE	developers	might	be	skilled	in	JavaScript,	we	would	rather	show	a
simple	and	effective	way	to	fulfill	our	requirement	using	RichFaces	libraries
(http://www.jboss.org/richfaces),	which	provide	advanced	Ajax	support	along	with	a	rich
set	of	ready-to-use	components.

Installing	RichFaces

Installing	RichFaces	requires	a	set	of	core	libraries	that	are	generally	available	at	the
RichFaces	download	page.

Additionally,	you	need	to	provide	a	set	of	third-party	dependencies	that	are	used	by	the
RichFaces	API.	Never	mind,	that’s	what	Maven	is	for!	Start	by	adding	the	latest	Bill	of
Materials	(BOM)	for	the	RichFaces	API	in	the	upper	dependency-management	section:
<dependencyManagement>

		…

				<dependency>

								<groupId>org.richfaces</groupId>

								<artifactId>richfaces-bom</artifactId>

								<version>4.3.5.Final</version>

								<scope>import</scope>

								<type>pom</type>

				</dependencies>

</dependencyManagement>

Then,	it’s	just	a	matter	of	adding	the	rich	UI	libraries	and	the	core	API:
<dependency>

				<groupId>org.richfaces.ui</groupId>

				<artifactId>richfaces-components-ui</artifactId>

</dependency>

<dependency>

				<groupId>org.richfaces.core</groupId>

				<artifactId>richfaces-core-impl</artifactId>

</dependency>

Making	your	application	rich

Once	we	have	installed	RichFaces	libraries,	we	will	just	need	to	reference	them	on	each
XHTML	page	in	your	project.	Here’s	the	new	index.xhtml	page	using	the	RichFaces
namespaces:
<ui:composition	xmlns=“http://www.w3.org/1999/xhtml”

																xmlns:h=“http://xmlns.jcp.org/jsf/html”

																xmlns:f=“http://xmlns.jcp.org/jsf/core”

www.it-ebooks.info

http://www.jboss.org/richfaces
http://www.it-ebooks.info/

																xmlns:ui=“http://xmlns.jcp.org/jsf/facelets”

																xmlns:a4j=“http://richfaces.org/a4j”

																xmlns:rich=“http://richfaces.org/rich”

																template=”/WEB-INF/templates/default.xhtml”>

				<ui:define	name=“content”>

								<f:view>

												<h:form>

																<a4j:poll	id=“poll”	interval=“2000”

																	enabled=”#{pollerBean.pollingActive}”

																	render=“poll,grid,bookedCounter”/>

																<rich:panel	header=“TicketBooker	Machine”	

																												style=“width:350px”>

																				<h2>Book	your	Ticket</h2>

																				<h3>Money:	$	#{theatreBooker.money}</h3>

																				<h:messages	errorClass=“error”	infoClass=“info”

globalOnly=“true”/>

																				<rich:dataTable	id=“grid”	var=“_seat”	

																																				value=”#{seats}”	

																																				rendered=”#{not	empty	seats}”	

																																				styleClass=“simpletablestyle”>

																								<h:column>

																												<f:facet	name=“header”>Id</f:facet>

																												#{_seat.id}

																								</h:column>

																								<h:column>

																												<f:facet	name=“header”>Name</f:facet>

																												#{_seat.name}

																								</h:column>

																								<h:column>

																												<f:facet	name=“header”>Price</f:facet>

																												#{_seat.price}

																								</h:column>

																								<h:column>

																												<f:facet	name=“header”>Booked</f:facet>

																												#{_seat.booked}

																								</h:column>

																								<h:column>

																												<f:facet	name=“header”>Action</f:facet>

																												<h:commandButton	id=“book”

																								action=”#{theatreBooker.bookSeat(_seat.id)}”

																								disabled=”#{_seat.booked}”

																								value=”#{_seat.booked	?	‘Not	Available’	:

‘Book’}”/>

																								</h:column>

																				</rich:dataTable>

									<h:outputText	value=“Booked	seats	on	this	page:	#

{bookingRecord.bookedCount}”		id=“bookedCounter”	/>

																</rich:panel>

												</h:form>

www.it-ebooks.info

http://www.it-ebooks.info/

								</f:view>

				</ui:define>

</ui:composition>

We	have	highlighted	the	core	enhancements	added	to	this	page.	At	first,	as	we	said,	we
need	to	reference	the	RichFaces	libraries	at	the	top	of	the	XHTML	page.

Next,	we	added	a	rich	Ajax	component,	a4j:poll,	which	does	a	simple	but	an	effective	job
of	polling	the	server	for	updates,	allowing	the	re-rendering	of	our	components—grid

(which	contains	the	main	datatable),	poller	(to	check	whether	it	should	still	be	running),
and	bookedCounter.

Additionally,	this	component	references	a	CDI	bean	named	Poller,	which	acts	just	as	an
on/off	flag	for	our	poller.	We	expect	to	turn	off	polling	as	soon	as	all	the	seats	are	sold	out:
package	com.packtpub.wflydevelopment.chapter4.controller;

import	java.util.Optional;

import	javax.enterprise.inject.Model;

import	javax.inject.Inject;

import	com.packtpub.wflydevelopment.chapter4.boundary.TheatreBox;

import	com.packtpub.wflydevelopment.chapter4.entity.Seat;

@Model

public	class	Poller	{

				@Inject

				private	TheatreBox	theatreBox;

				public	boolean	isPollingActive()	{

								return	areFreeSeatsAvailable();

				}

				private	boolean	areFreeSeatsAvailable()	{

								final	Optional<Seat>	firstSeat	=

theatreBox.getSeats().stream().filter(seat	->

!seat.isBooked()).findFirst();

								return	firstSeat.isPresent();

				}

}

Our	seller	service	stays	nearly	the	same	as	in	the	previous	chapter	(the	only	difference	is
the	logger	injection):
package	com.packtpub.wflydevelopment.chapter4.control;

import	com.packtpub.wflydevelopment.chapter4.boundary.TheatreBox;

import	com.packtpub.wflydevelopment.chapter4.entity.Seat;

import	org.jboss.logging.Logger;

import	javax.annotation.Resource;

import	javax.ejb.EJB;

import	javax.ejb.Schedule;

import	javax.ejb.Stateless;

import	javax.ejb.Timer;

www.it-ebooks.info

http://www.it-ebooks.info/

import	javax.ejb.TimerService;

import	javax.inject.Inject;

import	java.util.Collection;

import	java.util.Optional;

@Stateless

public	class	AutomaticSellerService	{

				@Inject

				private	Logger	logger;

				@Inject

				private	TheatreBox	theatreBox;

				@Resource

				private	TimerService	timerService;

				@Schedule(hour	=	“*”,	minute	=	“*”,	second	=	“*/30”,	persistent	=

false)

				public	void	automaticCustomer()	{

								final	Optional<Seat>	seatOptional	=	findFreeSeat();

								if	(!seatOptional.isPresent())	{

												cancelTimers();

												logger.info(“Scheduler	gone!”);

												return;	//	No	more	seats

								}

								final	Seat	seat	=	seatOptional.get();

								theatreBox.buyTicket(seat.getId());

								logger.info(“Somebody	just	booked	seat	number	”	+	seat.getId());

				}

				private	Optional<Seat>	findFreeSeat()	{

								final	Collection<Seat>	list	=	theatreBox.getSeats();

								return	list.stream().filter(seat	->	!seat.isBooked()).findFirst();

				}

				private	void	cancelTimers()	{

								for	(Timer	timer	:	timerService.getTimers())	{

												timer.cancel();

								}

				}

}

Finally,	we’ll	add	a	booking	record,	which	will	be	bounded	with	the	current	view	using	the
view	scope.	Its	role	will	be	to	count	the	number	of	bookings	done	by	the	user	in	the
current	view	(a	single	browser	tab	is	considered	a	single	view):
package	com.packtpub.wflydevelopment.chapter4.controller;

import	com.packtpub.wflydevelopment.chapter4.entity.Seat;

import	java.io.Serializable;

www.it-ebooks.info

http://www.it-ebooks.info/

import	javax.enterprise.event.Observes;

import	javax.faces.view.ViewScoped;

import	javax.inject.Named;

@Named

@ViewScoped

public	class	BookingRecord	implements	Serializable	{

				private	int	bookedCount	=	0;

				public	int	getBookedCount()	{

								return	bookedCount;

				}

				public	void	bookEvent(@Observes	Seat	bookedSeat)	{

								bookedCount++;

				}

}

You	can	experiment	with	the	booked	counter	by	trying	to	book	tickets	via	two	separate
tabs	in	your	browser.

You	might	have	noticed	that	we	placed	two	annotations	on	the	bean:	@Named	and
@ViewScoped.	If	you	would	like	to	define	multiple	beans	with	a	specific	set	of	CDI
annotations,	it	would	be	a	good	idea	to	create	your	own	custom	annotation	that	already
contains	the	desired	ones.	This	kind	of	construction	is	called	a	stereotype.	It	is	possible	to
incorporate	the	following	elements:

	
A	default	scope
Optionally,	interceptor	bindings
Optionally,	a	@Named	annotation
Optionally,	an	@Alternative	annotation

To	create	a	stereotype,	you	need	to	add	the	wanted	annotations	along	with	the
@Stereotype	annotation:
@ViewScoped

@Named

@Stereotype

@Target(ElementType.TYPE)

@Retention(RetentionPolicy.RUNTIME)

public	@interface	NamedView	{

}

Now	you	can	define	the	BookinRecord	bean	as	follows:
@NamedView

public	class	BookingRecord	implements	Serializable	{

				//Some	code	here

}

The	@Model	stereotype	is	available	in	CDI	by	default.	It	defines	a	request	scoped	named

www.it-ebooks.info

http://www.it-ebooks.info/

bean,	and	you	can	use	it	on	your	beans	right	out	of	the	box.

Running	the	application

With	all	the	libraries	in	place,	you	can	now	test	run	your	new	rich	application.	As	you	can
see,	every	30	seconds	a	ticket	is	sold	out	and	buttons	are	turned,	in	real	time,	into	Not
available:

Creating	interceptors

There	is	one	more	CDI	feature	worth	mentioning	here,	the	interceptors.	Sometimes,
applications	contain	logic	and	cross-cutting	multiple	layers;	the	most	simple	example	is
logging.	Under	the	Java	EE	platform,	it	can	be	achieved	using	interceptors.	First,	we	need
to	create	a	new	annotation:
@Inherited

@InterceptorBinding	[1]

@Retention(RetentionPolicy.RUNTIME)

@Target({	ElementType.METHOD,	ElementType.TYPE	})

public	@interface	Logged	{

www.it-ebooks.info

http://www.it-ebooks.info/

				//	empty

}

This	annotation	defines	an	interceptor	binding.	It	can	be	used	to	specify	methods	that	you
would	like	to	intercept.	The	bindings	can	be	used	on	types	as	well;	in	that	case,	every
method	call	on	that	type	is	intercepted.	The	most	important	part	of	this	definition	is	the
@InterceptorBinding	[1]	annotation.	Be	sure	to	add	it!

Then,	we	have	to	create	the	interceptor	definition	itself:

@Interceptor

@Logged	[1]

public	class	LoggingInterceptor	implements	Serializable	{

				@AroundInvoke	[2]

				public	Object	log(InvocationContext	context)	throws	Exception	{

								final	Logger	logger	=

Logger.getLogger(context.getTarget().getClass());

								logger.infov(“Executing	method	{0}”,

context.getMethod().toString());

								return	context.proceed()	[3];

				}

}

We	start	by	stating	that	our	class	is	@Interceptor	and	it	will	be	using	the	interceptor
binding	that	we’ve	defined	earlier	(@Logged	[1]).	Next,	we	create	a	method	log	that	will
be	executed	around	every	method	execution	(@AroundInvoke	[2])	on	annotated	classes.
Inside	of	it,	we	will	call	the	context.proceed()	method	that	will	basically	forward	the
call	to	the	original	receiver.	Note	that	the	interceptor	can	decide	(based	on	some	security
logic,	for	instance)	whether	the	call	should	be	dropped.	It	could	even	analyze	or	change
the	returned	value.

Finally,	we	have	to	enable	it	in	the	beans.xml	file	by	adding	the	following	code:
<interceptors>

	

<class>com.packtpub.wflydevelopment.chapter4.util.LoggingInterceptor</class>

</interceptors>

Now,	let’s	move	on	to	just	the	annotated	classes	or	methods	that	you	want	to	log	using	the
@Logged	annotation.	For	instance,	refer	to	the	following:
@Named

@SessionScoped

@Logged

public	class	TheatreBooker	implements	Serializable	{

				//	Some	code

}

All	calls	to	the	TheatreBooker	public	methods	will	now	be	logged	in	to	the	console:

21:02:11	INFO		[com.packtpub.wflydevelopment.chapter4

.controller.TheatreBooker$Proxy$_$$_WeldSubclass]	(default	task-8)

Executing	method	public	int

com.packtpub.wflydevelopment.chapter4.controller.	TheatreBooker.getMoney()

www.it-ebooks.info

http://www.it-ebooks.info/

In	the	case	of	multiple	interceptors,	the	order	in	which	they	are	executed	is	determined	by
the	@Interceptor.Priority	annotation.	Interceptors	with	lowest	priorities	will	be	called
first.	Be	sure	to	check	the	constants	defined	in	the	Priority	annotation.	Your	own
interceptor’s	priorities	should	be	between	the	APPLICATION	and	LIBRARY_AFTER	scope.

There	are	also	other	interesting	CDI	mechanisms	that	we	will	not	cover	in	this	book,	but
are	definitely	worth	exploring:	decorators	and	alternatives.	Decorators	are	basically
strongly	typed	interceptors	that	are	focused	on	the	business	logic	of	your	application.
Alternatives	can	be	used	to	provide	alternative	implementations	for	specific	beans.

www.it-ebooks.info

http://www.it-ebooks.info/

Are	EJBs	and	JSF	Managed	Beans	obsolete?
At	the	end	of	this	chapter,	we	would	like	to	give	our	honest	opinion	about	a	common
question	posed	by	developers,	that	is,	how	EJB,	JSF	Managed	Beans,	and	CDI	interact
and	where	the	boundary	between	them	lies.	Are	there	redundancies	between	them?	It	is
indeed	a	bit	confusing	since	there	are	now	multiple	component	models	available	in	Java
EE.

JSF	Managed	Beans	have	been,	for	a	long	time,	the	actual	glue	between	the	application
view	and	the	business	methods.	Since	Release	2.0	of	JSF,	you	can	declare	JSF	Managed
Beans	via	an	annotation,	and	the	scopes	are	expanded	with	a	view	scope	and	the	ability	to
create	custom	scopes.	However,	there	is	very	little	still	going	on	for	JSF	Managed	Beans.
Most	of	its	features	can	be	replaced	by	CDI	Beans	that	are	much	more	flexible	and	allow
you	to	have	a	better	integration	with	other	Java	EE	components.	Even	the	view	scope,	in
the	newest	version	of	JSF,	has	been	implemented	as	a	CDI	custom	scope
(javax.faces.view.ViewScoped),	which	replaces	the	old	javax.faces.bean.ViewScoped
(notice	the	name	of	the	package;	it’s	a	common	mistake	to	mix	them	up).

On	the	other	hand,	EJBs,	even	though	they	use	a	less	flexible	injection	mechanism,	still
maintain	some	unique	features	such	as	schedulable	timers,	asynchronous	operations,	and
pooling	that	are	essential	for	throttling	and	assuring	that	the	application	provides	a	good
quality	of	service.	Beginning	from	Java	EE	7,	EJBs	no	longer	are	the	only	components
that	have	a	transactional	nature.	The	new	@Transactional	annotation	allows	you	to	use
declarative	transactions	in	CDI	beans	by	simply	placing	it	on	selected	methods.

Despite	this,	it’s	likely	that	EJBs	are	not	disappearing	from	our	code,	rather	it	is	likely
(and	desirable	too)	that	they	will	continue	to	be	used	for	some	of	their	unique	features.	For
the	remaining	part	though,	its	functionality	will	be	exposed	via	CDI	instead	of	EJBs’	own
annotations	such	as	@Stateless	and	@EJB.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	provided	an	introduction	to	CDI.	We	covered	how	JSF	pages	can
access	CDI-named	beans	as	if	they	were	JSF	Managed	Beans.	We	also	covered	how	CDI
makes	it	easy	to	inject	dependencies	into	our	code	via	the	@Inject	annotation.
Additionally,	we	explained	how	we	can	add	another	library	of	the	JBoss	ecosystem
(RichFaces)	uncovering	just	one	aspect	of	its	potentiality.

Until	now,	we	have	worked	with	in-memory	data,	so	it’s	time	to	introduce	storage	for	our
CDI	applications	using	the	Java	Persistence	API,	which	is	the	theme	of	the	next	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	5.	Combining	Persistence	with	CDI
In	the	earlier	chapters,	we	discussed	Java	EE,	combining	several	technologies	such	as
CDI.	The	examples	so	far,	however,	are	based	on	a	false	assumption	that	all	the
information	can	be	stored	in	memory.	In	this	chapter,	we	will	show	how	to	use	a	persistent
data	store	for	our	application	in	the	form	of	a	standard	relational	database.

The	Enterprise	JavaBeans	(EJB)	3.2	specification	includes	a	reference	to	a	persistence
specification	called	the	Java	Persistence	API	(JPA).	It	is	an	API	to	create,	remove,	and
query	Java	objects	called	entities	that	can	be	used	within	both	a	compliant	EJB	3.x
container	and	a	standard	Java	SE	environment.	In	Java	EE	7,	it	has	been	updated	to
Version	2.1.	You	can	check	out	the	current	version	of	the	specification	I	the	JSR	338	at
https://jcp.org/en/jsr/detail?id=338.

We	need	to	warn	you	that	in	this	chapter,	you	have	a	lot	of	things	to	learn	and	hence
concepts	will	be	coming	at	you	from	every	direction.	However,	at	the	end	of	it,	you	will	be
able	to	appreciate	exactly	how	to	create	and	deploy	a	complete	Java	EE	7	application.

Specifically,	we	will	cover	the	following	topics:

	
The	key	features	of	JPA
How	to	create	your	entities	and	database	schema
How	to	manipulate	the	entities	using	CDI	Beans	and	EJBs
Delivering	a	frontend	tier	for	our	application	using	JSF	and	Facelets	technology

www.it-ebooks.info

https://jcp.org/en/jsr/detail?id=338
http://www.it-ebooks.info/

Data	persistence	meets	the	standard
The	arrival	of	an	Enterprise	Java	Persistence	standard	based	on	the	Plain	Old	Java
Object	(POJO)	development	model	fills	a	substantial	gap	in	the	Java	EE	platform.	The
previous	attempt	(the	EJB	2.x	specification)	missed	the	mark	and	created	a	stereotype	of
EJB	entity	beans	that	was	awkward	to	develop	and	too	heavy	for	many	applications.
Therefore,	it	never	achieved	widespread	adoption	or	general	approval	in	many	sectors	of
the	industry.

Software	developers	knew	what	they	wanted,	but	many	could	not	find	it	in	the	existing
standards,	so	they	decided	to	look	elsewhere.	What	they	found	was	lightweight	persistence
frameworks,	both	in	the	commercial	and	open	source	domains.

In	contrast	to	EJB	2.x	entity	beans,	the	EJB	3.0	Java	Persistence	API	(JPA)	is	a	metadata
driven	POJO	technology,	that	is,	to	save	the	data	held	in	Java	objects	in	a	database,	our
objects	are	not	required	to	implement	an	interface,	extend	a	class,	or	fit	into	a	framework
pattern.

Another	key	feature	of	JPA	is	the	query	language	called	the	Java	Persistence	Query
Language	(JPQL),	which	gives	you	a	way	to	define	the	queries	in	a	portable	way,
independent	of	the	particular	database	you	use	in	an	enterprise	environment.	JPA	queries
resemble	SQL	queries	by	syntax	but	operate	against	entity	objects	rather	than	directly	with
database	tables.

www.it-ebooks.info

http://www.it-ebooks.info/

Working	with	JPA
Inspired	by	ORM	frameworks	such	as	Hibernate,	JPA	uses	annotations	to	map	objects	to	a
relational	database.	JPA	entities	are	POJOs	that	do	not	extend	any	class	nor	implement	any
interface.	You	don’t	even	need	XML	descriptors	for	your	mapping.	Actually,	the	JPA	API
is	made	up	of	annotations	and	only	a	few	classes	and	interfaces.	For	example,	we	will
mark	the	Company	class	as	@Entity,	shown	as	follows:
import	javax.persistence.Entity;

import	javax.persistence.Id;

@Entity

public	class	Company	{

				//	Some	code

				@Id

				private	String	companyName;

				public	Company	()	{		}

				//	Some	code

}

The	preceding	piece	of	code	shows	the	minimal	requirements	for	a	class	to	be	persistent,
which	are	as	follows:

	
It	must	be	identified	as	an	entity	using	the	@javax.persistence.Entity	annotation
It	must	have	an	identifier	attribute	annotated	with	@javax.persistence.Id
It	must	have	a	no-argument	constructor	in	at	least	the	protected	scope

Since	you	will	learn	better	with	an	example,	we	will	show	how	to	create	and	deploy	a
sample	JPA	application	in	WildFly	in	the	next	section.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding	persistence	to	our	application
In	order	to	persist	data,	JPA	needs	a	relational	database;	we	will	use	the	PostgreSQL
database,	which	is	pretty	popular	among	developers	and	can	be	downloaded	for	free	from
http://www.postgresql.org/download/.	It	is	recommended	to	download	the	latest	stable
release	of	PostgreSQL	9.x	and	install	it	using	the	simple	installation	wizard.	If	you	don’t
need	a	full-blown	database,	then	keep	in	mind	that	later	we	will	also	show	you	how	to	use
an	in-memory	database	provided	by	WildFly,	which	can	be	a	really	useful	alternative
during	development.

www.it-ebooks.info

http://www.postgresql.org/download/
http://www.it-ebooks.info/

Setting	up	the	database
We	will	create	a	database	named	ticketsystem;	we	will	then	add	a	user	named	jboss	and
assign	him/her	all	privileges	on	the	schemas.

Open	a	shell	under	the	bin	folder	of	your	PostgreSQL	installation	and	launch	the
executable	psql	–U	postgres.	Once	logged	in	with	the	password	from	your	installation,
execute	the	following	commands:

CREATE	DATABASE	ticketsystem;

CREATE	USER	jboss	WITH	PASSWORD	‘jboss’;

GRANT	ALL	PRIVILEGES	ON	DATABASE	ticketsystem	TO	jboss;

Our	simple	schema	will	be	made	up	of	two	tables:	the	SEAT	table,	which	contains	the	list
of	all	the	available	seats	in	the	theatre,	and	the	SEAT_TYPE	table,	which	is	used	to
categorize	the	seat	types.	The	two	tables	are	in	a	1-n	relationship	and	the	SEAT	table	hosts
a	foreign	key	that	relates	to	the	ID	of	the	SEAT_TYPE	table.	We	will,	however,	let	JPA
generate	the	schema	for	us,	based	on	our	class	hierarchy,	which	we	will	model	in	a
moment.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing	the	JDBC	driver	in	WildFly
Database	connectivity	is	carried	out	in	Java	using	JDBC	drivers,	which	are	used	either
directly	in	your	applications	or	behind	the	scenes	in	JPA.	The	PostgreSQL	JDBC	driver
can	be	downloaded	for	free	from	http://jdbc.postgresql.org/download.html.

Once	the	download	is	complete,	place	the	postgresql-9.X-X.jdbc41.jar	file	at	a
convenient	location	on	your	filesystem.	We	will	now	see	how	to	install	the	JDBC	driver	in
WildFly.

In	JBoss	AS	5	and	6,	you	used	to	install	the	JDBC	driver	in	the	common/lib	folder	of	your
server	distribution.	In	the	new	modular	server	architecture	(introduced	in	JBoss	AS	7),	you
have	more	than	one	option	to	install	your	JDBC	driver.	The	recommended	approach
consists	of	installing	the	driver	as	a	module.

The	procedure	to	install	a	new	module	requires	creating	a	module	path	under
JBOSS_HOME/modules	and	placing	the	.jar	libraries	and	the	module.xml	file	(that	declares
the	module	name	and	its	dependencies)	there.

In	our	example,	we	will	add	the	following	units	to	our	filesystem:

	
JBOSS_HOME/modules/org/postgresql/main/postgresql-9.3-1101.jdbc41.jar

JBOSS_HOME/modules/org/postgresql/main/module.xml

Start	by	simply	creating	the	required	directories	in	your	WildFly	installation	(to	which	the
JBOSS_HOME	variable	points),	and	copying	the	downloaded	JAR	file	to	them.

Now,	in	the	main	folder,	add	a	file	named	module.xml.	This	file	contains	the	actual
module	definition;	the	most	interesting	part	of	it	is	the	module	name	(org.postgresql),
which	corresponds	to	the	module	attribute	defined	in	your	data	source.

Next,	you	need	to	state	the	path	to	the	JDBC	driver	resource	and	the	module
dependencies,	as	follows:
<module	xmlns=“urn:jboss:module:1.1”	name=“org.postgresql”>	

		<resources>

				<resource-root	path=“postgresql-9.3-1101.jdbc41.jar“/>

		</resources>

		<dependencies>

				<module	name=“javax.api”/>

				<module	name=“javax.transaction.api”/>

		</dependencies>

</module>

We	are	done	with	the	module	installation.	Now	we	need	to	define	a	data	source	in	our
configuration	that	will	use	this	module	and	hold	a	pool	of	connections	in	our	PostgreSQL
database.	In	order	to	do	this,	you	can	edit	standalone.xml/domain.xml,	adding	a	driver
element	to	the	data	source’s	subsystem	(be	sure	to	merge	this	configuration	with	any
existing	data	sources	in	your	configuration):
<subsystem	xmlns=“urn:jboss:domain:datasources:1.0”>

<datasources>

		<datasource	jta=“false”	

www.it-ebooks.info

http://jdbc.postgresql.org/download.html
http://www.it-ebooks.info/

						jndi-name=“java:jboss/datasources/wflydevelopment”	

						pool-name=“wflydevelopment”	enabled=“true”>

										<connection-url>

											jdbc:postgresql://localhost:5432/ticketsystem

										</connection-url>

										<driver-class>org.postgresql.Driver</driver-class>

										<driver>postgresql</driver>

										<security>

															<user-name>jboss</user-name>

															<password>jboss</password>

										</security>

		</datasource>

		<drivers>

									<driver	name=“postgresql”	module=“org.postgresql”/>

		</drivers>

</datasources>

</subsystem>

As	you	can	see,	the	new	configuration	file	borrows	the	same	XML	schema	definition	from
the	earlier	JBoss	AS	configurations,	so	it	should	not	be	difficult	to	migrate	to	the	new
schema.	Basically,	you	will	define	the	connection	path	to	the	database	using	the
connection-url	string	and	the	JDBC	driver	class	with	the	driver	section.

Note
Since	JBoss	AS	7.1.0,	it’s	mandatory	that	the	data	source	be	bound	to	the	java:/	or
java:jboss/	JNDI	namespace.	This	will	standardize	the	resources	definition	among
developers,	avoiding	bizarre	JNDI	bindings.

Using	the	command-line	interface	to	create	a	new	data	source
The	application	server	provides	more	than	one	option	to	add	a	data	source	to	your
configuration.	We	will	just	mention	the	command-line	interface	approach,	which	can	be
quite	useful,	especially	if	you	plan	to	modify	your	configuration	using	script	files.

Launch	the	jboss-cli.sh	script	(or	jboss-cli.bat)	and	connect	to	the	application	server,
as	follows:
[disconnected	/]	connect

[standalone@localhost:9990	/]

Now	issue	the	following	command,	which	actually	creates	a	new	data	source,
accomplishing	the	same	goal	we	obtained	by	editing	the	configuration	file:

/subsystem=datasources/data-source=wflydevelopment:add(jndi-

name=java:jboss/datasources/wflydevelopment,	driver-name=postgresql,

connection-url=	jdbc:postgresql://localhost:5432/ticketsystem,user-

name=“jboss”,password=“jboss”)

The	CLI	should	respond	with	a	success	message	if	everything	goes	well.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	the	Maven	project
The	application	that	we’re	going	to	create	in	this	chapter	will	require	only	standard	Java
EE	7	APIs	from	us.	Having	knowledge	from	previous	chapters,	you	should	be	able	to	set
up	a	project	for	this	chapter	by	yourself!	Just	use	your	favorite	IDE	and	create	a	Maven
project	with	war	type.	Remember	to	include	the	configuration	for	Java	SE	8,	beans.xml
and	faces-config.xml	files.	If	you	face	any	problems,	remember	that	code	samples
available	with	this	book	contain	a	full	project	based	on	this	example.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding	the	Maven	configuration
Now	that	your	Maven	skeleton	is	set	up,	we	will	include	the	required	dependencies	so	that
Eclipse	will	be	able	to	compile	your	classes	as	you	code	them.	The	only	dependency	you
will	need	for	this	type	is	javaee-api:
				<dependency>

								<groupId>javax</groupId>

								<artifactId>javaee-api</artifactId>

								<version>7.0</version>

								<scope>provided</scope>

				</dependency>

www.it-ebooks.info

http://www.it-ebooks.info/

Cooking	entities
Now	that	we’re	done	with	the	configuration	part,	we	will	add	our	entities	to	the	project.
Some	valuable	options	exist	to	autogenerate	our	entities,	starting	with	the	database
schema.	For	example,	the	Eclipse’s	File	menu	includes	an	option	JPA	Entities	from
Table	that	(once	a	connection	has	been	set	up	in	the	database)	allows	you	to	reverse	your
DB	schema	(or	a	part	of	it)	into	Java	entities.

If	you	are	willing	to	try	this	option,	remember	that	you	need	to	activate	the	Eclipse	JPA
facet	in	your	project,	from	Project	Properties,	as	shown	in	the	following	screenshot:

One	more	option	is	mentioned	in	Appendix,	Rapid	Development	Using	JBoss	Forge,
which	discusses	JBoss	Forge,	a	powerful,	rapid	application	development	(aimed	at	Java
EE)	and	project	comprehension	tool.

In	this	chapter,	we	will	focus	on	generating	SQL	scripts	from	Java	classes.	Whatever	your
strategy	is,	the	expected	outcome	needs	to	conform	to	the	following	entities.	Here	is	the
first	one,	SeatType,	which	maps	the	table	SEAT_TYPE:
@Entity	[1]

@Table(name=“seat_type”)	[2]

public	class	SeatType	implements	Serializable	{

				@Id		[3]

				@GeneratedValue(strategy=GenerationType.IDENTITY)

				private	Long	id;

				private	String	description;

				private	int	price;

				private	int	quantity;

				//bi-directional	many-to-one	association	to	Seat

				@OneToMany(mappedBy=“seatType”,	fetch=FetchType.EAGER)	[4]

				private	List<Seat>	seats;

www.it-ebooks.info

http://www.it-ebooks.info/

				//	Getters	and	Setters	omitted	for	brevity

}

The	first	meaningful	annotation	is	@Entity	[1],	which	declares	the	class	Entity.	The
@Table	[2]	annotation	is	used	to	map	the	bean	class	with	a	database	table.

The	@Id	annotation,	[3],	is	a	mandatory	one;	it	describes	the	primary	key	of	the	table.
Along	with	@Id,	there	is	the	@GeneratedValue	annotation.	This	is	used	to	declare	that	the
database	is	in	charge	of	generating	the	value.	You	can	check	the	Javadoc	of	this	class	to
explore	other	strategies	for	value	generation.

Moving	along,	the	@OneToMany	annotation	[4]	defines	an	association	with	one-to-many
cardinality.	Actually,	the	SeatType	class	has	many	seats.	The	corresponding	Seat
reference	is	contained	in	a	list	collection.	We	define	the	mappedBy	attribute	in	order	to	set
the	field,	which	owns	the	relationship	on	the	many	side.

The	fetch	attribute	defines	that	JPA	should	fetch	the	list	of	seats	whenever	a	seat	type	is
loaded	from	the	database.	A	lazy	configuration	for	a	relationship	would	cause	the	list	to	be
fetched	on	the	first	call	to	that	field.

Finally,	note	that	we	have	not	included	here,	for	the	sake	of	brevity,	the	field	getters	and
setters	that	have	been	generated.

Let’s	take	a	look	at	the	Seat	entity:
@Entity

public	class	Seat	implements	Serializable	{

				private	static	final	long	serialVersionUID	=	89897231L;

				@Id

				@GeneratedValue(strategy=GenerationType.IDENTITY)

				private	Long	id;

				private	boolean	booked;

				//bi-directional	many-to-one	association	to	SeatType

				@ManyToOne	[1]

				@JoinColumn(name=“seat_id”)	[2]

				private	SeatType	seatType;

				//	Getters	and	Setters	omitted	for	brevity

}

As	you	can	see,	the	Seat	entity	has	the	corresponding	@ManyToOne	[1]	annotation,	which
naturally	complements	the	@OneToMany	relationship.	The	@JoinColumn	[2]	notifies	the
JPA	engine	that	the	seatType	field	is	mapped	through	the	foreign	key	of	the	database’s
seat	ID.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding	Bean	Validation
Bean	Validation	(JSR-303)	is	a	validation	model	available	as	part	of	the	Java	EE	6
platform.	The	new	1.1	version	(JSR-349)	is	a	part	of	Java	EE	7.	The	Bean	Validation
model	is	supported	by	constraints	in	the	form	of	annotations	placed	on	a	field,	method,	or
class	of	a	JavaBeans	component,	such	as	a	managed	bean.

In	our	example,	the	SeatType	entity	will	be	created	using	an	input	form;	therefore,	we	will
need	to	validate	the	data	that	has	been	entered	by	the	user.

In	our	example,	we	will	place	a	@javax.validation.constraints.NotNull	constraint	in
every	field	that	is	part	of	the	SeatType	entry	form,	and	a	more	complex	constraint	in	the
description	field,	which	will	set	the	maximum	size	for	the	seat	description	to	25	(the
@javax.validation.constraints.Size	constraint)	and	allow	just	letters	and	spaces	in	it
(the	@javax.validation.constraints.Pattern	constraint):
@Entity

@Table(name=“seat_type)

public	class	SeatType	implements	Serializable	{

				private	static	final	long	serialVersionUID	=	3643635L;

				@Id

				@GeneratedValue(strategy=GenerationType.IDENTITY)

				private	Long	id;

				@NotNull

				@Size(min	=	1,	max	=	25,	message	=	“You	need	to	enter	a	Seat

Description	(max	25	char)”)

				@Pattern(regexp	=	“[A-Za-z]*”,	message	=	“Description	must	contain

only	letters	and	spaces”)

				private	String	description;

				@NotNull

				private	Integer	price;

				@NotNull

				private	Integer	quantity;

				private	SeatPosition	position;

				//	Getters/Setters	here

}

As	you	can	see,	we	can	also	place	a	description	on	a	constraint,	which	can	be	used	to
provide	a	customized	error	message	to	the	JSF	layer	should	the	data	fail	to	pass	the
constraint.	You	can	check	the	Oracle	documentation	for	a	full	list	of	constraints	available
at	http://docs.oracle.com/javaee/7/tutorial/doc/bean-validation001.htm#GIRCZ.

We	also	have	added	a	seat	position	information	to	our	seat	type.	It	is	a	simple	enum:
public	enum	SeatPosition	{

				ORCHESTRA(“Orchestra”,	“orchestra”),	BOX(“Box”,	“box”),

BALCONY(“Balcony”,	“balcony”);

www.it-ebooks.info

http://docs.oracle.com/javaee/7/tutorial/doc/bean-validation001.htm#GIRCZ
http://www.it-ebooks.info/

				private	final	String	label;

				private	final	String	dbRepresentation;

				private	SeatPosition(String	label,	String	dbRepresentation)	{

								this.label	=	label;

								this.dbRepresentation	=	dbRepresentation;

				}

				public	String	getDatabaseRepresentation()	{

								return	dbRepresentation;

				}

				public	String	getLabel()	{

								return	label;

				}

}

When	we	save	our	SeatType	entity	in	the	database,	we	will	also	store	the	enum	value	with
it.	Earlier	versions	of	JPA	gave	us	two	options	to	address	it	automatically	(besides
manually	managing	their	status),	@Enumarated(EnumType.STRING)	and
@Enumarated(EnumType.ORDINAL);	both	had	their	flaws.	The	first	one	is	sensitive	towards
enum	renaming;	the	entities	in	the	database	will	have	the	full	name	of	the	enum	stored
(which	sometimes	is	also	a	waste	of	the	storage	space).	The	second	one	could	create
problems	when	the	order	of	enums	would	be	changed	(because	it	stored	the	index	of	the
enum	value).	From	JPA	2.1,	we	can	create	a	converter,	which	will	automatically	convert
our	enum	attributes	to	specific	entries	in	the	database.	We	only	need	to	create	an	annotated
class,	which	implements	the	AttributeConverter	interface:
import	javax.persistence.AttributeConverter;

import	javax.persistence.Converter;

@Converter(autoApply	=	true)

public	class	SeatPositionConverter	implements

AttributeConverter<SeatPosition,	String>	{

				@Override

				public	String	convertToDatabaseColumn(SeatPosition	attribute)	{

								return	attribute.getDatabaseRepresentation();

				}

				@Override

				public	SeatPosition	convertToEntityAttribute(String	dbData)	{

								for	(SeatPosition	seatPosition	:	SeatPosition.values())	{

												if	(dbData.equals(seatPosition.getDatabaseRepresentation()))	{

																return	seatPosition;

												}

								}

								throw	new	IllegalArgumentException(“Unknown	attribute	value	”	+

dbData);

				}

}

That’s	all,	no	additional	configuration	is	required.	The	autoApply	attribute	set	to	true
signals	JPA	to	take	care	of	all	of	our	SeatPosition	enums	in	entities.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring	persistence
The	Entity	API	looks	great	and	is	very	intuitive,	but	how	does	the	server	know	which
database	is	supposed	to	store/query	the	entity	objects?	The	persistence.xml	file,	which
will	be	placed	under	src/main/resources/META-INF	of	your	project,	is	the	standard	JPA
configuration	file.	By	configuring	this	file,	you	can	easily	switch	from	one	persistence
provider	to	another	and	thus,	also	from	one	application	server	to	another	(believe	it	or	not,
this	is	a	huge	leap	towards	application	server	compatibility).

In	the	persistence.xml	file,	we	will	basically	need	to	specify	the	persistence	provider
and	the	underlying	data	source	used.	Simply	create	the	following	file	under
src/main/resources/persistence.xml:
<?xml	version=“1.0”	encoding=“UTF-8”?>

<persistence	xmlns=“http://xmlns.jcp.org/xml/ns/persistence”

													xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”

													xsi:schemaLocation=“http://xmlns.jcp.org/xml/ns/persistence

http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd”

													version=“2.1”>

				<persistence-unit	name=“primary”>

								<jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>

								<class>com.packtpub.wflydevelopment.chapter5.entity.Seat</class>

							

<class>com.packtpub.wflydevelopment.chapter5.entity.SeatType</class>

								<properties>

												<property	name=“javax.persistence.schema-

generation.database.action”	value=“drop-and-create”/>

								</properties>

				</persistence-unit>

</persistence>

We	have	highlighted	the	most	important	attributes	in	persistence.xml.	The	name	attribute
is	a	mandatory	element,	which	will	be	used	to	reference	the	persistence	unit	from	our
Enterprise	JavaBeans.

In	the	example	code,	we	use	the	WildFly	built-in	memory	H2	database
(http://www.h2database.com/)	available	by	default	at
java:jboss/datasources/ExampleDS	(so	that	it	is	possible	to	run	the	example	without
any	setup).	However,	you	can	use	a	configured	PostgreSQL	connection	here,
java:jboss/datasources/wflydevelopment,	which	we	created	earlier.	In	Java	EE	7,	you
could	even	omit	the	whole	jta-data-source	tag.	Every	container	is	now	obliged	to
provide	a	default	data	source	for	applications	to	use.	For	WildFly,	it	would	be	the
aforementioned	H2	database.

We	also	define	the	classes	that	should	be	considered	as	entities.	This	is	an	optional	step;	if
the	entities	are	in	the	same	archive	as	the	persistence.xml	file,	they	will	be
autodiscovered.

In	previous	JPA	versions,	almost	every	configuration	needed	some	provider-specific
properties.	In	JPA	2.1,	a	number	of	standard	properties	were	added,	such	as	presented
javax.persistence.schema-generation.database.action.	The	drop-and-create
value	can	be	used	to	create	and	drop	your	database	tables	each	time	you	deploy	your

www.it-ebooks.info

http://www.h2database.com/
http://www.it-ebooks.info/

application.	This	can	be	an	advantage	if	you	want	to	start	with	a	clean	storage	each	time
you	deploy	the	application.

However,	it	is	also	possible	to	instruct	JPA	to	generate	SQL	scripts	for	you,	so	you	can
manually	apply	them	to	the	database.	Simply	add	the	following	entries	to	your
persistence-unit	tag:
<property	name=“javax.persistence.schema-generation-target”

value=“scripts”/>

<property	name=“javax.persistence.ddl-create-script-target”

value=“createSeats.sql”/>

<property	name=“javax.persistence.ddl-drop-script-target”

value=“dropSeats.sql”/>

If	you	don’t	specify	the	location	by	specifying	an	additional	property,	then	the	generated
scripts	will	be	placed	in	the	JBOSS_HOME/bin	directory,	with	the	names	that	you	provided
in	the	configuration.	The	names	can	be	absolute	paths,	so	you	can	get	the	scripts	to	any
place	in	your	filesystem	(if	WildFly	is	permitted	to	write	them	there	of	course).

www.it-ebooks.info

http://www.it-ebooks.info/

Adding	producer	classes
Producer	classes	have	been	introduced	in	the	earlier	chapter	as	a	means	of	providing	some
resources	through	CDI	to	our	application.	In	this	example,	we	will	use	it	to	produce	many
resources,	such	as	the	JPA	Entity	Manager	and	the	list	of	objects	that	are	transferred	to	the
JSF	views.	For	this	reason,	we	provided	the	LoggerProducer,	FacesContextProducer,
and	EntityManagerProducer	classes	that	contain	some	general-purpose	resources	and
single	instances	of	the	SeatProducer	and	SeatTypeProducer	classes,	which	will	be	used
to	produce	collections	of	entities.

Here’s	the	content	of	the	three	basic	producer	classes:
public	class	LoggerProducer	{

				@Produces

				public	Logger	produceLoger(InjectionPoint	injectionPoint)	{

								return

Logger.getLogger(injectionPoint.getMember().getDeclaringClass().getName());

				}

}	

public	class	FacesContextProducer	{

				@Produces

				@RequestScoped

				public	FacesContext	produceFacesContext()	{

								return	FacesContext.getCurrentInstance();

				}

}	

public	class	EntityManagerProducer	{

				@Produces

				@PersistenceContext

				private	EntityManager	em;

}

As	you	can	see,	these	classes	will	be	the	factory	for	the	following	three	kinds	of	resources:

	
EntityManager:	This	will	resolve	the	primary	persistence	unit	since	there	is	just	one
persistence	unit	defined
java.util.Logger:	This	will	trace	some	information	on	the	server	console
FacesContext:	This	will	be	used	to	output	some	JSF	messages	on	the	screen

Tip
Producers	versus	the	Java	EE	5	@Resource	injection

If	you	have	never	used	the	dependency	injections	framework	before,	you	might	wonder
what	the	benefit	of	adding	an	extra	layer	to	produce	some	container	resources	is.	The
reason	becomes	evident	once	you	need	to	change	some	configuration	elements,	such	as

www.it-ebooks.info

http://www.it-ebooks.info/

the	persistence	unit.	With	the	older	Java	EE	5	approach,	you	will	be	forced	to	change	the
@Resource	injection’s	details	wherever	they	are	used;	however,	using	a	producer	method
for	it	will	centralize	resource	creation,	making	changes	trivial.

Next,	we	will	add	some	entity	producers;	let’s	add	the	SeatTypeProducer	and
SeatProducer	classes:
@javax.enterprise.context.RequestScoped

public	class	SeatTypeProducer	{

				@Inject

				private	SeatTypeDao	seatTypeDao;

				private	List<SeatType>	seatTypes;

				@PostConstruct

				public	void	retrieveAllSeatTypes()	{

								seatTypes	=	seatTypeDao.findAll();

				}

				@Produces

				@Named

				public	List<SeatType>	getSeatTypes()	{

								return	seatTypes;

				}

				public	void	onListChanged(@Observes(notifyObserver	=

Reception.IF_EXISTS)	final	SeatType	member)	{

								retrieveAllSeatTypes();

				}

}

If	you	have	gone	through	our	example	in	Chapter	4,	Learning	Context	and	Dependency
Injection,	you	will	find	nothing	new	here;	as	you	can	see,	the	class	will	merely	produce	a
collection	of	seatTypes,	which	is	tagged	as	@Named	so	that	they	can	be	accessed	from	JSF
EL	as	well.	Additionally,	the	class	contains	an	observer	handler	method
(onListChanged),	which	will	be	fired	when	data	in	the	collection	is	changed.

The	collection	data	is	filled	using	the	retrieveAllSeatTypes	method	(loaded	the	first	and
only	time	when	the	class	is	constructed)	of	the	SeatTypeDao	CDI	Bean.	We	will	define
this	bean	in	a	moment;	right	now,	we	will	add	the	last	producer	class	used	in	this	example,
the	SeatProducer	bean:
@javax.enterprise.context.RequestScoped

public	class	SeatProducer	implements	Serializable	{

				@Inject

				private	SeatDao	seatDao;

		

				private	List<Seat>	seats;

				@PostConstruct

				public	void	retrieveAllSeats()	{

								seats	=	seatDao.findAllSeats();

				}

www.it-ebooks.info

http://www.it-ebooks.info/

				@Produces

				@Named

				public	List<Seat>	getSeats()	{

						return	seats;

				}

				public	void	onMemberListChanged(@Observes(notifyObserver	=

Reception.IF_EXISTS)	final	Seat	member)	{

						retrieveAllSeats();

				}

}

The	preceding	bean	will	be	used	to	produce	the	list	of	Seat	objects	that	will	actually	be
available	for	booking.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding	queries	for	your	application
As	you	can	see	from	the	earlier	code,	the	producer	classes	make	use	of	beans	named
SeatDao	and	SeatTypeDao	to	fill	their	collections	of	data.	These	beans	perform	some
simple	finds	on	the	Seat	and	SeatType	objects,	as	shown	in	the	following	code:
@Stateless

public	class	SeatDao	extends	AbstractDao<Seat>	{

				public	SeatDao()	{

								super(Seat.class);

				}

}

@Stateless

public	class	SeatTypeDao	extends	AbstractDao<SeatType>	{

				public	SeatTypeDao()	{

								super(SeatType.class);

				}

}

@TransactionAttribute(TransactionAttributeType.REQUIRED)

public	abstract	class	AbstractDao<T	extends	Serializable>	implements

Serializable	{

				private	final	Class<T>	clazz;

				@Inject

				private	EntityManager	em;

				public	AbstractDao(Class<T>	clazz)	{

								this.clazz	=	clazz;

				}

				public	T	find(Object	id)	{

								return	em.find(clazz,	id);

				}

				public	void	persist(final	T	entity)	{

								em.persist(entity);

				}

				public	List<T>	findAll()	{

								final	CriteriaQuery<T>	criteriaQuery	=

em.getCriteriaBuilder().createQuery(clazz);

								criteriaQuery.select(criteriaQuery.from(clazz));

								return	em.createQuery(criteriaQuery).getResultList();

				}

				public	void	deleteAll()	{

								final	CriteriaDelete<T>	criteriaDelete	=

em.getCriteriaBuilder().createCriteriaDelete(clazz);

								criteriaDelete.from(clazz);

								em.createQuery(criteriaDelete).executeUpdate();

www.it-ebooks.info

http://www.it-ebooks.info/

				}

}

As	you	can	see,	both	SeatDao	and	SeatTypeDao	beans	extend	the	generic	AbstractDao
class.	It	wraps	EntityManager	and	provides	basic	type-safe	CRUD	operations	such	as
findAll,	persist,	and	so	on	using	the	JPA	Criteria	API.	JPA	allows	execution	of	the
following	three	types	of	queries:

	
Native	SQL:	These	queries	use	the	standard	SQL	language.	When	using	this	type	of
queries,	you	have	to	remember	queries	can	be	incompatible	when	migrating	between
different	databases.
Java	Persistence	Query	Language	(JPQL):	These	queries	can	be	formed	using
special	language	similar	to	SQL.	In	practice,	this	method	is	often	hard	to	maintain
without	good	IDE	support,	especially	during	refactoring.	These	queries	can	also	be
compiled	at	startup,	which	means	that	they	are	not	resolved	multiple	times.	Finally,
they	can	be	used	by	a	caching	mechanism	to	avoid	unnecessary	database	operations
for	queries	that	are	called	frequently.	You	can	define	a	query	and	its	name	in	the
entity	in	the	@NamedQuery(name=”…”,	query=”…”)	annotation.
Criteria	API:	These	queries	can	be	formed	by	simply	executing	Java	methods	and
the	usage	of	appropriate	objects.	Since	JPA	2.1,	it’s	possible	to	perform	bulk	updates
and	deletions	through	this	API.

Let’s	make	a	simple	comparison	of	these	three	methods	using	an	example.	We	want	to	just
get	all	the	objects	of	a	given	type.	Using	native	SQL,	this	query	would	look	like	this:
entityManager.createNativeQuery(“SELECT	*	from	seat_type”).getResultList()

As	you	can	see,	it	uses	standard	SQL	in	the	form	of	a	string.	Now	let’s	look	at	JPQL:
entityManager.createQuery(“select	seatType	from	SeatType

seatType”).getResultList();

It’s	easy	to	notice	its	similarity	to	SQL	but	a	bit	different.	It	uses,	for	example,	class	name
instead	of	table	name.	However,	again,	it’s	a	query	in	a	string.	The	last	example	is	the
Criteria	API:
final	CriteriaQuery<SeatType>	criteriaQuery	=	

																em.getCriteriaBuilder().createQuery(SeatType.class);

criteriaQuery.select(criteriaQuery.from(SeatType.class));

em.createQuery(criteriaQuery).getResultList();

At	first	glance,	it	looks	like	the	most	complicated	one,	but	it	has	some	advantage,	that	is,	it
does	not	use	any	strings	(which	are	usually	error-prone	and	hard	to	refactor).	Both	JPQL
and	Criteria	API	have	many	improvements	in	the	newest	JPA	version,	concerning	join
operations	using	the	on	condition,	database	functions	support,	and	arithmetic	subqueries.

You	may	ask	yourself,	“Which	one	should	I	use?”	It’s	a	hard	question	because	all	of	them
have	their	pros	and	cons	so	it	depends	on	the	specific	case.	Basically,	Criteria	query	and
named	queries	are	normally	a	safe	bet.	Native	SQL	should	have	a	really	good	justification,
as	it’s	usually	not	portable	between	different	vendors	and	cannot	be	validated	by	JPA
before	the	execution.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding	services	to	your	application
Until	now,	we	coded	all	the	information	that	will	be	visible	to	the	user	through	the
application	screen.	What	is	obviously	missing	here	is	all	the	business	logic	that	translates
ultimately	into	inserting	data	or	updating	the	existing	data.	For	this	reason,	we	will	now
add	two	classes;	first,	under	com.packtpub.wflydevelopment.chapter5.control
package	and	second	under	com.packtpub.wflydevelopment.chapter5.controller.	The
first	one	is	TicketService,	which	is	a	stateless	EJB	that	will	be	used	to	perform	the	core
business	logic	of	this	application,	and	the	second	one	is	our	stateful	EJB’s	counterpart,
the	BookerService	class.	Let’s	start	with	the	stateless	EJB:
@Stateless

public	class	TicketService	{

				@Inject

				private	Logger	log;

				@Inject

				private	Event<SeatType>	seatTypeEventSrc;

				@Inject

				private	Event<Seat>	seatEventSrc;

				@Inject

				private	SeatDao	seatDao;

				@Inject

				private	SeatTypeDao	seatTypeDao;

				public	void	createSeatType(SeatType	seatType)	throws	Exception	{

								log.info(“Registering	”	+	seatType.getDescription());

								seatTypeDao.persist(seatType);

								seatTypeEventSrc.fire(seatType);

				}

				public	void	createTheatre(List<SeatType>	seatTypes)	{

								for	(SeatType	type	:	seatTypes)	{

												for	(int	ii	=	0;	ii	<	type.getQuantity();	ii++)	{

																final	Seat	seat	=	new	Seat();

																seat.setBooked(false);

																seat.setSeatType(type);

																seatDao.persist(seat);

												}

								}

				}

				public	void	bookSeat(long	seatId)	{

								final	Seat	seat	=	seatDao.find(seatId);

								seat.setBooked(true);

								seatDao.persist(seat);

								seatEventSrc.fire(seat);

				}

				public	void	doCleanUp()	{

www.it-ebooks.info

http://www.it-ebooks.info/

								seatDao.deleteAll();

								seatTypeDao.deleteAll();

				}

}

Tip
Why	has	this	component	been	coded	as	an	EJB	instead	of	a	CDI	Bean?

One	of	the	main	advantages	of	using	EJBs	is	that	they	are	inherently	transactional
components.	However,	in	Java	EE	7,	we	can	use	CDI	Beans	with	an	additional
@Transactional	annotation.	The	choice	now	is	up	to	the	developer,	but	EJBs	can	still
prove	useful	in	some	cases,	even	for	local	calls;	for	example,	we	can	easily	demarcate
security	for	them	(which	we	will	do	in	the	future	chapters).

This	service	is	made	up	of	four	methods.	The	first	is	the	createSeatType	method,	which
will	be	used	in	the	first	application	screen	to	add	a	new	SeatType	object	to	our	theatre.
The	next	method,	createTheatre,	will	be	invoked	once	we	are	done	with	setting	up	our
theatre;	so	we	create	the	list	of	seats	that	will	be	available	for	booking	in	the	next	screen.

Next	in	the	list	is	the	bookSeat	method,	which,	as	you	might	have	guessed,	will	be	used	to
book	a	seat.	Finally,	the	doCleanUp	method	is	actually	used	to	perform	a	cleanup	if	you
want	to	restart	the	application.

The	last	piece	of	our	puzzle	is	the	BookerService	class,	which	adds	a	tiny	session	layer	to
your	application:
@Named

@javax.faces.view.ViewScoped

public	class	BookerService	implements	Serializable	{

				private	static	final	long	serialVersionUID	=	-4121692677L;

				@Inject

				private	Logger	logger;

				@Inject

				private	TicketService	ticketService;

				@Inject

				private	FacesContext	facesContext;

				private	int	money;

				@PostConstruct

				public	void	createCustomer()	{

								this.money	=	100;

				}

				public	void	bookSeat(long	seatId,	int	price)	{

								logger.info(“Booking	seat	”	+	seatId);

								if	(price	>	money)	{

												final	FacesMessage	m	=	new

FacesMessage(FacesMessage.SEVERITY_ERROR,	“Not	enough	Money!”,

																				“Registration	successful”);

www.it-ebooks.info

http://www.it-ebooks.info/

												facesContext.addMessage(null,	m);

												return;

								}

								ticketService.bookSeat(seatId);

								final	FacesMessage	m	=	new	FacesMessage(FacesMessage.SEVERITY_INFO,

“Registered!”,	“Registration	successful”);

								facesContext.addMessage(null,	m);

								logger.info(“Seat	booked.”);

								money	=	money	-	price;

				}

				public	int	getMoney()	{

								return	money;

				}

}

The	preceding	class	uses	the	view	scope,	which	we	already	described	in	the	previous
chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding	a	controller	to	drive	user	requests
The	link	between	the	persistence	layer	and	the	user’s	view	falls	on	the
TheatreSetupService	bean,	which	will	drive	requests	to	the	actual	services	exposed	by
our	application.	Since	this	bean	will	be	bound	to	RequestScope	and	we	need	to	expose	it
to	our	views	as	well	(using	@Named),	we	can	use	the	convenient	@Model	annotation	for	it,
which	is	a	sum	of	the	following	two	attributes:
@Model

public	class	TheatreSetupService	{

				@Inject

				private	FacesContext	facesContext;

				@Inject

				private	TicketService	ticketService;

				@Inject

				private	List<SeatType>	seatTypes;

				@Produces	[1]

				@Named

				private	SeatType	newSeatType;

				@PostConstruct

				public	void	initNewSeatType()	{

								newSeatType	=	new	SeatType();

				}

				public	String	createTheatre()	{

								ticketService.createTheatre(seatTypes);

								return	“book”;

				}

				public	String	restart()	{

								ticketService.doCleanUp();

								return	“/index”;		[4]

				}

				public	void	addNewSeats()	throws	Exception	{

								try	{

												ticketService.createSeatType(newSeatType);

												final	FacesMessage	m	=	new

FacesMessage(FacesMessage.SEVERITY_INFO,	“Done!”,	“Seats	Added”);

												facesContext.addMessage(null,	m);

												initNewSeatType();

								}	catch	(Exception	e)	{

												final	String	errorMessage	=	getRootErrorMessage(e);

												FacesMessage	m	=	new	FacesMessage(FacesMessage.SEVERITY_ERROR,

errorMessage,	“Error	while	saving	data”);

												facesContext.addMessage(null,	m);

								}

				}

www.it-ebooks.info

http://www.it-ebooks.info/

				private	String	getRootErrorMessage(Exception	e)	{

								//	Default	to	general	error	message	that	registration	failed.

								String	errorMessage	=	“Registration	failed.	See	server	log	for	more

information”;

								if	(e	==	null)	{

												//	This	shouldn’t	happen,	but	return	the	default	messages

												return	errorMessage;

								}

								//	Start	with	the	exception	and	recurse	to	find	the	root	cause

								Throwable	t	=	e;

								while	(t	!=	null)	{

												//	Get	the	message	from	the	Throwable	class	instance

												errorMessage	=	t.getLocalizedMessage();

												t	=	t.getCause();

								}

								//	This	is	the	root	cause	message

								return	errorMessage;

				}

				public	List<SeatPosition>	getPositions()	{

								return	Arrays.asList(SeatPosition.values());

				}

}

The	TheatreSetupService	class	is	expected	to	complete	the	following	tasks:

	
1.	 At	first,	the	TheatreSetupService	class	produces	a	SeatType	object	[1]	and	exposes

it	to	the	JSF	View	layer	using	the	@Named	annotation.

Tip
This	technique	is	a	great	addition	provided	by	CDI	since	it	removes	the	need	to	create
a	boilerplate	object,	SeatType,	to	transport	the	information	from	the	view	to	the
services.	The	SeatType	object	is	produced	by	the	controller	and	will	be	populated	by
the	JSF	view	and	persisted	by	the	TheatreSetupService	class.

2.	 It	then	drives	user	navigation	between	the	application	screens	by	returning	to	the
home	page	[4].

3.	 We	are	done	with	the	Java	classes.	You	should	now	check	to	make	sure	that	your
project	structure	matches	the	following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Coding	the	JSF	view
Now	that	our	middle	tier	is	completed,	we	just	need	to	add	a	couple	of	JSF	views	to	our
application	in	the	views	folder	of	our	web	app.	The	first	view,	named	setup.xhtml,	will
set	up	our	theatre	and	the	second	one,	named	book.xhtml,	will	be	used	to	book	tickets,
borrowing	some	of	its	code	from	the	earlier	chapter.

However,	this	time	we	would	like	to	make	our	application	a	little	bit	more	graphically
appealing.	To	keep	it	simple,	we	will	use	Bootstrap,	a	very	popular	frontend	framework
that	will	nicely	integrate	with	our	JSF	views.	It	heavily	relies	on	JavaScript	and	CSS,	but
we	will	only	need	to	use	basic	HTML	to	get	it	up	and	running	in	our	application.
Incorporating	a	strict	frontend	framework	to	our	application	will	be	an	opportunity	to
show	how	to	use	Java	EE	7	with	the	newest	web	technologies.

You	can	get	the	latest	version	of	Bootstrap	from	http://getbootstrap.com/	and	just	place	all
files	in	the	resources	directory;	however,	we	won’t	do	it	here.	We	will	use	the	WebJars,
which	are	simply	JARs	that	pack	client-side	web	libraries.	You	can	find	dependencies	at
http://www.webjars.org/,	which	after	adding	to	your	pom.xml	file	will	work	just	like
manually	adding	static	files	to	the	project.	However,	thanks	to	WebJars,	we	get	Maven	to
control	our	versions,	and	don’t	need	to	worry	about	polluting	our	codebase	with	external
code.

Now,	we	need	Bootstrap	and	jQuery,	so	we	will	add	the	following	dependencies:
<dependency>

				<groupId>org.webjars</groupId>

				<artifactId>bootstrap</artifactId>

				<version>3.2.0</version>

</dependency>

<dependency>

				<groupId>org.webjars</groupId>

				<artifactId>jquery</artifactId>

				<version>1.11.0</version>

</dependency>

Now,	when	we	have	the	Bootstrap’s	libraries	in	place,	we	have	to	link	them	to	our	code.
We	will	add	them	to	our	WEB-INF/templates/default.xhtml	file	along	with	a	simple
navigation	bar:
<!DOCTYPE	html	PUBLIC	“-//W3C//DTD	XHTML	1.0	Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html	xmlns=“http://www.w3.org/1999/xhtml”

						xmlns:h=“http://java.sun.com/jsf/html”

						xmlns:ui=“http://java.sun.com/jsf/facelets”>

<h:head>

				<meta	http-equiv=“Content-Type”	content=“text/html;	charset=utf-8”	/>

				<title>#{app.applicationName}</title>

				<meta	name=“viewport”	content=“width=device-width,	initial-scale=1.0”

/>

				<meta	name=“description”	content=””	/>

				<meta	name=“author”	content=””	/>

				<h:outputStylesheet	name=”/webjars/bootstrap/3.2.0/css/bootstrap.css	”

/>

www.it-ebooks.info

http://getbootstrap.com/
http://www.webjars.org/
http://www.it-ebooks.info/

				<h:outputStylesheet	name=”/webjars/bootstrap/3.2.0/css/bootstrap-

theme.css	”	/>

				<!—	Le	HTML5	shim,	for	IE6-8	support	of	HTML5	elements	—>

				<!—[if	lt	IE	9]>

						<script	src=“http://html5shim.googlecode.com/svn/trunk/html5.js”>

</script>

				<![endif]—>

<style>

				body	{

								padding-top:	60px;

				}

				</style>

</h:head>

<h:body>

				<div	class=“navbar	navbar-inverse	navbar-fixed-top”	role=“navigation”>

				<div	class=“container”>

				<div	class=“navbar-header”>

								<h:link	outcome=”/index”	class=“navbar-brand”	value=“Ticket	Agency”

/>

				</div>

				<div	class=“collapse	navbar-collapse”>

								<ul	class=“nav	navbar-nav”>

								<li	class=”#{view.viewId	==’/views/setup.xhtml’	?	‘active’:”}”>

<h:link	outcome=”/views/setup”	value=“Theatre	setup”	/>

								<li	class=”#{view.viewId	==’/views/book.xhtml’	?	‘active’:”}”>

<h:link		outcome=”/views/book”	value=“Book	tickets”	/>

								

				</div>

				</div>

				</div>

				<div	class=“container”>

								<ui:insert	name=“content”>

												[Template	content	will	be	inserted	here]

								</ui:insert>

								<hr	/>

								<footer>

								<p	class=“text-muted”>©	Company	2014</p>

								</footer>

				</div>

				<h:outputScript	name=”/webjars/jquery/1.11.0/jquery.js”	/>

				<h:outputScript	name=”/webjars/bootstrap/3.2.0/js/bootstrap.js	”	/>

</h:body>

</html>

Next,	we	will	move	to	the	content	in	setup.xhtml:
<ui:composition	xmlns=“http://www.w3.org/1999/xhtml”

																xmlns:h=“http://xmlns.jcp.org/jsf/html”

																xmlns:f=“http://xmlns.jcp.org/jsf/core”

																xmlns:ui=“http://xmlns.jcp.org/jsf/facelets”

																template=”/WEB-INF/templates/default.xhtml”

																xmlns:p=“http://xmlns.jcp.org/jsf/passthrough”>

<div	class=“jumbotron”>

				<h1>Theatre	Setup</h1>

www.it-ebooks.info

http://www.it-ebooks.info/

				<p>Enter	the	information	about	Seats</p>

</div>

<div	class=“row”>

<div	class=“col-md-6”>

				<div	class=“panel	panel-default”>

								<div	class=“panel-heading”>

												<h3	class=“panel-title”>Add	seats</h3>

								</div>

								<div	class=“panel-body”>

												<h:form	id=“reg”	role=“form”>

								<div	class=“form-group	has-feedback	#{!desc.valid?	‘has-error’	:

”}”>

												<h:outputLabel	for=“desc”	value=“Description”

																								styleClass=“control-label”	/>

												<h:inputText	id=“desc”	value=”#{newSeatType.description}”

												p:placeholder=“Enter	a	description	here”	class=“form-control”

																								binding=”#{desc}”	/>

												<span	class=”#{!desc.valid	?	‘glyphicon	glyphicon-remove	form-

control-feedback’	:	”}”	/>

												<h:message	for=“desc”	errorClass=“control-label	has-error”	/>

								</div>

								<div	class=“form-group		#{!price.valid	and

facesContext.validationFailed?	‘has-error’	:	”}”>

<h:outputLabel	for=“price”	value=“Price:”

																								styleClass=“control-label”	/>

												<div	class=“input-group		has-feedback”>

												$

												<h:inputText	id=“price”	value=”#{newSeatType.price}”

												class=“form-control”	p:placeholder=“Enter	a	price”

																												binding=”#{price}”	/>

												<span	class=”#{!price.valid	?	‘glyphicon	glyphicon-remove

input-group-feedback	input-group-addon’	:	”}”	/>

												</div>

												<h:message	for=“price”	errorClass=“control-label	has-error”	/>

								</div>

								<div	class=“form-group	has-feedback	#{!quantity.valid	and

facesContext.validationFailed?	‘has-error’	:	”}”>

												<h:outputLabel	for=“quantity”	value=“Number	of	Seats:”

																				styleClass=“control-label”	/>

												<h:inputText	id=“quantity”	value=”#{newSeatType.quantity}”

																class=“form-control”	p:placeholder=“Enter	quantity”

																								binding=”#{quantity}”	/>

												<span	class=”#{!quantity.valid	?	‘glyphicon	glyphicon-remove

form-control-feedback’	:	”}”	/>

												<h:message	for=“quantity”	errorClass=“control-label	has-error”

/>

								</div>

								<div	class=“form-group”>

												<h:outputLabel	for=“position”	value=“Position:”

																styleClass=“control-label”	/>

												<h:selectOneMenu	value=”#{newSeatType.position}”	id=“position”

																class=“form-control”>

												<f:selectItems	value=”#{theatreSetupService.positions}”

																var=“pos”	itemValue=”#{pos}”	itemLabel=”#{pos.label}”	/>

												</h:selectOneMenu>

www.it-ebooks.info

http://www.it-ebooks.info/

								</div>

												<div	class=“form-group”>

<h:commandButton	id=“Add”	action	=	“#{theatreSetupService.	addNewSeats}”

value=“Add	styleClass=“btn	btn-primary”	/>

												</div>

												<h:messages	styleClass=“messages”	style=“list-style:	none;

padding:0;	margin:0;”	errorClass=“alert	alert-error”	infoClass=“alert

alert-success”

												warnClass=“alert	alert-warning”	globalOnly=“true”	/>

												</h:form>

								</div>

				</div>	

</div>

//	some	code

</div>

</ui:define>

</ui:composition>

As	you	can	see,	the	preceding	view	contains	a	form	to	enter	a	new	seat	type	in	the	topmost
section.	The	highlighted	input	text	will	actually	pass	data	to	the	SeatType	object,	which
will	be	transferred	to	the	TheatreSetupService	CDI	Bean	and	ultimately	persisted	when
the	user	clicks	on	the	Add	button.

You	may	also	notice	many	class	attributes	on	the	tags.	These	attributes	refer	to	the	CSS
classes	defined	by	Bootstrap;	we	use	them	to	visualize	our	validation.	If	a	user	places
some	invalid	data	in	a	form	input,	a	proper	CSS	class	is	assigned	to	it	(Bootstrap’s	has-
error	method	in	our	case).	This	is,	however,	a	strictly	frontend-related	addition.	The	JSF
validation	message	will	be	shown	with	or	without	it	thanks	to	the	h:messages	tag	and	the
Bean	Validation	constraints	defined	in	the	earlier	part	of	this	chapter.

An	interesting	addition	is	the	fact	that	we	use	one	of	the	JSF	2.2	features,	which	eases
integration	with	HTML5	frontend	frameworks,	the	pass-through	attributes.	By	using	the
xmlns:p=http://xmlns.jcp.org/jsf/passthrough	namespacein	p:placeholder,	we
instruct	JSF	to	ignore	an	unknown	attribute	and	pass	it	straight	to	the	renderer.	Then,
Bootstrap’s	internal	mechanisms	can	interpret	the	attribute,	and	provide	our	input	controls
with	placeholder	text,	which	disappears	after	a	control	gains	focus.

The	next	part	of	the	setup.xhtml	file	is	available	in	the	following	code:
<div	class=“col-md-6”>

				<div	class=“panel	panel-default”>

								<div	class=“panel-heading”>

												<h2	class=“panel-title”>Seats	List</h2>

								</div>

								<div	class=“panel-body”>

												<h:form	id=“reg2”>

																<h:commandButton	id=“Finish”

																				action=”#{theatreSetupService.createTheatre}”

																				value=“Finalize	the	theatre	setup”

																				styleClass=“btn	btn-default		btn-block”	/>

												</h:form>

								</div>

								<h:panelGroup	rendered=”#{empty	seatTypes}”>

												No	Seats	Added.

www.it-ebooks.info

http://www.it-ebooks.info/

								</h:panelGroup>

								<h:dataTable	var=“seatType”	value=”#{seatTypes}”

												rendered=”#{not	empty	seatTypes}”

												styleClass=“table	table-hover	table-striped	“>

												<h:column>

																<f:facet	name=“header”>Id</f:facet>

																	#{seatType.id}

													</h:column>

												<h:column>

																<f:facet	name=“header”>Name</f:facet>

																	#{seatType.description}

													</h:column>

												<h:column>

																<f:facet	name=“header”>Position</f:facet>

																	#{seatType.position.label}

													</h:column>

												<h:column>

																<f:facet	name=“header”>Price</f:facet>

																	$	#{seatType.price}

													</h:column>

												<h:column>

																<f:facet	name=“header”>Quantity</f:facet>

																	#{seatType.quantity}

													</h:column>

								</h:dataTable>

				</div>

</div>

</div>

</ui:define>

Each	time	you	add	a	new	block	of	seats	to	your	theatre,	the	dataTable	method	contained
in	the	lower	part	of	the	screen	will	be	updated.	When	you	are	done	with	your	setup,	click
on	the	Finish	button,	which	will	recall	the	finish	method	of	the	TheatreSetupService
CDI	Bean,	creating	the	list	of	seats.

This	action	will	also	redirect	you	to	the	next	view,	named	book.xhtml,	which	is	used	to
book	seats:
				<ui:define	name=“content”>

				<div	class=“page-header”>

								<h2>TicketBooker	Machine</h2>

				</div>

				<h3>Money:	$	#{bookerService.money}</h3>

				<h:form	id=“reg”>

								<h:messages	styleClass=“messages”

												style=“list-style:	none;	padding:0;	margin:0;”

												errorClass=“alert	alert-error”	infoClass=“alert	alert-success”

												warnClass=“alert	alert-warning”	globalOnly=“true”	/>

								<h:commandButton	id=“restart”	action=”#

{theatreSetupService.restart}”

												value=“Restart	Application”	class=“btn	btn-default”	/>

www.it-ebooks.info

http://www.it-ebooks.info/

								<h:dataTable	var=“seat”	value=”#{seats}”

												rendered=”#{not	empty	seats}”

												styleClass=“table	table-hover	table-striped	“>

												<h:column>

																<f:facet	name=“header”>Id</f:facet>

																				#{seat.id}

												</h:column>

												<h:column>

																<f:facet	name=“header”>Description</f:facet>

																				#{seat.seatType.description}

												</h:column>

												<h:column>

																<f:facet	name=“header”>Price</f:facet>

																				#{seat.seatType.price}$

												</h:column>

												<h:column>

																<f:facet	name=“header”>Position</f:facet>

																				#{seat.seatType.position.label}

												</h:column>

												<h:column>

																<f:facet	name=“header”>Booked</f:facet>

																<span	class=“glyphicon	glyphicon-#{seat.booked	?	‘ok’

:‘remove’}”>

												</h:column>

												<h:column>

																<f:facet	name=“header”>Action</f:facet>

																<h:commandButton	id=“book”	

																				action=”#{bookerService.bookSeat(seat.id,

seat.seatType.price)}”	

																				disabled=”#{seat.booked}”	class=“btn	btn-primary”			

																				value=”#{seat.booked	?	‘Reserved’	:	‘Book’}”	/>

												</h:column>

								</h:dataTable>

				</h:form>

</ui:define>

Here’s	a	snapshot	of	the	project,	expanded	at	the	webapp	level	(as	you	can	see,	we	have
also	included	a	basic	index.html	screen	and	an	index.xhtml	screen	to	redirect	the	user	to
the	initial	screen,	setup.xhtml):

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Running	the	example
Deploying	the	application	requires,	as	usual,	packaging	it	using	the	following	Maven	goal:
mvn	package

[INFO]	Scanning	for	projects…

[INFO]

[INFO]	–––––––––––––––––––––

[INFO]	Building	ticket-agency-jpa	1.0	

[INFO]	–––––––––––––––––––––

[INFO]	Building	war:	C:\chapter5\ticket-agency-jpa\target\ticket-agency-

jpa.war

…	.	

[INFO]	–––––––––––––––––––––

[INFO]	BUILD	SUCCESS

[INFO]	–––––––––––––––––––––

[INFO]	Total	time:	1.799s

Finally,	provided	that	you	have	installed	the	WildFly	Maven	plugin,	you	can	deploy	your
application	using	the	following	command:

mvn	wildfly:deploy

Once	the	deployment	has	successfully	completed,	visit	http://localhost:8080/ticket-
agency-jpa/	to	view	the	application’s	welcome	page,	as	shown	in	the	following
screenshot:

Congratulations!	You’re	done.	By	clicking	on	the	Setup	Theatre	link,	you	can	start
creating	places	in	the	setup.xhtml	page.	Feel	free	to	experiment	with	the	inputs,	and	try

www.it-ebooks.info

http://www.it-ebooks.info/

to	fill	some	letters	in	the	price	box	or	numbers	in	the	description,	as	shown	in	the
following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Once	you	click	on	the	Finalize	the	theatre	setup	button,	you	will	be	redirected	to	the	last
screen,	which	performs	seat	booking	in	book.xhtml:

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
The	aim	of	the	new	Java	Persistence	API	is	to	simplify	the	development	of	persistent
entities.	It	meets	this	objective	through	a	simple	POJO-based	persistence	model,	which
reduces	the	number	of	required	classes	and	interfaces.

In	this	chapter,	we	covered	a	lot	of	ground,	starting	with	the	database	schema	that	we
reverse	engineered	using	the	JBoss	tools	plugins	for	Eclipse.	Next,	we	coded	the	set	of
layers	(producers,	services,	and	controllers)	that	are	part	of	the	application,	along	with	the
JSF	Facelets.

In	the	next	chapter,	we	will	discuss	developing	applications	using	JBoss	Messaging
Provider	(HornetQ)	by	introducing	examples	with	message-driven	beans	using	the	new
simplified	Java	EE	7	API.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	6.	Developing	Applications	with
JBoss	JMS	Provider
Messaging	is	a	method	of	communication	between	software	components	and	applications.
Java	Message	Service	(JMS)	is	a	Java	API—designed	originally	by	Sun—that	allows
applications	to	create,	send,	receive,	and	read	messages.	The	new	2.0	version	of	the	API
has	been	introduced	with	JSR	343	(https://jcp.org/en/jsr/detail?id=343).

Messaging	differs	from	other	standard	protocols,	such	as	Remote	Method	Invocation
(RMI)	or	Hypertext	Transfer	Protocol	(HTTP),	in	two	ways.	First,	the	conversation	is
mediated	by	a	messaging	server	so	it’s	not	a	two-way	conversation	between	peers.	Second,
the	sender	and	the	receiver	need	to	know	what	message	format	and	what	destination	to
use.	This	is	in	contrast	to	tightly	coupled	technologies,	such	as	Remote	Method	Invocation
(RMI),	that	require	an	application	to	know	about	a	remote	application’s	methods.

In	this	chapter,	we	will	cover	the	following:

	
A	brief	introduction	to	message-oriented	systems
The	building	blocks	of	the	JBoss	messaging	subsystem
Setting	up	proof	of	concept	programming	examples
How	to	use	JMS	and	resource	adapters	to	integrate	with	external	systems

www.it-ebooks.info

https://jcp.org/en/jsr/detail?id=343
http://www.it-ebooks.info/

A	short	introduction	to	JMS
JMS	defines	a	vendor-neutral	(but	Java-specific)	set	of	programming	interfaces	to	interact
with	asynchronous	messaging	systems.	Messaging	enables	distributed	communication	that
is	loosely	coupled.	The	whole	messaging	interchange	is	a	two-step	process	where	a
component	sends	a	message	to	a	destination	that	is	in	turn	retrieved	by	the	recipient	with
the	mediation	of	the	JMS	server.	In	JMS,	there	are	two	types	of	destinations:	topics	and
queues.	These	have	different	semantics,	which	are	explained	next.

In	a	point-to-point	model,	messages	are	sent	from	producers	to	consumers	via	queues.	A
given	queue	might	have	multiple	receivers,	but	only	one	receiver	would	be	able	to
consume	each	of	the	messages.	Only	the	first	receiver	who	requests	the	message	will	get
it,	while	the	others	will	not,	as	shown	in	the	following	image:

A	message	sent	to	a	topic,	on	the	other	hand,	might	be	received	by	multiple	parties.
Messages	published	on	a	specific	topic	are	sent	to	all	the	message	consumers	who	have
registered	(subscribed)	themselves	to	receive	messages	on	that	topic.	A	subscription	can
be	durable	or	nondurable.	A	nondurable	subscriber	can	only	receive	messages	that	are
published	while	it	is	active.	A	nondurable	subscription	does	not	guarantee	the	delivery	of
a	message;	it	might	deliver	the	same	message	more	than	once.	A	durable	subscription,	on
the	other	hand,	guarantees	that	the	consumer	receives	the	message	exactly	once,	as
depicted	in	the	following	image:

As	far	as	message	consumption	is	concerned,	even	though	JMS	is	inherently
asynchronous,	the	JMS	specification	allows	messages	to	be	consumed	in	either	of	the
following	two	ways:

	
Synchronously:	A	subscriber	or	a	receiver	explicitly	fetches	the	message	from	the

www.it-ebooks.info

http://www.it-ebooks.info/

destination	by	calling	the	receive()	method	of	any	MessageConsumer	instance.	The
receive()	method	can	block	until	a	message	arrives	or	can	take	a	time	out	if	a
message	does	not	arrive	within	a	specified	time	limit.
Asynchronously:	With	the	asynchronous	mode,	the	client	must	implement	the
javax.jms.MessageListener	interface	and	overwrite	the	onMessage()	method.
Whenever	a	message	arrives	at	the	destination,	the	JMS	provider	delivers	the
message	by	calling	the	listener’s	onMessage	method,	which	acts	on	the	contents	of
the	message.

A	JMS	message	consists	of	a	header,	properties,	and	a	body.	The	message	headers	provide
a	fixed	set	of	metadata	fields	that	describe	the	message	with	information	such	as	where	the
message	is	going	and	when	it	is	received.	The	properties	are	a	set	of	key-value	pairs	used
for	application-specific	purposes,	usually	to	help	filter	messages	quickly	when	they	are
received.	Finally,	the	body	contains	whatever	data	is	being	sent	to	the	message.

The	JMS	API	supports	two	delivery	modes	for	messages	to	specify	whether	or	not	the
messages	are	lost	if	the	JMS	provider	fails,	indicated	by	the	following	constants:

	
The	persistent	delivery	mode,	which	is	the	default,	instructs	the	JMS	provider	to	take
extra	care	to	ensure	that	a	message	is	not	lost	in	transit	in	the	case	of	a	JMS	provider
failure.	A	message	sent	with	this	delivery	mode	is	logged	to	stable	storage	when	it	is
sent.
The	nonpersistent	delivery	mode	does	not	require	the	JMS	provider	to	store	the
message	or	otherwise	guarantee	that	it	is	not	lost	if	the	provider	fails.

www.it-ebooks.info

http://www.it-ebooks.info/

The	building	blocks	of	JMS
The	basic	building	blocks	of	any	JMS	application	consist	of	the	following:

	
Administered	objects—connection	factories	and	destinations
Connections
Sessions
Message	producers
Message	consumers
Messages

Let’s	take	a	closer	look	at	them:

	
Connection	factory:	This	object	encapsulates	a	set	of	connection	configuration
parameters	that	have	been	defined	by	an	administrator.	A	client	uses	it	to	create	a
connection	with	a	JMS	provider.	A	connection	factory	hides	provider-specific	details
from	JMS	clients	and	abstracts	administrative	information	into	objects	in	the	Java
programming	language.
Destination:	This	is	the	component	a	client	uses	to	specify	the	target	of	messages	it
produces	and	the	source	of	messages	it	consumes.	In	the	point-to-point	(PTP)
messaging	domain,	destinations	are	called	queues;	in	the	publish/subscribe
(pub/sub)	messaging	domain,	destinations	are	called	topics.
Connection:	This	encapsulates	a	virtual	connection	with	a	JMS	provider.	A
connection	could	represent	an	open	TCP/IP	socket	between	a	client	and	a	provider
service.	You	use	a	connection	to	create	one	or	more	sessions.
Session:	This	is	a	single-threaded	context	for	producing	and	consuming	messages.
You	use	sessions	to	create	message	producers,	message	consumers,	and	messages.
Sessions	serialize	the	execution	of	message	listeners	and	provide	a	transactional
context	with	which	to	group	a	set	of	sends	and	receives	into	an	atomic	unit	of	work.
Message	producer:	This	is	an	object	created	by	a	session	and	is	used	to	send
messages	to	a	destination.	The	PTP	form	of	a	message	producer	implements	the
QueueSender	interface.	The	pub/sub	form	implements	the	TopicPublisher	interface.
From	JMS	2.0,	it	is	possible	to	rely	only	on	the	JMSProducer	interface.
Message	consumer:	This	is	an	object	created	by	a	session	and	is	used	to	receive
messages	sent	to	a	destination.	A	message	consumer	allows	a	JMS	client	to	register
interest	in	a	destination	with	a	JMS	provider.	The	JMS	provider	manages	the	delivery
of	messages	from	a	destination	to	the	registered	consumers	of	the	destination.	The
PTP	form	of	message	consumer	implements	the	QueueReceiver	interface.	The
pub/sub	form	implements	the	TopicSubscriber	interface.	The	latest	JMS	version
supports	a	new	JMSConsumer	API.

www.it-ebooks.info

http://www.it-ebooks.info/

The	JBoss	messaging	subsystem
JBoss	AS	has	used	different	JMS	implementations	across	its	releases,	such	as	JBoss	MQ
and	JBoss	Messaging.	Since	JBoss	AS	6.0,	the	default	JMS	provider	is	HornetQ
(http://www.jboss.org/hornetq),	which	provides	a	multiprotocol,	embeddable,	high-
performant,	and	clusterable	messaging	system.

At	its	core,	HornetQ	is	designed	simply	as	a	set	of	Plain	Old	Java	Objects	(POJOs)	with
few	dependencies	on	external	JAR	files.	In	fact,	the	only	one	JAR	dependency	is	the	Netty
library,	which	leverages	the	Java	New	Input-Output	(NIO)	API	to	build	high-
performance	network	applications.

Because	of	its	easily	adaptable	architecture,	HornetQ	can	be	embedded	in	your	own
project	or	instantiated	in	any	dependency	injection	framework	such	as
JBossMicrocontainer,	Spring,	or	Google	Guice.

In	this	book,	we	will	cover	a	scenario	where	HornetQ	is	integrated	into	the	WildFly
subsystem	as	a	module,	as	shown	in	the	following	diagram.	This	diagram	depicts	how	the
JCA	Adapter	and	the	HornetQ	server	fit	in	the	overall	picture:

www.it-ebooks.info

http://www.jboss.org/hornetq
http://www.it-ebooks.info/

Creating	and	using	connection	factories
It	is	the	job	of	the	connection	factory	that	encapsulates	the	connection’s	parameters	to
create	new	JMS	connections.	A	connection	factory	is	bound	to	the	Java	Naming
Directory	Index	(JNDI)	and	can	be	looked	up	by	both	local	and	remote	clients,	provided
they	supply	the	correct	environment	parameters.	Since	a	connection	factory	can	be	reused
multiple	times	in	your	code,	it’s	the	kind	of	object	that	can	be	conveniently	cached	by	a
remote	client	or	a	message-driven	bean.

The	definition	of	connection-factory	instances	is	included	in	the	full	and	full-ha	server
configurations.	You	can	choose	either	of	the	server	configurations	using	the	–c	command
argument,	for	instance,	standalone.bat	–c	standalone-full.xml.	We	will	cover	the
configuration	profiles	in	depth	in	Chapter	9,	Managing	the	Application	Server.	For	now,
just	remember	to	start	your	server	with	the	full	configuration	profile	whenever	you	need
JMS.

You	can	inspect	the	connection	factories	in	the	overall	JMS	configuration,	which	is
available	by	surfing	the	admin	console	and	navigating	to	Configuration	|	Messaging
Destinations	|	Connection	Factories,	as	shown	in	the	following	screenshot:

As	you	can	see	in	the	previous	screenshot,	there	are	the	following	two	out-of-the-box
connection-factory	definitions:

	
InVmConnectionFactory:	This	connection	factory	is	bound	under	the
java:/ConnectionFactory	entry	and	is	used	when	the	server	and	client	are	part	of

www.it-ebooks.info

http://www.it-ebooks.info/

the	same	process	(that	is,	they	are	running	on	the	same	JVM).
RemoteConnectionFactory:	This	connection	factory	is	bounded	under	the
java:jboss/exported/jms/RemoteConnectionFactory	entry,	and	as	the	name
implies,	it	can	be	used	using	Netty	as	the	connector	when	JMS	connections	are
provided	by	a	remote	server.

If	you	want	to	change	the	connection	factory’s	JNDI	binding,	the	simplest	choice	is	to	go
through	the	server	configuration	file	(for	example,	standalone-full.xml,	for	a
standalone	mode):
<connection-factory	name=“InVmConnectionFactory”>

						<connectors>

								<connector-ref	connector-name=“in-vm”/>

			</connectors>

			<entries>

					<entry	name=“java:/ConnectionFactory”/>

			</entries>

</connection-factory>

<connection-factory	name=“RemoteConnectionFactory”>

			<connectors>

					<connector-ref	connector-name=“http-connector”/>

			</connectors>

			<entries>

					<entry	name=“java:jboss/exported/jms/RemoteConnectionFactory”/>

			</entries>

</connection-factory>

<pooled-connection-factory	name=“hornetq-ra”>

<transaction	mode=“xa”/>

			<connectors>

						<connector-ref	connector-name=“in-vm”/>

			</connectors>

			<entries>

								<entry	name=“java:/JmsXA”/>

						<entry	name=“java:jboss/DefaultJMSConnectionFactory”/>

				</entries>

</pooled-connection-factory>

The	connection	factory	can	be	injected	just	like	any	other	Java	EE	resource;	the	following
code	fragment	shows	how	a	stateless	EJB	gets	the	default	connection	factory	injected:
@Stateless

public	class	SampleEJB	{

				@Resource(mappedName	=	“java:/ConnectionFactory”)

				private	ConnectionFactory	cf;	

}

Note
In	order	to	use	the	messaging	subsystem,	you	have	to	start	WildFly	using	a	Java	EE	full
profile,	which	includes	the	messaging	subsystem.	So,	for	example,	if	you	want	to	start	a
standalone	server	instance	that	is	JMS-aware,	you	can	simply	use	the	following	code:
standalone.sh	–c	standalone-full.xml

www.it-ebooks.info

http://www.it-ebooks.info/

Using	JMS	destinations
Along	with	the	definition	of	connection	factories,	you	will	need	to	learn	how	to	configure
JMS	destinations	(queues	and	topics).

This	can	be	achieved	with	a	variety	of	instruments.	Since	we	have	started	dealing	with	the
web	console,	just	navigate	to	the	Configuration	tab	and	pick	the	Messaging	subsystem
from	the	left	panel.	Select	Destinations	and	click	on	the	View	central	link.

From	there,	you	can	use	the	upper	menu	tab	that	contains	a	set	of	options,	the	first	one	of
which—named	Queues/Topics—can	be	used	to	configure	your	JMS	destinations,	as
shown	in	the	following	screenshot:

Now	click	on	the	Add	button.	You	should	see	the	following	dialog:

www.it-ebooks.info

http://www.it-ebooks.info/

Enter	the	mandatory	name	for	your	destination	and	its	JNDI.	You	can	optionally	choose	to
define	your	JMS	destination	as	either	of	the	following	options:

	
Durable:	This	option	allows	the	JMS	server	to	hold	on	to	a	message	in	case	the
subscriber	is	temporarily	unavailable.
Selector:	This	option	allows	a	filter	to	the	JMS	destination	(we	will	cover	this	in
greater	detail	later	in	this	chapter).

Click	on	the	Save	button	and	verify	that	the	queue	has	been	enlisted	among	the	JMS
destinations.

The	preceding	change	will	reflect	in	the	server	configuration	file	as	follows:
<jms-destinations>

			<jms-queue	name=“TicketQueue”>

						<entry	name=“java:jboss/jms/queue/ticketQueue”/>

									<durable>false</durable>

			</jms-queue>

</jms-destinations>

It’s	worth	noting	that	the	JMS	configuration	usually	differs	on	every	application	server.	In
this	chapter,	we	will	cover	only	the	approach	used	in	WildFly,	but	the	key	concepts
between	different	providers	stay	the	same.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding	message-driven	beans	to	your	application
Once	we	do	the	configuration,	we	can	start	coding	a	JMS	message	consumer,	such	as	a
message-driven	bean.

Message-driven	beans	(MDBs)	are	stateless,	server-side,	and	transaction-aware
components	that	process	asynchronous	JMS	messages.

One	of	the	most	important	aspects	of	message-driven	beans	is	that	they	can	consume	and
process	messages	concurrently.	This	capability	provides	a	significant	advantage	over
traditional	JMS	clients,	which	must	be	custom	built	to	manage	resources,	transactions,	and
security	in	a	multithreaded	environment.	MDB	containers	manage	concurrency
automatically	so	the	bean	developer	can	focus	on	the	business	logic	of	processing	the
messages.	An	MDB	can	receive	hundreds	of	JMS	messages	from	various	applications	and
process	them	all	at	the	same	time	because	numerous	instances	of	it	can	be	executed
concurrently	in	the	container.

From	the	semantic	point	of	view,	an	MDB	is	classified	as	an	enterprise	bean,	just	like	a
session	or	entity	bean,	but	there	are	some	important	differences.	At	first,	the	message-
driven	bean	does	not	have	component	interfaces.	These	are	absent	because	the	message-
driven	bean	is	not	accessible	via	the	Java	RMI	API;	it	responds	only	to	asynchronous
messages.

Just	as	the	entity	and	session	beans	have	well-defined	life	cycles,	so	does	the	MDB	bean.
The	MDB	instance’s	life	cycle	has	two	states,	Does	not	Exist	and	Method	ready	Pool,	as
shown	in	the	following	image:

When	a	message	is	received,	the	EJB	container	checks	to	see	whether	any	MDB	instance
is	available	in	the	pool.	If	a	bean	is	available	in	the	free	pool,	JBoss	uses	that	instance.
Once	an	MDB	instance’s	onMessage()	method	is	returned,	the	request	is	complete	and	the
instance	is	placed	back	in	the	free	pool.	This	results	in	the	best	response	time,	as	the
request	is	served	without	waiting	for	a	new	instance	to	be	created.

Note
On	the	other	hand,	if	all	the	instances	in	the	pool	are	busy,	the	new	request	will	be
serialized	since	it’s	guaranteed	that	the	same	instance	will	not	be	allowed	to	serve	multiple
clients	at	the	same	time.	Also,	if	a	client	sends	out	multiple	messages	to	the	server

www.it-ebooks.info

http://www.it-ebooks.info/

containing	an	MDB,	there	is	no	guarantee	that	the	same	MDB	instance	will	be	used	for
each	message	or	that	the	messages	will	be	processed	in	the	order	in	which	the	client	sent
them.	This	means	that	the	application	should	be	designed	to	handle	messages	that	arrive
out	of	order.

The	number	of	MDBs	in	the	pool	is	configured	in	the	EJB	pool,	which	can	be	reached
from	the	console	by	navigating	to	Configuration	|	Container	|	EJB	3	|	Bean	Pools	as
depicted	in	the	following	screenshot:

The	bean	pool’s	configuration	is	contained	in	the	bean	pool	central	tab,	which	holds	both
the	stateless	and	MDB	pool	configurations.	The	default	value	for	the	MDB’s	max	pool
size	is	20	units.

It	is	also	possible	to	override	pools	for	specific	beans.	You	can	use	either	the	JBoss-
specific	org.jboss.ejb3.annotation.Pool	annotation	or	the	jboss-ejb3.xml
deployment	descriptor.	For	more	information	on	overriding	pools	for	the	chosen	beans,
visit	https://docs.jboss.org/author/display/WFLY8/EJB3+subsystem+configuration+guide.

If	no	bean	instances	are	available,	the	request	will	be	blocked	until	an	active	MDB
completes	a	method	call	or	the	transaction	times	out.

www.it-ebooks.info

https://docs.jboss.org/author/display/WFLY8/EJB3+subsystem+configuration+guide
http://www.it-ebooks.info/

Cooking	message-driven	beans
We	will	now	add	a	message-driven	bean	to	our	application	from	the	previous	chapter,
which	will	be	used	to	intercept	messages	when	a	new	ticket	is	booked.	For	the	purpose	of
our	example,	we	will	just	trace	whether	the	JMS	message	has	been	received;	however,	you
can	also	use	it	for	more	complex	purposes	such	as	notifying	external	systems.

Create	a	new	Java	class,	say	BookingQueueReceiver,	and	enter	the	package	name	as
com.packtpub.wflydevelopment.chapter6.jms.

Once	done,	let’s	add	the	MDB	configuration	via	an	annotation,	as	shown	here:
package	com.packtpub.wflydevelopment.chapter6.jms;

import	javax.ejb.ActivationConfigProperty;

import	javax.ejb.MessageDriven;

import	javax.inject.Inject;

import	javax.jms.JMSException;

import	javax.jms.Message;

import	javax.jms.MessageListener;

import	java.util.logging.Logger;

@MessageDriven(name	=	“BookingQueueReceiver”,	activationConfig	=	{

								@ActivationConfigProperty(propertyName	=	“destinationLookup”,

													propertyValue	=	“java:jboss/jms/queue/ticketQueue”),		[1]

								@ActivationConfigProperty(propertyName	=	“destinationType”,

													propertyValue	=	“javax.jms.Queue”),}

)

public	class	BookingQueueReceiver	implements	MessageListener	{

				@Inject

				private	Logger	logger;

				@Override

				public	void	onMessage(Message	message)	{

								try	{

												final	String	text	=	message.getBody(String.class);

												logger.info(“Received	message	”	+	text);

								}	catch	(JMSException	ex)	{

												logger.severe(ex.toString());

								}

				}

}

Here	we	have	connected	the	MDB	to	our	ticketQueue	destination	[1]	bound	at
java:jboss/jms/queue/ticketQueue.	The	purpose	of	this	component	will	be	to	trace	the
message	receipt	via	java.util.Logger.

Java	EE	7	introduces	an	additional	way	of	the	queue	definition.	Now,	you	don’t	have	to
add	a	queue	from	the	application	server	management	tool.	It	is	possible	to	define	queues
and	their	properties	in	the	code	using	some	basic	annotations:
package	com.packtpub.wflydevelopment.chapter6.jms;

import	javax.jms.JMSDestinationDefinition;

www.it-ebooks.info

http://www.it-ebooks.info/

@JMSDestinationDefinition(

								name	=	BookingQueueDefinition.BOOKING_QUEUE,

								interfaceName	=	“javax.jms.Queue”

)

public	class	BookingQueueDefinition	{

				public	static	final	String	BOOKING_QUEUE	=

“java:global/jms/bookingQueue“;

}

Then,	in	BookingQueueReceiver,	you	can	just	change	propertyValue	=
“java:jboss/jms/queue/ticketQueue”	to	propertyValue	=
BookingQueueDefinition.BOOKING_QUEUE.

Adding	the	JMS	producer
Once	we’re	done	with	the	JMS	consumer,	we	need	a	component	that	will	take	care	of
sending	JMS	messages.	For	this	purpose,	we	will	add	an	Application	Scoped	CDI	Bean,
say	BookingQueueProducer,	which	gets	injected	in	the	JMS	resources:
package	com.packtpub.wflydevelopment.chapter6.jms;

import	javax.annotation.Resource;

import	javax.enterprise.context.RequestScoped;

import	javax.inject.Inject;

import	javax.jms.JMSContext;

import	javax.jms.Queue;

@ApplicationScoped

public	class	BookingQueueProducer	{

				@Inject

				private	JMSContext	context;

				@Resource(mappedName	=	BookingQueueDefinition.BOOKING_QUEUE)

				private	Queue	syncQueue;

				public	void	sendMessage(String	txt)	{

								context.createProducer().send(syncQueue,	txt);

				}

}

This	might	be	a	bit	shocking	for	those	who	have	used	the	previous	versions	of	the	JMS.
For	those	who	haven’t,	in	the	following	code	we	present	this	code’s	equivalent	in	JMS	1.1:
package	com.packtpub.wflydevelopment.chapter6.jms;

Import	javax.annotation.Resource;

Import	javax.enterprise.context.ApplicationScoped;

Import	javax.jms.*;

Import	java.util.logging.Logger;

@ApplicationScoped

public	class	BookingQueueProducer	{

				@Inject

				private	Logger	logger;

www.it-ebooks.info

http://www.it-ebooks.info/

				@Resource(mappedName	=	“java:/ConnectionFactory”)

				private	ConnectionFactorycf;

				@Resource(mappedName	=	BookingQueueDefinition.BOOKING_QUEUE)

				private	Queue	queueExample;		

				public	void	sendMessage(String	txt)	{

								try	{

												final	Connection	connection	=	cf.createConnection();

												Session	session	=	connection

																		.createSession(false,	Session.AUTO_ACKNOWLEDGE);

												final	MessageProducer	publisher	=	

																session.createProducer(queueExample);

												connection.start();

												final	TextMessage	message	=	

																session.createTextMessage(txt);

												publisher.send(message);

								}

								catch	(Exception	exc)	{

											logger.error(“Error	!	“+exc);

								}

								finally	{

												if	(connection	!=	null)	{

																try	{

																				connection.close();

																}	catch	(JMSException	e)	{	

																				logger.error(e);	

																}	

												}

								}

				}

}

Code	amount	change	is	impressive.	API	simplification	was	one	of	the	major	features	of
the	new	JMS	version,	and	the	specification	authors	did	great	work	on	it.

Now,	you	can	use	your	service	to	notify	some	application-specific	actions.	For	example,
we	will	inject	BookingQueueProducer	into	the	BookerService	bean	and	send	a	message
whenever	a	user	is	registered:
public	class	BookerService	implements	Serializable	{

				@Inject

				private	BookingQueueProducer	bookingQueueProducer;

				//	Some	code

				public	void	bookSeat(long	seatId,	int	price)	{

								logger.info(“Booking	seat	”	+	seatId);

								if	(price	>	money)	{

												final	FacesMessage	m	=	

																		new	FacesMessage(FacesMessage.SEVERITY_ERROR,	

www.it-ebooks.info

http://www.it-ebooks.info/

																				“Not	enough	Money!”,

																				“Registration	successful”);

												facesContext.addMessage(null,	m);

												return;

								}

								ticketService.bookSeat(seatId);

								final	FacesMessage	m	=	

														new	FacesMessage(FacesMessage.SEVERITY_INFO,	

																		“Registered!”,	

																		“Registration	successful”);

								facesContext.addMessage(null,	m);

								logger.info(“Seat	booked.”);

								money	=	money	-	price;

								bookingQueueProducer.sendMessage(“[JMS	Message]	User	registered

seat	”	+	seatId);

				}

				//	Some	code

}

From	JMS	2.0,	messages	can	be	sent	asynchronously,	but	then	it	is	important	to	control
whether	the	operations	are	successful	or	not.	To	do	this,	we	have	to	create	an	object	that
implements	the	CompletionListener	interface,	as	follows:
@ApplicationScoped

public	class	BookingCompletionListener	implements	CompletionListener	{

				@Inject

				private	Logger	logger;

				@Override

				public	void	onCompletion(Message	message)	{

								try	{

												final	String	text	=	message.getBody(String.class);

												logger.info(“Send	was	successful:	”	+	text));

								}	catch	(Throwable	e)	{

												logger.severe(“Problem	with	message	format”);

								}

				}

				@Override

				public	void	onException(Message	message,	Exception	exception)	{

								try	{

												final	String	text	=	message.getBody(String.class);

												logger.info(“Send	failed…”	+	text);

								}	catch	(Throwable	e)	{

												logger.severe(“Problem	with	message	format”);

								}

				}

}

During	the	send	operation,	we	have	to	specify	the	asynchronous	and	use	this	listener

www.it-ebooks.info

http://www.it-ebooks.info/

object.	To	do	this,	inject	BookingCompletionListener	to	BookingQueueProducer	and
send	messages	with	an	updated	call:
public	void	sendMessage(String	txt)	{

				context.createProducer()

								.setAsync(bookingCompletionListener).send(syncQueue,	txt);

}

Now,	appropriate	listener	methods	will	be	executed	when	the	message	send	is	completed
or	failed:
[com.packtpub.wflydevelopment.chapter6.jms.BookingCompletionListener]

(Thread-3	(HornetQ-client-global-threads-269763340))	Send	was	successful:

[JMS	Message]	User	registered	seat	2

Compiling	and	deploying	the	application
We	have	based	our	code	on	the	JPA	application	from	the	previous	chapter.	Thanks	to
javaee-api,	you	don’t	have	to	add	any	new	project	dependencies	in	order	to	use	JMS!
The	only	thing	you	have	to	do	is	to	start	WildFly	in	full	profile	using,	for	example,
standalone-full.xml	standalone-full.xml—the	standard	full	profile	configuration:
standalone.sh	–c	standalone-full.xml

Note
Remember,	when	switching	to	another	server	configuration,	you	will	need	to	recreate	all
the	example	resources,	such	as	data	sources,	that	were	set	up	initially	for	your	standalone
configuration.

Now	deploy	your	application	using	either	Eclipse’s	Server	view	or	Maven	and	access	the
application	at	http://localhost:8080/ticket-agency-jms/.

Everything	should	work	just	like	the	earlier	JPA	project;	however,	in	your	application
server	console,	you	should	notice	the	messages	that	confirm	a	seat	has	been	booked.

Specifying	which	message	to	receive	using	selectors
Message	selectors	allow	an	MDB	to	be	more	selective	about	the	messages	it	receives	from
a	particular	topic	or	queue.	Message	selectors	use	message	properties	as	criteria	in
conditional	expressions.	Message	properties,	upon	which	message	selectors	are	based,	are
additional	headers	that	can	be	assigned	to	a	message.	They	give	the	application	developer
the	ability	to	attach	more	information	to	a	message.	This	information	can	be	stored	using
several	primitive	values	(boolean,	byte,	short,	int,	long,	float,	and	double)	or	as
String.

For	example,	let’s	suppose	that	we	want	to	process	two	kinds	of	messages	with	the	same
queue:

	
A	trace	message	indicating	that	a	user	has	booked	a	seat
A	warning	message	indicating	that	an	error	has	occurred

Hence,	our	sendMessage	method	can	be	changed	slightly	to	include	a	String	property	that
can	be	attached	to	the	message:

www.it-ebooks.info

http://www.it-ebooks.info/

@ApplicationScoped

public	class	BookingQueueProducer	{

				@Inject

				private	JMSContext	context;

				@Inject

				private	BookingCompletionListener	bookingCompletionListener;

				@Resource(mappedName	=	BookingQueueDefinition.BOOKING_QUEUE)

				private	Queue	syncQueue;

				public	void	sendMessage(String	txt,	Priority	priority)	{

								context.createProducer()

																.setAsync(bookingCompletionListener)

																.setProperty(“priority”,	priority.toString())

																.send(syncQueue,	txt);

				}

}	

public	enum	Priority	{

				LOW,	HIGH

}

Now,	in	our	application	context,	we	might	use	the	sendMessage	method,	attaching	a	LOW
value	for	priority	when	the	user	is	registered:
bookingQueueProducer.sendMessage(“[JMS	Message]	User	registered	seat	”	+

seatId,	Priority.LOW);

On	the	other	hand,	we	could	attach	a	HIGH	priority	when	an	error	occurs:
bookingQueueProducer.sendMessage(“Error	during	Transaction”,	Priority.

HIGH);

From	the	MDB	perspective,	all	you	need	to	do	in	order	to	filter	through	messages	is
include	the	message	selector	as	part	of	your	ActivationConfigProperty	class	as	follows:
@MessageDriven(name	=	“BookingQueueReceiver”,	activationConfig	=	{

								@ActivationConfigProperty(propertyName	=	“destinationLookup”,

																propertyValue	=	BookingQueueDefinition.BOOKING_QUEUE),

								@ActivationConfigProperty(propertyName	=	“destinationType”,

																propertyValue	=	“javax.jms.Queue”),

								@ActivationConfigProperty(propertyName	=	“messageSelector”,

																propertyValue	=	“priority	=	‘HIGH’”),}

)

public	class	BookingQueueReceiver	implements	MessageListener	{

				//	Some	code	

}

At	the	same	time,	you	can	deploy	another	MDB	that	is	in	charge	of	consuming	messages
that	are	sent	with	a	LOW	priority:
@MessageDriven(name	=	”	LowPriorityBookingQueueReceiver”,	activationConfig

=	{

								@ActivationConfigProperty(propertyName	=	“destinationLookup”,

																propertyValue	=	BookingQueueDefinition.BOOKING_QUEUE),

www.it-ebooks.info

http://www.it-ebooks.info/

								@ActivationConfigProperty(propertyName	=	“destinationType”,

																propertyValue	=	“javax.jms.Queue”),

								@ActivationConfigProperty(propertyName	=	“messageSelector”,

																propertyValue	=	“priority	=	‘LOW’”),}

)

public	class	LowPriorityBookingQueueReceiver	implements	MessageListener	{

				//	Some	code

}

When	talking	about	filtering,	we	have	to	say	a	few	words	concerning	performance.	In
HornetQ	queues	and	topics,	there	are	filtering	messages	on	a	different	stage.	In	the	case	of
queues,	properties	are	filtered	when	they	have	already	been	received	by	the	listener,	while
in	topics,	they	are	filtered	before	being	added.	Keep	in	mind	this	is	not	guaranteed	by	JMS
specification	(since	a	specification	describes	the	API)	and	might	act	differently	in	other
implementations.	There	are	a	lot	of	performance	options	that	can	be	tuned	in	JMS
providers;	however,	most	of	the	configurations	must	be	specifically	chosen	for	every
project.	Be	sure	to	check	additional	tuning	tips	in	HornetQ’s	documentation	at
http://docs.jboss.org/hornetq/2.4.0.Final/docs/user-manual/html_single/#perf-tuning.

www.it-ebooks.info

http://docs.jboss.org/hornetq/2.4.0.Final/docs/user-manual/html_single/#perf-tuning
http://www.it-ebooks.info/

Transaction	and	acknowledgment	modes
In	order	to	control	the	overall	performance	and	reliability	of	an	asynchronous	messaging
system,	we	need	to	take	two	factors	into	account:	persisting	of	messages	and
acknowledgment.	Let’s	take	a	look	at	those	characteristics.

Reliability	of	the	system	is	focused	on	the	ability	to	deliver	messages	exactly	once.	This
means	that	no	message	is	lost,	and	there	are	no	duplicates.	For	most	systems,	it	is	a	strong
requirement	that	you	don’t	miss	or	duplicate	any	orders	(like	in	an	e-commerce	site).
However,	usually	it	is	not	a	problem	to	miss	an	update	from	the	stock	market	because	a
newer	one	would	overwrite	it	in	a	moment.	Of	course,	additional	features	such	as
reliability	come	at	a	price,	and	in	the	case	of	JMS,	the	price	is	paid	in	performance.	The
more	reliable	the	system,	the	lower	its	message	throughput	is.

When	a	message	is	processed,	it	can	be	held	only	in	the	memory	or	persisted	somewhere
on	the	disk.	Messages	stored	in	the	memory	are	lost	in	the	case	of	a	failure	or	when	the
messaging	service	is	stopped.	Persisted	messages	can	be	retrieved	from	the	disk	after	the
service	is	restarted	and	therefore	delivered	to	the	consumers	at	least	once	(but	still	without
any	guarantees	about	the	acknowledgment).	Without	this	mechanism,	messages	can
potentially	be	lost	in	the	system	because	a	failure	might	occur	before	they	are	delivered.
However,	the	overhead	of	storing	them	can	have	a	serious	impact	on	the	system’s
performance	characteristics.

Acknowledgment	is	important	to	inform	the	JMS	service	that	the	message	was	really
received	and	processed	by	the	consumer.	Different	levels	of	acknowledgments	can	be	used
to	avoid	duplicates	or	to	trigger	JMS	to	send	the	message	once	more,	possibly	to	another
consumer.	A	JMS	provider	will	ensure	that	an	acknowledged	message	is	delivered	only
once.	The	application	is	responsible	for	properly	handling	rolled	back	messages	that	were
redelivered	(such	messages	are	marked	with	the	JMSRedelivered	header).

If	the	consumer	session	is	handled	in	a	transaction,	then	the	messages	are	acknowledged
only	when	the	transaction	is	committed.	However,	there	is	an	option	to	disable
transactional	message-driven	beans	and	manually	handle	the	acknowledgment.	In	this
case,	there	are	the	following	three	types	of	acknowledgement	options:

	
AUTO_ACKNOWLEDGE:	With	this,	the	consumed	messages	are	being
acknowledged	automatically
DUPS_OK_ACKNOWLEDGE:	With	this,	the	delivered	messages	are	being	lazily
acknowledged;	this	means	that	the	client	might	receive	some	duplicated	messages
CLIENT_ACKNOWLEDGES:	With	this,	the	client	manually	acknowledges
received	messages	using	the	acknowledge	method

The	modes	can	be	set	when	you	retrieve	JMSContext	from	a	connection	factory:
JMSContext	context	=

connectionFactory.createContext(JMSContext.CLIENT_ACKNOWLEDGE)

The	first	argument	is	an	integer	flag	that	accepts	the	values	mentioned	previously	along
with	a	SESSION_TRANSACTED	entry	(which	is	the	standard	mode	for	JTA-managed

www.it-ebooks.info

http://www.it-ebooks.info/

message-driven	beans).

www.it-ebooks.info

http://www.it-ebooks.info/

Using	JMS	to	integrate	with	external	systems
At	the	beginning	of	this	chapter,	we	mentioned	that	the	JCA	adaptor	handles	the
communication	between	the	application	server	and	the	HornetQ	server.

As	a	matter	of	fact,	one	possible	way	to	perform	Enterprise	Application	Integration
(EAI)	is	via	Java	Connector	Architecture	(JCA),	which	can	be	used	to	drive	JMS’s
inbound	and	outbound	connections.

Initially,	Java	connectors	were	intended	to	access	legacy	transaction	servers	on
mainframes	in	a	synchronous	request/reply	mode,	and	this	is	how	the	majority	of	the
connectors	worked	in	the	beginning.	The	standard	is	currently	evolving	toward	more
asynchronous	and	two-way	connectivity;	this	is	exactly	the	case	with	JMS
communication,	which	is	inherently	asynchronous	(but	also	offers	the	capability	of
simulating	a	synchronous	request/response	mode).	In	the	next	section,	we	will	show	you
how	to	use	a	Java	Resource	Adapter	to	enable	communication	between	JBoss’	HornetQ
Messaging	system	and	a	standalone	instance	of	the	Apache	ActiveMQ	broker	(which	can
be	used,	for	instance,	by	a	non-Java	EE	application).

Tip
JMS/JCA	integration	versus	web	services

If	we	are	discussing	EAI,	we	cannot	help	but	talk	about	the	difference	between	web
services,	which	is	the	de	facto	standard	for	integrating	heterogeneous	systems.

One	advantage	of	using	the	JMS/JCA	integration	is	that	it	provides	support	for	resource
adaptation,	which	maps	the	Java	EE	security,	transaction,	and	communication	pooling	to
the	corresponding	EIS	technology.	This	makes	this	technology	fairly	attractive,	especially
if	you	are	trying	to	connect	some	existing,	well-consolidated,	and	homogeneous	systems
(remember	that	if	you	are	using	JMS	as	the	driver,	you	are	bound	to	a	Java-to-Java
interaction).

On	the	other	hand,	if	you	are	planning	to	connect	different	business	partners	(for	example,
Java	and	.NET	applications)	or	simply	build	a	new	system	from	scratch	with	no	clear
interactions	defined,	it	would	be	better	to	use	web	services	for	transport	and	connection.

We	will	learn	more	about	web	services	in	Chapter	7,	Adding	Web	Services	to	Your
Applications,	which	should	provide	you	with	quite	a	complete	overview	of	your	EAI
alternatives.

www.it-ebooks.info

http://www.it-ebooks.info/

A	real-world	example	–	HornetQ	and	ActiveMQ	integration
In	this	section,	we	will	provide	an	example	scenario,	which	includes	an	external
component	such	as	the	Apache	ActiveMQ	(Apache	2.0	open	source	licensed)	message
broker	that	fully	implements	Java	Message	Service	1.1	(JMS).	Another	application	could
be	communicating	with	our	ticketing	system	using	this	broker,	but	in	our	sample,	we	will
simulate	the	external	system	using	the	ActiveMQ	administration	console.

In	order	to	run	this	example,	we	will	need	to	pick	up	the	ActiveMQ	resource	adapter,
activemq-rar-5.9.0.rar,	which	can	be	downloaded	from	the	Maven	repository	at
http://repo1.maven.org/maven2/org/apache/activemq/activemq-rar/5.9.0/.	You	will	also
need	the	ActiveMQ	broker,	which	you	can	download	from
https://activemq.apache.org/activemq-590-release.html.	Simply	extract	the	binary
distribution	and	run	the	/apache-activemq-5.9.0/bin/activemq.bat	file	to	start	the
broker.

Installing	the	ActiveMQ	resource	adapter
Resource	adapters	(.rar)	can	be	deployed	using	either	WildFly	management	instruments
or	by	copying	the	resource	adapter	into	the	deployments	directory	for	standalone	servers.
Before	doing	this,	we	need	to	configure	the	Resource	adapter	in	your	server	configuration.
This	can	be	done	by	adding	the	configuration	to	the	JCA	subsystem	or	(suggested	choice)
by	creating	a	JCA	descriptor	of	the	external	resource.

JCA	descriptors	can	be	created	by	using	an	utility	contained	in	JBoss’	JCA	implementation
named	IronJacamar	(http://www.jboss.org/ironjacamar).	Within	IronJacamar	1.1	or	later
distributions	(accessible	at	http://www.jboss.org/ironjacamar/downloads),	you	can	find	a
resource	adapter	information	tool	(rar-info.bat)	that	can	be	used	to	create	the	resource
adapter	deployment	descriptor	by	generating	a	report	file	containing	all	the	necessary
information.

The	rar-info.bat	tool	can	be	found	in	the	doc/as	folder	of	your	IronJacamar
distribution.	So	let’s	move	to	this	folder:

$	cd	doc/as

Now	issue	the	following	command,	which	assumes	that	you	have	saved	your	resource
adapter	in	the	/usr/doc	folder:

rar-info.bat	/usr/doc/activemq-rar-5.9.0.rar

Tip
Troubleshooting	the	rar-info	shell

The	rar-info	command	shell	includes	a	set	of	libraries	that	are	used	to	execute	the	main
utility	class.	In	order	to	inspect	the	JMS	adapter,	however,	you	need	to	manually	edit	the
shell	file	and	add	jboss-jms-api_2.0_spec-1.0.0.Final	and	jboss-transaction-
api_1.2_spec-1.0.0.Final.jar	to	the	classpath.	Those	JAR	files	are	contained	in	the
main	folder	under	JBOSS_HOME/modules/system/layers/base/javax/jms/api/	and

www.it-ebooks.info

http://repo1.maven.org/maven2/org/apache/activemq/activemq-rar/5.9.0/
https://activemq.apache.org/activemq-590-release.html
http://www.jboss.org/ironjacamar
http://www.jboss.org/ironjacamar/downloads
http://www.it-ebooks.info/

JBOSS_HOME/modules/system/layers/base/javax/transaction/api/.	Simply	add	paths
for	them	in	the	rar-info.bat	file	(separated	by	character);	for	example,	refer	to	the
following	(assuming	the	jars	are	in	the	same	directory	as	rar-info.bat):

java	-classpath	ironjacamar-as.jar;....\lib\ironjacamar-common-

spi.jar;....\lib\jboss-logging.jar;....\lib\jboss-common-

core.jar;....\lib\ironjacamar-spec-

api.jar;....\lib\jandex.jar;....\lib\ironjacamar-common-

impl.jar;....\lib\ironjacamar-common-api.jar;....\lib\ironjacamar-core-

impl.jar;....\lib\ironjacamar-core-api.jar;....\lib\ironjacamar-

validator.jar;....\lib\jandex.jar;....\lib\validation-

api.jar;....\lib\hibernate-validator.jar;jboss-jms-api_2.0_spec-

1.0.0.Final.jar;jboss-transaction-api_1.2_spec-1.0.0.Final.jar

org.jboss.jca.as.rarinfo.Main	%*

This	will	generate	a	file	called	activemq-rar-5.9.0-report.txt,	which	will	provide	you
with	the	required	information	to	construct	your	own	JBoss’	JCA	configuration	file	that
needs	to	be	named	ironjacamar.xml.	Feel	free	to	check	out	its	contents.

In	the	following	code,	you	can	find	a	sample	ironjacamar.xml	file	that	defines	a	new
queue	(java:jboss/activemq/queue/TicketQueue):
<ironjacamar>

					<connection-definitions>

								<connection-definition	class-

name=“org.apache.activemq.ra.ActiveMQManagedConnectionFactory”	jndi-

name=“java:jboss/activemq/TopicConnectionFactory”	pool-

name=“TopicConnectionFactory”>

					<pool>

								<min-pool-size>1</min-pool-size>

								<max-pool-size>200</max-pool-size>

								<prefill>false</prefill>

						</pool>

						<security>

								<application	/>

						</security>

						<timeout>

								<blocking-timeout-millis>30000</blocking-timeout-millis>

								<idle-timeout-minutes>3</idle-timeout-minutes>

						</timeout>

						<validation>

								<background-validation>false</background-validation>

								<use-fast-fail>false</use-fast-fail>

						</validation>	

			</connection-definition>

			<connection-definition	class-

name=“org.apache.activemq.ra.ActiveMQManagedConnectionFactory”	jndi-

name=“java:jboss/activemq/QueueConnectionFactory”	pool-

name=“QueueConnectionFactory”>

						<pool>

								<min-pool-size>1</min-pool-size>

								<max-pool-size>200</max-pool-size>

								<prefill>false</prefill>

						</pool>

						<security>

www.it-ebooks.info

http://www.it-ebooks.info/

								<application	/>

						</security>

						<timeout>

								<blocking-timeout-millis>30000</blocking-timeout-millis>

								<idle-timeout-minutes>3</idle-timeout-minutes>

						</timeout>

						<validation>

								<background-validation>false</background-validation>

								<use-fast-fail>false</use-fast-fail>

						</validation>

				</connection-definition>

				</connection-definitions>

					<admin-objects>

				<admin-object	class-name=“org.apache.activemq.command.ActiveMQQueue”

jndi-name=“java:jboss/activemq/queue/TicketQueue”>

								<config-property	name=“PhysicalName”>

															activemq/queue/TicketQueue

										</config-property>

				</admin-object>

				</admin-objects>

</ironjacamar>

As	you	can	see,	this	file	contains	the	definition	of	ActiveMQ	connection	factories	along
with	the	mapping	of	JMS	administration	objects,	which	will	be	imported	by	the	resource
adapter.	The	ironjacamar.xml	file	needs	to	be	copied	into	the	META-INF	folder	of
activemq-rar-5.9.0.rar	(you	can	open	the	RAR	file	using	the	compressed	files	manager
of	your	choice,	for	example,	7-Zip).

Tip
Additional	configuration	requirements	of	the	resource	adapter

Along	with	the	ironjacamar.xml	file,	there	is	another	configuration	file	that	is	contained
in	the	META-INF	folder	of	your	activemq-rar-5.9.0.rar	file.	The	ra.xml	file	is	the
standard	JCA	configuration	file	and	describes	the	resource-adapter-related	attribute’s	type
and	its	deployment	properties.	We,	however,	do	not	need	to	alter	its	contents	for	our	basic
sample.

Now	that	we	have	completed	the	configuration,	let’s	deploy	the	resource	adapter
(activemq-rar-5.9.0.rar)	into	our	WildFly	and	check	that	the	JCA	factories	and	objects
have	been	correctly	bound	to	the	application	server.	After	the	deployment,	you	should	see
the	following	similar	messages	in	WildFly’s	console:

19:52:51,521	INFO		[org.jboss.as.connector.deployment]	(MSC	service	thread

1-5)	JBAS010401:	Bound	JCA	AdminObject

[java:jboss/activemq/queue/TicketQueue]

19:52:51,521	INFO		[org.jboss.as.connector.deployment]	(MSC	service	thread

1-5)	JBAS010401:	Bound	JCA	ConnectionFactory

[java:jboss/jms/TopicConnectionFactory]

19:52:51,521	INFO		[org.jboss.as.connector.deployment]	(MSC	service	thread

1-8)	JBAS010401:	Bound	JCA	ConnectionFactory

[java:jboss/jms/ConnectionFactory]

19:52:51,542	INFO		[org.jboss.as.server]	(DeploymentScanner-threads	-	1)

JBAS018559:	Deployed	“activemq-rar-5.9.0.rar”	(runtime-name	:	“activemq-

www.it-ebooks.info

http://www.it-ebooks.info/

rar-5.9.0.rar”)

Consuming	ActiveMQ	messages
Well	done!	The	hardest	part	is	done.	Now	in	order	to	consume	JMS	messages	sent	by	the
ActiveMQ	broker,	we	will	add	a	@ResourceAdapter	annotation	to	a	message-driven	bean.
This	MDB	will	intercept	bookings	from	the	ActiveMQ	broker.	In	order	to	be	able	to	use
the	@ResourceAdapter	annotation,	we	will	need	to	add	a	JBoss-specific	dependency	to	our
pom.xml:
									<dependency>

												<groupId>org.jboss.ejb3</groupId>

												<artifactId>jboss-ejb3-ext-api</artifactId>

												<version>2.1.0</version>

												<scope>provided</scope>

								</dependency>

Our	new	annotated	message	bean	is	presented	as	follows	(note	that	the	property
destinationType	is	the	destination	now):
@MessageDriven(name	=	“MDBService”,	activationConfig	=	{

								@ActivationConfigProperty(propertyName	=	“destination”,

																propertyValue	=	“java:jboss/activemq/queue/TicketQueue”),

								@ActivationConfigProperty(propertyName	=	“destinationType”,

																propertyValue	=	“javax.jms.Queue”),}

)

@ResourceAdapter(value=“activemq-rar-5.9.0.rar”)

public	class	BookingQueueReceiver	implements	MessageListener	{

				@Inject

				private	Logger	logger;

				@Override

				public	void	onMessage(Message	message)	{

								try	{

													final	String	text	=	message.getBody(String.class);

												logger.info(“Received	message	”	+	text);

								}	catch	(JMSException	ex)	{

												logger.severe(ex.toString());

								}

				}

}

Once	a	message	is	received,	it	is	written	to	a	console.	This	means	that	it	is	time	to	deploy
our	application.	If	your	ActiveMQ	broker	is	running,	you	should	see	the	following	similar
messages	during	the	deployment	phase:

19:59:59,452	INFO		[org.apache.activemq.ra.ActiveMQEndpointWorker]

(ServerService	Thread	Pool	—	65)	Starting

19:59:59,458	INFO		[org.apache.activemq.ra.ActiveMQEndpointWorker]

(default-threads	-	1)	Establishing	connection	to	broker

[tcp://localhost:61616]

19:59:59,573	INFO		[javax.enterprise.resource.webcontainer.jsf.config]	(MSC

service	thread	1-5)	Initializing	Mojarra	2.2.5-jbossorg-3	20140128-1641	for

context	‘/ticket-agency-jms’

19:59:59,618	INFO		[org.apache.activemq.ra.ActiveMQEndpointWorker]

www.it-ebooks.info

http://www.it-ebooks.info/

(default-threads	-	1)	Successfully	established	connection	to	broker

[tcp://localhost:61616]

20:00:00,053	INFO		[org.wildfly.extension.undertow]	(MSC	service	thread	1-

5)	JBAS017534:	Registered	web	context:	/ticket-agency-jms

20:00:00,081	INFO		[org.jboss.as.server]	(DeploymentScanner-threads	-	1)

JBAS018559:	Deployed	“ticket-agency-jms.war”	(runtime-name	:	“ticket-

agency-jms.war”)

Now	it	is	time	to	test	our	connection	using	the	ActiveMQ	console,	which	will	send	a
message	straight	to	the	ActiveMQ	broker.	ActiveMQ	5.9.0	is	equipped	with	a	bundled
hawt.io	console.	It	is	a	pluggable	web	dashboard	that	can	be	configured	to	administer
various	applications.	One	of	them	is	ActiveMQ.	And,	one	of	the	benefits	of	using	this
console	is	that	you	can	deploy	it	on	almost	any	JVM-based	container,	including	WildFly.
Check	out	http://hawt.io/	along	with	the	ActiveMQ	plugin
(http://hawt.io/plugins/activemq/)	for	more	information.

Note
From	Version	5.10.0,	ActiveMQ	is	not	prebundled	with	hawt.io	anymore.	You	can	prepare
your	own	hawt.io	console	by	following	the	guidelines	available	at
http://hawt.io/getstarted/index.html;	installing	the	ActiveMQ	plugin;	or	(which	we
strongly	recommend)	using	Version	5.9.0	in	your	samples,	which	is	conveniently
preconfigured.

Go	to	http://localhost:8161/hawtio/	and	log	in	using	the	admin/admin	credentials:

www.it-ebooks.info

http://hawt.io/
http://hawt.io/plugins/activemq/
http://hawt.io/getstarted/index.html
http://www.it-ebooks.info/

After	the	login,	you	should	see	the	hawt.io	web	console.	It	is	worth	noting	that	it	was
created	using	Twitter	Bootstrap,	the	same	front-end	framework	that	we	are	using	in	our
application.

Select	the	first	tab	(ActiveMQ)	and	you	should	see	a	tree	that	represents	the	current
configuration	of	the	broker.	Find	the	node	localhost/Queue/.	When	you	expand	it,	you
should	see	the	queue	we	defined	earlier	in	our	resource	adapter:
java_jboss/activemq/queue/TicketQueue.	After	selecting	it,	you	can	choose	the	Send
tab	on	the	right-hand	side.	You	should	see	a	screen	similar	to	the	following	one:

www.it-ebooks.info

http://www.it-ebooks.info/

Enter	the	desired	message	into	the	big	text	area	in	the	center	and	click	on	the	Send
Message	button.	After	switching	to	our	WildFly	console,	we	should	see	a	log	entry	with
the	message	we	passed	to	the	ActiveMQ	broker,	as	shown	in	the	following	screenshot:

Congratulations!	If	you	have	gone	successfully	through	this	example,	you	have	just
mastered	a	real-world	integration	scenario.	To	make	the	sample	more	realistic,	you	could
improve	the	message	bean	so	that	it	would	book	tickets	if	the	message	were	to	contain	the
required	information	(for	example,	message	55,10	would	book	a	seat	with	ID	55	for	10$).
Feel	free	to	experiment!

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	discussed	JBoss’	message-oriented	middleware	that	allows	you	to
loosely	couple	heterogeneous	systems	together	while	typically	providing	reliability,
transactions,	and	many	other	features.

We	saw	how	to	configure	JMS	destinations	using	the	web	console	and	create	some
message-driven	beans,	which	are	the	standard	way	to	consume	messages	from	within	the
EJB	container.

We	will	now	move	on	to	another	component,	which	is	typically	used	for	integrating
heterogeneous	systems—web	services.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	7.	Adding	Web	Services	to	Your
Applications
In	the	previous	chapter,	we	discussed	the	Java	Messaging	Service	API,	which	is
commonly	used	to	develop	loosely	coupled	applications	and	a	common	integration	pattern
for	Java-to-Java	systems.	In	this	chapter,	you	will	learn	about	web	services	that	are
defined	by	W3C	as	software	systems,	and	designed	to	support	interoperable	machine-to-
machine	interaction	over	a	network.

What	makes	web	services	different	from	other	forms	of	distributed	computing	is	that
information	is	exchanged	using	only	simple	and	nonproprietary	protocols.	This	means	the
services	can	communicate	with	each	other	regardless	of	location,	platform,	or
programming	language.	Essentially,	web	services	protocols	provide	a	platform-
independent	way	to	perform	Remote	Procedure	Calls	(RPCs).

The	focus	of	this	chapter	will	be	on	the	two	chief	web	services	standards,	JAX-WS	(JSR
224)	and	JAX-RS	(JSR	339),	and	how	they	are	implemented	in	WildFly.	As	you	can
imagine,	there	is	a	lot	of	ground	to	cover,	so	we	will	quickly	get	our	hands	dirty	with	the
following	topics:

	
A	short	introduction	to	SOAP-based	web	services
Creating,	deploying,	and	using	the	JBoss	JAX-WS	implementation	(Apache	CXF)
A	quick	overview	of	REST	web	services
How	to	create,	deploy,	and	use	services	using	the	JBoss	JAX-RS	implementation
(RESTEasy)
Integrating	JAR-RS	with	an	external	non-Java	application

www.it-ebooks.info

http://www.it-ebooks.info/

Developing	SOAP-based	web	services
As	stated,	web	services	are	based	on	the	exchange	of	messages	using	nonproprietary
protocol	messages.	The	messages	themselves	are	not	sufficient	to	define	the	web	service
platform.	We	actually	need	a	list	of	standard	components,	including	the	following:

	
A	language	used	to	define	the	interfaces	provided	by	a	web	service	in	a	manner	that
is	not	dependent	on	the	platform	on	which	it	is	running	or	the	programming	language
used	to	implement	it
A	common	standard	format	to	exchange	messages	between	web	service	providers
and	web	service	consumers
A	registry	within	which	service	definitions	can	be	placed

The	Web	Service	Description	Language,	also	known	as	WSDL,
(http://www.w3.org/TR/wsdl)	is	the	de	facto	standard	to	provide	a	description	of	a	web
service	contract	exposed	to	clients.	In	particular,	a	WSDL	document	describes	a	web
service	in	terms	of	the	operations	that	it	provides,	and	the	data	types	that	each	operation
requires	as	inputs	and	can	return	in	the	form	of	results.

Communication	between	the	service	provider	and	service	consumer	happens	by	means	of
XML	messages	that	rely	on	the	SOAP	specification.

A	basic	SOAP	message	consists	of	an	envelope	that	may	contain	any	number	of	headers
and	a	body.	These	parts	are	delimited	by	XML	elements	called	envelope,	header,	and
body,	which	belong	to	a	namespace	defined	by	the	SOAP	specification.	The	following
figure	depicts	the	basic	structure	of	a	SOAP	message:

www.it-ebooks.info

http://www.w3.org/TR/wsdl
http://www.it-ebooks.info/

Strategies	to	build	SOAP-based	web	services
As	we	have	just	discussed,	the	service	description	is	provided	by	a	commonly	used
document	interface	named	WSDL	that	exposes	the	services	as	a	collection	of	networks,
endpoints,	and	ports,	using	the	XML	format.

You	may	logically	be	inclined	to	think	that	it	is	necessary	to	state	the	corresponding
programming	interfaces	at	the	beginning	of	the	contract	of	a	service	and	then	produce
them.

Actually,	you	can	follow	two	approaches	to	develop	your	SOAP	web	services:

	
Top-down:	This	development	strategy	involves	creating	a	web	service	from	a	WSDL
file.	The	top-down	approach	is	likely	to	be	used	when	creating	web	services	from
scratch.	It	is	the	preferred	choice	of	pure	web	service	engineers	because	it	is
business-driven,	that	is,	the	contract	is	defined	by	business	people	and	so	the	software
is	designed	to	fit	the	web	service	contract.
Bottom-up:	This	approach	requires	the	WSDL	file	to	be	generated	by	the
programming	interfaces.	It	is	likely	to	be	used	when	we	have	existing	applications
that	we	want	to	expose	as	web	services.	As	this	approach	does	not	require	a	deep
knowledge	of	the	WSDL	syntax,	it	is	the	easiest	choice	if	you	want	to	turn	your	Java
classes	or	EJB	into	web	services.

As	the	audience	of	this	book	is	composed	mainly	of	Java	developers	with	little	or	no
knowledge	of	WSDL	basics,	we	will	focus	primarily	on	the	bottom-up	approach.

Designing	top-down	web	services,	on	the	other	hand,	will	require	you	to	integrate	the
basic	web	services	notions	provided	with	this	chapter	with	a	comprehensive	awareness	of
the	WSDL	standard.

www.it-ebooks.info

http://www.it-ebooks.info/

JBoss	SOAP-based	web	services	stack
All	JAX-WS	functionalities	provided	on	top	of	WildFly	are	currently	served	through	a
proper	integration	of	the	JBoss	web	services	stack	with	most	of	the	Apache	CXF	project.

Apache	CXF	is	an	open	source	web	service	framework	that	provides	an	easy-to-use,
standard-based	programming	model	to	develop	both	SOAP	and	REST	web	services.	The
integration	layer	(JBossWS-CXF	in	short	hereafter)	allows	us	to	perform	the	following:

	
Use	standard	web	services	APIs	(including	JAX-WS)	on	a	WildFly	Application
Server;	this	is	performed	internally	by	leveraging	Apache	CXF,	without	requiring	the
user	to	deal	with	it
Leverage	Apache	CXF’s	advanced	native	features	on	top	of	a	WildFly	Application
Server	without	the	need	for	the	user	to	deal	with	all	the	required	integration	steps	to
run	the	application	in	such	a	container

Therefore,	the	focus	of	the	next	section	will	be	on	developing	JAX-WS	web	services	using
the	built-in	Apache	CXF	configuration.	If	you	want	to	further	expand	your	knowledge
about	Apache	CXF’s	native	features,	you	can	refer	to	the	official	documentation	that	is
available	at	http://cxf.apache.org/.

www.it-ebooks.info

http://cxf.apache.org/
http://www.it-ebooks.info/

A	brief	look	at	the	JAX	WS	architecture
When	a	SOAP	message	sent	by	the	client	enters	the	web	service	runtime	environment,	it	is
captured	by	a	component	named	server	endpoint	listener,	which,	in	turn,	uses	the
Dispatcher	module	to	deliver	the	SOAP	message	to	that	service.

At	this	point,	the	HTTP	request	is	converted	internally	into	a	SOAP	message.	The	message
content	is	extracted	from	the	transport	protocol	and	processed	through	the	handler	chain
configured	for	the	web	service.

SOAP	message	handlers	are	used	to	intercept	SOAP	messages	as	they	make	their	way
from	the	client	to	the	endpoint	service	and	vice	versa.	These	handlers	intercept	SOAP
messages	for	both	the	request	and	response	of	the	web	service.

The	next	step	is	unmarshalling	the	SOAP	message	into	Java	objects.	This	process	is
governed	by	WSDL	to	Java	Mapping	and	XML	to	Java	Mapping.	The	former	is	performed
by	the	JAX-WS	engine,	and	it	determines	which	endpoint	to	invoke	from	the	SOAP
message.	The	latter,	performed	by	the	JAXB	libraries,	deserializes	the	SOAP	message	so
that	it	is	ready	to	invoke	the	endpoint	method.

Finally,	the	deserialized	SOAP	message	reaches	the	actual	web	service	implementation
and	the	method	is	invoked.

Once	the	call	is	completed,	the	process	is	reversed.	The	return	value	from	the	web	service
method	is	marshalled	into	a	SOAP	response	message	using	JAX-WS	WSDL	to	Java
mapping	and	JAXB	2.0	XML	to	Java	mapping.

Note
The	JAXB	provides	a	fast	and	convenient	way	to	bind	XML	schemas	and	Java
representations,	making	it	easy	for	Java	developers	to	incorporate	XML	data	and	process
functions	in	Java	applications.	As	part	of	this	process,	JAXB	provides	methods	to
unmarshal	XML	instance	documents	into	Java	content	trees,	and	then	marshal	Java
content	trees	back	into	XML	instance	documents.	JAXB	also	provides	a	way	to	generate
XML	schema	from	Java	objects.

Next,	the	outbound	message	is	processed	by	handlers	before	returning	it	to	the	dispatcher
and	endpoint	listener	that	will	transmit	the	message	as	an	HTTP	response.

The	following	diagram	describes	how	data	flows	from	a	web	service	client	to	a	web
service	endpoint	and	back:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Coding	SOAP	web	services	with	WildFly
In	the	first	deliverable,	we	will	show	how	easily	you	can	turn	a	plain	Java	class	into	a	web
service.	The	newly	created	service	will	then	be	tested	using	a	simple	Eclipse-based	testing
GUI.	The	second	part	of	this	section	will	draw	your	attention	to	how	EJBs	can	be	exposed
as	web	service	endpoints	by	enhancing	your	ticket	application	with	a	web	service.

Developing	a	POJO	web	service
We	will	start	developing	web	services,	using	our	project	from	Chapter	4,	Learning	Context
and	Dependency	Injection	(ticket-agency-cdi)	as	a	base.	We	will	omit	the	current	JSF-
based	web	layer	for	now.	You	can	safely	remove	all	of	the	JSF-related	classes	and
configurations.	If	you	encounter	any	problems,	remember	that	you’ll	find	a	fully	working
project	in	the	code	examples,	upon	completion	of	this	chapter.

Our	first	class	will	not	be	related	to	our	ticket	application,	but	it	will	just	demonstrate	how
to	create	a	web	service	from	a	POJO	class	named	CalculatePowerWebService.	This	class
has	a	method	named	calculatePower,	which	returns	the	power	of	an	argument,	as	shown
in	the	following	highlighted	code:
package	com.packtpub.wflydevelopment.chapter7.boundary;

public	class	CalculatePowerWebService	{

				public	double	calculatePower(double	base,	double	exponent)	{

								return	Math.pow(base,	exponent);

				}

}

Now,	we	will	turn	this	simple	class	into	a	web	service	by	adding	the	mandatory
@WebService	annotation:
package	com.packtpub.wflydevelopment.chapter7.webservice;

import	javax.jws.WebMethod;

import	javax.jws.WebParam;

import	javax.jws.WebResult;

import	javax.jws.WebService;

import	javax.jws.soap.SOAPBinding;

@WebService(targetNamespace	=	“http://www.packtpub.com/”,

								serviceName	=	“CalculatePowerService”)

@SOAPBinding(style	=	SOAPBinding.Style.RPC)

public	class	CalculatePowerWebService	{

				@WebMethod

				@WebResult(name	=	“result”)

				public	double	calculatePower(@WebParam(name	=	“base”)	double	base,

																																	@WebParam(name	=	“exponent”)	double

exponent)	{

								return	Math.pow(base,	exponent);

				}

}

Inside	the	@WebService	annotation,	you	can	specify	additional	elements,	such	as	the

www.it-ebooks.info

http://www.it-ebooks.info/

targetNamespace	element	that	declares	the	namespace	used	for	the	WSDL	elements
generated	by	the	web	service.	If	you	don’t	specify	this	element,	the	web	service	container
will	use	the	Java	package	name	to	generate	a	default	XML	namespace.

You	can	also	use	the	serviceName	element	to	specify	the	service	name.	The	name
specified	using	serviceName	is	used	to	generate	the	name	attribute	in	the	service	element
in	the	WSDL	interface.	If	you	don’t	specify	the	serviceName	element,	the	server	will
generate	it	using	the	default	value,	which	is	the	bean	class	name	appended	with	the
service.

In	the	next	row,	we	state	that	the	web	service	is	of	the	type	Remote	Procedure	Call	using
the	@javax.jws.SOAPBinding	annotation.	The	possible	values	are	DOCUMENT	and	RPC,	the
first	one	being	the	default	value.

Note
The	choice	between	the	RPC	and	Document	style	boils	down	to	the	different	ways	we	can
construct	services	using	these	two	styles.	The	body	of	an	RPC-style	SOAP	message	is
constructed	in	a	specific	way,	which	is	defined	in	the	SOAP	standard.	This	is	built	on	the
assumption	that	you	want	to	call	the	web	service	just	like	you	would	call	a	normal
function	or	method	that	is	part	of	your	application	code.

Therefore,	the	RPC	is	more	tightly	coupled	because	if	you	make	any	changes	in	the
message	structure,	you’ll	need	to	change	all	the	clients	and	servers	processing	this	kind	of
message.

A	document-style	web	service,	on	the	other	hand,	contains	no	restrictions	for	how	the
SOAP	body	must	be	constructed.	It	allows	you	to	include	whatever	XML	data	you	want
and	also	a	schema	for	this	XML.	Therefore,	the	document	style	is	probably	more	flexible,
but	the	effort	to	implement	the	web	service	and	clients	may	be	slightly	more.

In	the	end,	the	likelihood	of	change	is	a	factor	that	one	has	to	consider	when	choosing
whether	to	use	RPC-	or	Document-style	web	services.

Attaching	the	@WebMethod	attribute	to	a	public	method	indicates	that	you	want	the	method
exposed	as	part	of	the	web	service.

The	@WebParam	annotation	is	used	to	specify	the	parameter’s	name	that	needs	to	be
exhibited	in	the	WSDL.	You	should	always	consider	using	a	WebParam	annotation,
especially	when	using	multiple	parameters,	otherwise	the	WSDL	will	use	the	default
argument	parameter	(in	this	case,	arg0),	which	is	meaningless	for	web	service	consumers.

The	@WebResult	annotation	is	quite	similar	to	@WebParam	in	the	sense	that	it	can	be	used	to
specify	the	name	of	the	value	returned	by	the	WSDL.

Your	web	service	is	now	complete.	In	order	to	deploy	your	web	service,	run	the	following
Maven	goal,	which	will	package	and	deploy	your	web	service	to	your	running	WildFly
instance:

mvn	package	wildfly:deploy	

WildFly	will	provide	a	minimal	output	on	the	console;	this	will	inform	you	that	the	web
service	project	has	been	deployed	and	the	WSDL	file	has	been	generated:

www.it-ebooks.info

http://www.it-ebooks.info/

14:25:37,195	INFO		[org.jboss.weld.deployer]	(MSC	service	thread	1-11)

JBAS016005:	Starting	Services	for	CDI	deployment:	ticket-agency-ws.war

14:25:37,198	INFO		[org.jboss.ws.cxf.metadata]	(MSC	service	thread	1-11)

JBWS024061:	Adding	service	endpoint	metadata:

id=com.packtpub.wflydevelopment.chapter7.boundary.CalculatePowerWebService

address=http://localhost:8080/ticket-agency-ws/CalculatePowerService

implementor=com.packtpub.wflydevelopment.chapter7.boundary.CalculatePowerWebService

serviceName={http://www.packtpub.com/}CalculatePowerService

portName={http://www.packtpub.com/}CalculatePowerWebServicePort

annotationWsdlLocation=null

wsdlLocationOverride=null

mtomEnabled=false

From	the	short	log,	you	can	pick	up	some	useful	information.	For	example,	the	first	line
states	that	the	web	service	has	been	bound	in	the	endpoint	registry	as
{http://www.packtpub.com/}CalculatePowerService.	Next	is	the	information	about	the
web	context	path,	which,	by	default,	has	the	same	name	as	your	project,	that	is,	ticket-
agency-ws.	The	last	piece	of	information	is	about	the	web	service	address,	which	is
http://localhost:8080/ticket-agency-ws/CalculatePowerService.	By	appending	the
?wsdl	suffix	to	the	end	of	the	address,	you	can	inspect	the	web	service	contract.

Note
The	data	directory	contains	a	versioned	list	of	all	the	generated	WSDLs.	So,	you	might
find	the	entire	history	of	your	web	services	published	by	ticket-agency-ws	in
JBOSS_HOME/standalone/data/wsdl/ticket-agency-ws.war.

Inspecting	the	web	service	from	the	console
You	can	inspect	the	web	services	subsystem	by	moving	to	the	web	admin	console	and
navigating	to	Runtime	|	Status	|	Subsystems	|	Web	Services.

Here,	you	can	gather	some	useful	information	about	the	services	deployed.	In	fact,	the
most	useful	option	is	the	list	of	endpoint	contracts	available,	which	is	needed	when
developing	our	clients.	The	following	screenshot	shows	a	view	of	the	web	service
endpoints	from	the	console:

www.it-ebooks.info

http://www.it-ebooks.info/

Particularly,	in	the	lower	part	of	the	screen,	you	can	read	the	web	service	endpoint	address
that	bears	the	web	application	context	name	and	registered	name	for	the	web	service.	In
our	case,	it	is	http://localhost:8080/ticket-agency-ws/CalculatePowerService?
wsdl.

Testing	our	simple	web	service
Since	our	first	web	service	is	not	yet	connected	to	our	ticketing	system,	we	will	use	an
external	client	application	to	test	our	web	service.	One	of	the	best	tools	to	test	web
services	is	SoapUI.

SoapUI	is	a	free,	open	source,	cross-platform	functional	testing	solution	with	an	easy-to-
use	graphical	interface	and	enterprise-class	features.	This	tool	allows	you	to	create	and
execute	automated,	functional,	regression,	compliance,	and	load	tests	easily	and	rapidly.
SoapUI	is	also	available	as	an	Eclipse	plugin.

Here,	we	will	use	the	SoapUI	standalone	application.	Run	it	and	create	a	new	SOAP

www.it-ebooks.info

http://www.it-ebooks.info/

project	providing	the	URL	to	the	service	WSDL,	as	shown	in	the	following	screenshot:

After	this,	you’ll	see	a	view	containing	a	few	windows.	The	most	important	ones	show	the
request	logs	and	the	project	view	in	the	navigator	window,	as	shown	in	the	following
screenshot:

As	you	can	see,	your	service	operations	have	been	automatically	discovered.	Double-click
on	the	Request	1	tree	element;	the	SoapUI	request	window	will	appear	where	you	can
enter	the	named	parameters.	Enter	the	two	arguments	for	the	web	service,	as	shown	in	the
following	screenshot:

Click	on	the	Submit	button	on	the	toolbar	and	check	the	result	in	the	SOAP	response
window:

EJB3	Stateless	Session	Bean	(SLSB)	web	services

www.it-ebooks.info

http://www.it-ebooks.info/

The	JAX-WS	programming	model	supports	the	same	set	of	annotations	on	EJB3	Stateless
Session	Bean	as	it	does	on	POJO	endpoints.	Now	that	we	already	have	some	web	service
muscle,	we	will	engineer	one	of	the	examples	introduced	in	this	book.

Our	main	web	service	class	will	be	named	DefaultTicketWebService	and	will	use	some
of	the	core	classes	that	we	described	in	Chapter	3,	Introducing	Java	EE	7	–	EJBs,	such	as
TheatreBox,	which	will	keep	in	memory	the	ticket	bookings	and	the	Seat	class	as	the
model.	The	business	methods	of	our	web	service	will	be	described	by	a	Service	Endpoint
Interface	(SEI)	named	TicketWebService:
package	com.packtpub.wflydevelopment.chapter7.boundary;

import	javax.jws.WebService;

import	java.util.List;

@WebService

public	interface	TicketWebService	{

				List<SeatDto>	getSeats();

				void	bookSeat(int	seatId);

}

Note
Writing	the	service	interface	is	always	a	good	practice	as	it	gives	a	proper	client-side	view
of	our	Service	methods.	The	implementation	class	can	then	implement	the	methods
defined	in	the	interface.

We	will	now	implement	the	interface	by	providing	the	business	logic	to	the	interface
methods	in	the	DefaultTicketWebService	class:
package	com.packtpub.wflydevelopment.chapter7.boundary;

import	javax.inject.Inject;

import	javax.jws.WebMethod;

import	javax.jws.WebParam;

import	javax.jws.WebResult;

import	javax.jws.WebService;

import	java.io.Serializable;

import	java.util.List;

import	java.util.stream.Collectors;

@WebService(targetNamespace	=	“http://www.packtpub.com/”,	serviceName	=

“TicketWebService”)

public	class	DefaultTicketWebService	implements	TicketWebService,

Serializable	{

				@Inject

				private	TheatreBox	theatreBox;

				@WebMethod

				@WebResult(name	=	“listSeats”)

				public	List<SeatDto>	getSeats()	{

								return	theatreBox.getSeats()

www.it-ebooks.info

http://www.it-ebooks.info/

																									.stream()

																									.map(SeatDto::fromSeat)

																									.collect(Collectors.toList());

				}

				@WebMethod

				public	void	bookSeat(@WebParam(name	=	“seatId”)	int	seatId)	{

								theatreBox.buyTicket(seatId);

				}

}

As	you	can	see,	the	implementation	class	contains	the	getSeats	method,	which	returns	the
list	of	seats	that	are	self-generated	when	the	TheatreBox	object	is	initialized.	The
bookSeat	method	will	be	able	to	book	seats	for	your	web	service	clients	as	well.

Now	deploy	your	web	service	and	verify	on	the	console	that	it	has	been	correctly
registered:

00:43:12,033	INFO		[org.jboss.ws.cxf.metadata]	(MSC	service	thread	1-13)

JBWS024061:	Adding	service	endpoint	metadata:

id=com.packtpub.wflydevelopment.chapter7.boundary.DefaultTicketWebService

address=http://localhost:8080/ticket-agency-ws/TicketWebService

implementor=com.packtpub.wflydevelopment.chapter7.boundary.DefaultTicketWebService

serviceName={http://www.packtpub.com/}TicketWebService

portName={http://www.packtpub.com/}DefaultTicketWebServicePort

annotationWsdlLocation=null

wsdlLocationOverride=null

mtomEnabled=false

Developing	a	web	service	consumer
The	web	service	consumer	of	the	TicketWebService	class	will	be	coded	using	the
standard	Java	SE	classes.	We	want	to	show	here	how	to	use	these	standard	APIs.	For	this
reason,	you	can	just	add	a	class	named	TicketWebServiceTestApplication	to	your
current	or	a	separate	project	in	the	package
com.packtpub.wflydevelopment.chapter7.webservice:
package	com.packtpub.wflydevelopment.chapter7.webservice;

import	com.packtpub.wflydevelopment.chapter7.boundary.SeatDto;

import	com.packtpub.wflydevelopment.chapter7.boundary.TicketWebService;

import	javax.xml.namespace.QName;

import	javax.xml.ws.Service;

import	java.net.MalformedURLException;

import	java.net.URL;

import	java.util.Collection;

import	java.util.List;

import	java.util.logging.Logger;

public	class	TicketWebServiceTestApplication	{

				private	static	final	Logger	logger	=

Logger.getLogger(TicketWebServiceTestApplication.class.getName());

www.it-ebooks.info

http://www.it-ebooks.info/

				public	static	void	main(String[]	args)	throws	MalformedURLException	{

								final	int	seatId	=	1;

								logger.info(“TEST	SOAP	WS	Service”);

								final	URL	wsdlURL	=	new	URL(“http://localhost:8080/ticket-agency-

ws/TicketWebService?wsdl”);

								final	QName	SERVICE_NAME	=	new	QName(“http://www.packtpub.com/”,

“TicketWebService”);

								final	Service	service	=	Service.create(wsdlURL,	SERVICE_NAME);

								final	TicketWebService	infoService	=

service.getPort(TicketWebService.class);

								logger.info(“Got	the	Service:	”	+	infoService);

								infoService.bookSeat(seatId);

								logger.info(“Ticket	Booked	with	JAX-WS	Service”);

								final	List<SeatDto>	list	=	infoService.getSeats();

								dumpSeatList(list);

				}

				private	static	void	dumpSeatList(Collection<SeatDto>	list)	{

								logger.info(“=================	Available	Ticket	List

================”);

								list.stream().forEach(seat	->	logger.info(seat.toString()));

				}

}

The	service	WSDL	URL	and	name	are	needed	for	retrieval	of	the	Service	object.	Finally,
the	getPort	method	will	return	a	proxy	to	your	web	service	that	can	be	used	to	test	two
basic	operations:	booking	a	seat	and	checking	from	the	Seat	list	if	the	seat	has	actually
been	reserved.

This	small	standalone	class	has	shown	how	it	is	possible	to	use	SOAP-based	services	from
the	client-side	perspective.

The	most	interesting	part,	however,	is	at	the	bottom	of	the	Maven	output,	where	the
Ticket	list	is	dumped	after	booking	one	seat,	as	depicted	in	the	following	command	line:

apr	01,	2014	1:08:44	AM

com.packtpub.wflydevelopment.chapter7.webservice.TicketWebServiceTestApplication

main

INFO:	TEST	SOAP	WS	Service

apr	01,	2014	1:08:44	AM

com.packtpub.wflydevelopment.chapter7.webservice.TicketWebServiceTestApplication

main

INFO:	Got	the	Service:	JAX-WS	RI	2.2.9-b130926.1035	svn-

revision#8c29a9a53251ff741fca1664a8221dc876b2eac8:	Stub	for

http://localhost:8080/ticket-agency-ws/TicketWebService

apr	01,	2014	1:08:44	AM

com.packtpub.wflydevelopment.chapter7.webservice.TicketWebServiceTestApplication

main

INFO:	Ticket	Booked	with	JAX-WS	Service

apr	01,	2014	1:08:44	AM

com.packtpub.wflydevelopment.chapter7.webservice.TicketWebServiceTestApplication

www.it-ebooks.info

http://www.it-ebooks.info/

dumpSeatList

INFO:	=================	Available	Ticket	List	================

apr	01,	2014	1:08:44	AM

com.packtpub.wflydevelopment.chapter7.webservice.TicketWebServiceTestApplication

lambda$dumpSeatList$0

INFO:	SeatDto	[id=1,	name=Stalls,	price=40,	booked=true]

apr	01,	2014	1:08:44	AM

com.packtpub.wflydevelopment.chapter7.webservice.TicketWebServiceTestApplication

lambda$dumpSeatList$0

INFO:	SeatDto	[id=2,	name=Stalls,	price=40,	booked=false]

…

www.it-ebooks.info

http://www.it-ebooks.info/

Developing	REST-based	web	services
JAX-RS	2.0	(JSR-339	can	be	found	at	https://jcp.org/en/jsr/detail?id=339)	is	a	JCP
specification	that	provides	a	Java	API	for	RESTful	web	services	in	the	HTTP	protocol.	It
is	a	major	refresh	from	the	old	Version	1.1.	Some	of	the	new	features	are	the	client	API,
HATEOAS	support,	and	asynchronous	calls.

In	their	simplest	form,	RESTful	web	services	are	networked	applications	that	manipulate
the	state	of	system	resources.	In	this	context,	resource	manipulation	means	resource
creation,	retrieval,	updatation,	and	deletion	(CRUD).	However,	RESTful	web	services	are
not	limited	to	just	these	four	basic	data	manipulation	concepts.	On	the	contrary,	RESTful
web	services	can	execute	logic	at	the	server	level	but	remember	that	every	result	must	be	a
resource	representation	of	the	domain.

The	main	difference	with	SOAP	web	services	is	that	REST	asks	developers	to	use	HTTP
methods	explicitly	and	in	a	way	that’s	consistent	with	the	protocol	definition.	This	basic
REST	design	principle	establishes	a	one-to-one	mapping	between	CRUD	operations	and
HTTP	methods.

Therefore,	with	the	delineated	roles	for	resources	and	representations,	we	can	now	map
our	CRUD	actions	to	the	HTTP	methods	POST,	GET,	PUT,	and	DELETE	as	follows:

Action HTTP	protocol	equivalent

RETRIEVE GET

CREATE POST

UPDATE PUT

DELETE DELETE

www.it-ebooks.info

https://jcp.org/en/jsr/detail?id=339
http://www.it-ebooks.info/

Accessing	REST	resources
As	we	said,	REST	resources	can	be	accessed	using	actions	that	map	an	equivalent	HTTP
request.	In	order	to	simplify	the	development	of	REST	applications,	you	can	use	simple
annotations	to	map	your	actions;	for	example,	in	order	to	retrieve	some	data	from	your
application,	you	can	use	something	similar	to	the	following:

@Path(“/users”)

public	class	UserResource	{

				@GET

				public	String	handleGETRequest()	{	…}

				@POST

				public	String	handlePOSTRequest(String	payload)	{	…	}

}

The	first	annotation,	@Path,	in	our	example	is	used	to	specify	the	URI	that	is	assigned	to
this	web	service.	Subsequent	methods	have	their	specific	@Path	annotation	so	that	you	can
provide	a	different	response	according	to	the	URI	requested.

Then,	we	have	an	@GET	annotation	that	maps	an	HTTP	GET	request	and	an	@POST
annotation	that	handles	an	HTTP	POST	request.	So,	in	this	example,	if	we	were	to	request
for	a	web	application	bound	to	the	example	web	context,	an	HTTP	GET	request	to	the	URL
http://host/example/users	would	trigger	the	handleGETRequest	method;	on	the	other
hand,	an	HTTP	POST	request	to	the	same	URL	would	conversely	invoke	the
handlePOSTRequest	method.

www.it-ebooks.info

http://www.it-ebooks.info/

JBoss	REST	web	services
Having	understood	the	basics	of	REST	services,	let’s	see	how	we	can	develop	a	RESTful
web	service	using	WildFly.	The	application	server	includes	an	out-of-the-box	RESTEasy
library	that	is	a	portable	implementation	of	the	JSR-339	specification.	RESTEasy	can	run
in	any	servlet	container;	however,	it	is	perfectly	integrated	with	WildFly,	thus	making	the
user	experience	nicer	in	that	environment.

Besides	the	server-side	specification,	in	the	past,	RESTEasy	has	been	innovative	in
bringing	JAX-RS	to	the	client	through	the	RESTEasy	JAX-RS	Client	Framework.
However,	the	latest	version	of	the	JAX-RS	specification	comes	with	a	client	API,	which
we	can	use	in	every	JAX-RS	implementation.

Activating	JAX-RS
RESTEasy	is	bundled	with	WildFly,	so	you	need	very	little	effort	to	get	started.	You	have
two	choices.	The	first	one	is	to	use	the	@ApplicationPath	annotation	in	a	class	that
extends	javax.ws.rs.core.Application:
@ApplicationPath(“/rest”)

public	class	JaxRsActivator	extends	Application	{

}

The	second	choice	is	less	popular	and	used	to	configure	the	application	using	a	web.xml
file:
<?xml	version=“1.0”	encoding=“UTF-8”?>

<web-app	xmlns=“http://java.sun.com/xml/ns/j2ee”

xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”

				xsi:schemaLocation=“http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_3_0.xsd”	version=“3.0”>

				<servlet>

								<servlet-name>javax.ws.rs.core.Application</servlet-name>

								<load-on-startup>1</load-on-startup>

				</servlet>

				<servlet-mapping>

								<servlet-name>javax.ws.rs.core.Application</servlet-name>

								<url-pattern>/rest/*</url-pattern>

				</servlet-mapping>

</web-app>

This	simply	means	that	if	we	were	to	deploy	our	former	example,	the	HTTP	GET	method,
http://host/example/rest/users	would	trigger	our	getUser	business	method,	while	the
same	URL	will	place	a	request	through	the	handlePOSTRequest	method	using	a	POST
request.

Adding	REST	to	our	ticket	example
With	all	the	configurations	in	place,	we	can	now	add	a	simple	REST	web	service	to	our
Ticket	Web	Service	project,	which	will	provide	the	same	functionalities	as	our	SOAP
web	service.

So	add	a	new	class	to	your	project	and	name	it	SeatsResource.	The	code	for	this	is	as

www.it-ebooks.info

http://www.it-ebooks.info/

follows:
package	com.packtpub.wflydevelopment.chapter7.boundary;

@Path(“/seat”)

@Produces(MediaType.APPLICATION_JSON)

@RequestScoped

public	class	SeatsResource	{

				@Inject

				private	TheatreBooker	theatreBooker;

				@Inject

				private	TheatreBox	theatreBox;

				@GET

				public	Collection<SeatDto>	getSeatList()	{

								return	theatreBox.getSeats()

																	.stream()

																	.map(SeatDto::fromSeat)

																	.collect(Collectors.toList());

				}

				@POST

				@Path(“/{id}”)

				public	Response	bookPlace(@PathParam(“id”)	int	id)	{

								try	{

												theatreBooker.bookSeat(id);

												return	Response.ok(SeatDto.fromSeat(theatreBox.getSeat(id)))

													.build();

								}	catch	(Exception	e)	{

												final	Entity<String>	errorMessage	=	Entity

																																									.json(e.getMessage());

												return	Response.status(Response.Status.BAD_REQUEST)

																							.entity(errorMessage).build();

								}

				}

}

If	you	have	understood	our	earlier	section	well,	this	code	will	be	almost	intuitive	to	you.
We	have	included	two	methods	here,	just	like	the	SOAP	alter	ego;	the	former	one	is
named	getSeatList,	which	is	bound	to	an	HTTP	GET	request	and	produces	the	list	of
Seats.	The	list	is	returned	using	a	JSON	representation	that	is	pretty	common	when
returning	Java	objects	to	the	client.

Note
The	grammar	for	JSON	objects	is	simple	and	requires	the	grouping	of	the	data	definition
and	data	values;	it	is	as	follows:

	
Elements	are	enclosed	within	curly	brackets	({	and	})
Values	of	elements	come	in	pairs	with	the	structure	of	name:value	and	are	comma
separated
Arrays	are	enclosed	within	square	brackets	([and])

www.it-ebooks.info

http://www.it-ebooks.info/

That’s	all	there	is	to	it	(for	the	full	JSON	grammar	description,	visit	http://www.json.org/).

The	second	method	included	in	this	class	is	bookPlace,	which	will	be	used	to	invoke	the
corresponding	bookSeat	class	of	our	EJB.	This	method,	on	the	other	hand,	is	bound	to	the
following	HTTP	POST	method:
@POST

@Path(“/{id}”)

public	Response	bookPlace(@PathParam(“id”)	int	id)

You	might	be	thinking	that	this	Path	expression	seems	a	bit	weird,	but	all	it	does	is	map	a
URI	parameter	(included	in	the	Path	expression)	to	a	method	parameter.	In	short,	the
parameter	that	is	included	in	the	URL	will	be	passed	to	the	method	in	the	ID	variable.

The	previous	method	also	returns	a	JSON-formatted	string	that	is	encoded	and	decoded
using	Jackson	(by	default,	it	is	possible	to	create	your	own	message	body	providers!),	a
library	that	transforms	POJOs	to	JSON	(and	vice	versa).

Before	we	proceed,	we	need	to	extend	our	sample	with	a	new	resource	account,	which	will
allow	us	to	check	the	cash	status	and	optionally	reset	it:
package	com.packtpub.wflydevelopment.chapter7.boundary;

@Path(“/account”)

@Produces(MediaType.APPLICATION_JSON)

@RequestScoped

public	class	AccountResource	{

				@Inject

				private	TheatreBooker	theatreBooker;

				@GET

				public	AccountDto	getAccount()	{

								return	AccountDto

																	.fromAccount(theatreBooker.getCurrentAccount());

				}

				@POST

				public	Response	renew()	{

								theatreBooker.createCustomer();

								return	Response

								.ok(AccountDto.fromAccount(theatreBooker.getCurrentAccount()))

								.build();

				}

}

The	account	representation	is	available,	as	shown	in	the	following	code:
package	com.packtpub.wflydevelopment.chapter7.entity;

public	class	Account	{

				private	final	int	balance;

				public	Account(int	initialBalance)	{

								this.balance	=	initialBalance;

				}

www.it-ebooks.info

http://www.json.org/
http://www.it-ebooks.info/

				public	Account	charge(int	amount)	{

								final	int	newBalance	=	balance	-	amount;

								if	(newBalance	<	0)	{

												throw	new	IllegalArgumentException(“Debit	value	on	account!”);

								}

								return	new	Account(newBalance);

				}

				public	int	getBalance()	{

								return	balance;

				}

				@Override

				public	String	toString()	{

								return	“Account	[balance	=	”	+	balance	+	“]”;

				}

}

The	last	step	is	to	update	our	TheatreBooker	class	to	use	our	new	account	representation:
				private	Account	currentAccount;

				@PostConstruct

				public	void	createCustomer()	{

								currentAccount	=	new	Account(100);

				}

				public	void	bookSeat(int	seatId)	{

								logger.info(“Booking	seat	”	+	seatId);

								final	int	seatPrice	=	theatreBox.getSeatPrice(seatId);

								if	(seatPrice	>	currentAccount.getBalance())	{

												throw	new	IllegalArgumentException(“Not	enough	money!”);

								}

								theatreBox.buyTicket(seatId);

								currentAccount	=	currentAccount.charge(seatPrice);

								logger.info(“Seat	booked.”);

				}

				public	Account	getCurrentAccount()	{

								return	currentAccount;

				}

Note
The	newest	version	of	JAX-RS	also	supports	server-side	asynchronous	responses.	Thanks
to	the	@Suspended	annotation	and	the	AsyncResponse	class,	you	can	use	a	separate
(possibly	delayed)	thread	to	handle	a	request	call.

Adding	filters
JAX-RS	allows	us	to	define	filters	and	interceptors	for	both	the	client	and	server.	They
allow	the	developer	to	address	cross-cutting	concerns,	such	as	security,	auditing,	or

www.it-ebooks.info

http://www.it-ebooks.info/

compression.	Basically,	you	can	treat	filters	and	interceptors	as	extension	points.

Filters	are	used	mainly	on	headers	of	requests	and	responses.	For	example,	you	can	block
a	request	based	on	its	header	fields	or	log	only	failed	requests.	On	the	contrary,
interceptors	deal	with	message	bodies,	for	example,	you	can	sign	or	compress	the
messages.	Interceptors	also	come	in	two	flavors:	one	for	reading	(they	are	executed	when
a	message	is	translated	into	a	POJO,	for	example	JSON	to	SeatDto)	and	one	for	writing
(they	are	used	for	POJO	to	message	translation).

We	can	add	a	simple	server-side	logging	filter	to	our	application	by	creating	the	following
class:
package	com.packtpub.wflydevelopment.chapter7.controller;

import	java.io.IOException;

import	java.util.logging.Logger;

import	javax.inject.Inject;

import	javax.ws.rs.container.ContainerRequestContext;

import	javax.ws.rs.container.ContainerRequestFilter;

import	javax.ws.rs.container.ContainerResponseContext;

import	javax.ws.rs.container.ContainerResponseFilter;

import	javax.ws.rs.ext.Provider;

@Provider

public	class	LoggingRestFilter	implements	ContainerRequestFilter,

ContainerResponseFilter	{

				@Inject

				private	Logger	logger;

				@Override

				public	void	filter(ContainerRequestContext	requestContext,

ContainerResponseContext	responseContext)

												throws	IOException	{

								logger.info(responseContext.getStatusInfo().toString());

				}

				@Override

				public	void	filter(ContainerRequestContext	requestContext)	throws

IOException	{

								logger.info(requestContext.getMethod()	+	”	on	”	+

requestContext.getUriInfo().getPath());

				}

}

As	you	can	see,	we	implement	two	pretty	straightforward	interfaces:
ContainerRequestFilter	and	ContainerResponseFilter.	We	simply	log	some
information	about	the	HTTP	request	and	response.	To	activate	the	filter,	we	use	the
@Provider	annotation;	without	additional	configuration,	the	filter	will	work	for	every
REST	resource	in	our	application.	Additionally,	if	we	would	like	to	reject	a	request	in	the
filter,	there	is	a	requestContext.abortWith	method.

The	client	side	has	two	corresponding	interfaces:	ClientRequestFilter	and
ClientResponseFilter.	The	implementations,	however,	must	be	registered	manually.

www.it-ebooks.info

http://www.it-ebooks.info/

Now	the	REST	service	is	complete	and	we	can	start	deploying	it	in	the	usual	way:

mvn	package	wildfly:deploy

If	you	followed	all	the	steps	so	far,	the	http://localhost:8080/ticket-agency-
ws/rest/seat	GET	method	issued	by	your	browser	should	print	out	the	list	of	available
seats:
[{“id”:0,“name”:“Stalls”,“price”:40,“booked”:false},

{“id”:1,“name”:“Stalls”,“price”:40,“booked”:false},

{“id”:2,“name”:“Stalls”,“price”:40,“booked”:false},

{“id”:3,“name”:“Stalls”,“price”:40,“booked”:false},

{“id”:4,“name”:“Stalls”,“price”:40,“booked”:false},

…	…

Going	to	http://localhost:8080/ticket-agency-ws/rest/account	will	result	in:
{“balance”:100}

You	should	also	see	some	log	statements	from	our	filter	in	the	console,	for	instance:

19:52:45,906	INFO	

[com.packtpub.wflydevelopment.chapter7.controller.LoggingRestFilter]

(default	task-10)	GET	on	/seat

19:52:45,909	INFO	

[com.packtpub.wflydevelopment.chapter7.controller.LoggingRestFilter]

(default	task-10)	OK

20:29:04,275	INFO	

[com.packtpub.wflydevelopment.chapter7.controller.LoggingRestFilter]

(default	task-14)	GET	on	/account

20:29:04,313	INFO	

[com.packtpub.wflydevelopment.chapter7.controller.LoggingRestFilter]

(default	task-14)	OK

Consuming	our	REST	service
Connecting	to	a	RESTful	web	service	takes	no	more	work	than	directly	connecting	to	the
service	through	an	HTTP	connection.	For	this	reason,	you	can	use	plenty	of	APIs	to	access
your	REST	services,	such	as	the	JDK	URLConnection	class	or	Jakarta	Commons
HttpClient	API,	since	we	have	a	standardized	client	available	in	JAX-RS.

If	you	want	to	retrieve	the	list	of	Seats	from	your	REST	service,	your	code	should	look
like	this:
Client	restclient	=	ClientBuilder.newClient();

WebTarget	seatResource	=	restclient.target(APPLICATION_URL	+	“seat”);

Collection<SeatDto>	seats	=	seatResource.request().get(new

GenericType<Collection<SeatDto>>()	{});

The	previous	code	will	simply	perform	a	GET	action	to	the	REST	service	that	is	deployed
as	part	of	the	ticket-agency-ws	web	application.	RESTEasy	(using	Jackson)	will
transform	the	JSON	objects.

The	following	standalone	sample	will	get	the	data	from	the	account	and	seat	resources	and
attempt	to	book	all	of	the	available	seats:
public	class	RestServiceTestApplication	{

www.it-ebooks.info

http://www.it-ebooks.info/

				private	static	final	String	APPLICATION_URL	=

“http://localhost:8080/ticket-agency-ws/rest/”;

				private	WebTarget	accountResource;

				private	WebTarget	seatResource;

				public	static	void	main(String[]	args)	{

								new	RestServiceTestApplication().runSample();

				}

				public	RestServiceTestApplication()	{

								Client	restclient	=	ClientBuilder.newClient();

								accountResource	=	restclient.target(APPLICATION_URL	+	“account”);

								seatResource	=	restclient.target(APPLICATION_URL	+	“seat”);

				}

				public	void	runSample()	{

								printAccountStatusFromServer();

								System.out.println(“===	Current	status:	“);

								Collection<SeatDto>	seats	=	getSeatsFromServer();

								printSeats(seats);

								System.out.println(“===	Booking:	“);

								bookSeats(seats);

								System.out.println(“===	Status	after	booking:	“);

								Collection<SeatDto>	bookedSeats	=	getSeatsFromServer();

								printSeats(bookedSeats);

								printAccountStatusFromServer();

				}

				private	void	printAccountStatusFromServer()	{

								AccountDto	account	=

accountResource.request().get(AccountDto.class);

								System.out.println(account);

				}

				private	Collection<SeatDto>	getSeatsFromServer()	{

								return	seatResource.request().get(new

GenericType<Collection<SeatDto>>()	{	});

				}

				private	void	printSeats(Collection<SeatDto>	seats)	{

								seats.forEach(System.out::println);

				}

				private	void	bookSeats(Collection<SeatDto>	seats)	{

								for	(SeatDto	seat	:	seats)	{

												try	{

																String	idOfSeat	=	Integer.toString(seat.getId());

																seatResource.path(idOfSeat).request().post(Entity.json(””),

String.class);

																System.out.println(seat	+	”	booked”);

www.it-ebooks.info

http://www.it-ebooks.info/

												}	catch	(WebApplicationException	e)	{

																Response	response	=	e.getResponse();

																StatusType	statusInfo	=	response.getStatusInfo();

																System.out.println(seat	+	”	not	booked	(”	+

statusInfo.getReasonPhrase()	+	“):”	response.readEntity(JsonObject.class).

getString(“entity”));

												}

								}

				}

}

In	the	highlighted	fragments,	you	can	see	the	REST	calls	used	to	retrieve	the	data	and
booking	seats.	Our	post	call	requires	an	ID	to	be	specified;	we	do	that	by	using	the	path
method	of	the	request	builder.	It	is	also	possible	to	make	the	call	asynchronously,	using
the	async	method	and	a	Future	object:
Future<Collection<SeatDto>>	future	=	seatResource.request()

								.async().get(new	GenericType<Collection<SeatDto>>()	{});

We	can	use	the	new	CompletableFuture	class	from	Java	8	to	be	notified	about	the
completion	of	a	request:
CompletableFuture.<Collection<SeatDto>>	supplyAsync(()	->	{

				try	{

								return	future.get();

				}	catch	(Exception	e)	{

								e.printStackTrace();

								throw	new	IllegalArgumentException(e);

				}

}).thenAccept(seats	->	seats.forEach(System.out::println));

After	receiving	the	data,	we	simply	print	it	out.	Another	option	is	to	simply	create	an
InvocationCallback	class	and	pass	it	as	a	second	argument	to	the	get	method.

Compiling	our	ticket	example
Our	sample	can	reside	in	a	separate	Maven	module	or	you	can	leave	it	with	the	server
content	(although	it	is	not	a	good	practice).	In	order	to	compile	our	client	project	with	the
REST	web	service,	we	need	to	import	the	JAX-RS	API	that	is	included	in	the	application
server	libraries.	We	will	need	the	following	dependencies	in	our	standalone	application:
<properties>

			…

				<version.resteasy-client>3.0.6.Final</version.resteasy-client>

</properties>

<dependencies>

				<dependency>

								<groupId>org.jboss.resteasy</groupId>

								<artifactId>resteasy-client</artifactId>

								<version>	${version.resteasy-client}</version>

				</dependency>

				<dependency>

								<groupId>org.jboss.resteasy</groupId>

								<artifactId>resteasy-json-p-provider</artifactId>

								<version>	${version.resteasy-client}</version>

www.it-ebooks.info

http://www.it-ebooks.info/

				</dependency>

				<dependency>

								<groupId>org.jboss.resteasy</groupId>

								<artifactId>resteasy-jackson-provider</artifactId>

								<version>	${version.resteasy-client}</version>

				</dependency>

				<dependency>

								<groupId>com.packtpub.wflydevelopment.chapter7</groupId>

								<artifactId>ticket-agency-ws</artifactId>

								<version>1.0</version>

				</dependency>

</dependencies>

If	you	have	any	problems	with	the	creation	of	the	POM	file,	you	can	look	it	up	in	the
samples	that	are	distributed	with	this	book.

Now	simply	run	your	application,	and	you	should	see	something	similar	to	the	following
console	output:

AccountDto	[balance=100]

===	Current	status:	

SeatDto	[id=1,	name=Stalls,	price=40,	booked=false]

SeatDto	[id=2,	name=Stalls,	price=40,	booked=false]

SeatDto	[id=3,	name=Stalls,	price=40,	booked=false]

SeatDto	[id=4,	name=Stalls,	price=40,	booked=false]

SeatDto	[id=5,	name=Stalls,	price=40,	booked=false]

SeatDto	[id=6,	name=Circle,	price=20,	booked=false]

SeatDto	[id=7,	name=Circle,	price=20,	booked=false]

…

Adding	AngularJS
Our	samples	for	the	REST	integration	are	not	very	spectacular.	However,	because	we
expose	the	functionality	of	our	application	via	a	REST	API,	it	is	easy	to	create	a	non-Java
GUI,	which	can	be	used	to	control	the	application.

To	create	a	GUI	that	uses	only	the	REST	API	to	communicate	with	our	Java	backend,	we
will	use	a	popular	JavaScript	framework:	AngularJS	(http://angularjs.org/).	We	won’t	get
into	too	much	detail	of	the	JavaScript	code.	The	most	interesting	part	for	us	is	the	usage	of
our	REST	API,	which	we	currently	consume	only	in	a	Java	application.

As	seen	in	Chapter	5,	Combining	Persistence	with	CDI,	we	will	use	WebJars.	This	time,
apart	from	Bootstrap,	we	need	the	AngularJS	(preferably	in	Version	3.x)	and	Angular	UI
Bootstrap	package	(http://angular-ui.github.io/bootstrap/):
<dependency>

				<groupId>org.webjars</groupId>

				<artifactId>bootstrap</artifactId>

				<version>3.2.0</version>

</dependency>

<dependency>

				<groupId>org.webjars</groupId>

				<artifactId>angularjs</artifactId>

www.it-ebooks.info

http://angularjs.org/
http://angular-ui.github.io/bootstrap/
http://www.it-ebooks.info/

				<version>1.3.0-rc.1</version>

</dependency>

<dependency>

				<groupId>org.webjars</groupId>

				<artifactId>angular-ui-bootstrap</artifactId>

				<version>0.11.0-2</version>

</dependency>

Note
Remember	that	all	the	files	that	are	required	to	run	this	sample	are	available	with	the	code
attached	to	this	book.

We	will	need	an	index.html	file	to	start	our	work	and	an	empty	scripts	directory	to	store
our	logic.	Our	directory	structure	should	currently	look	like	this:

In	the	index.html	file,	we	need	to	add	all	the	required	libraries	along	with	our	well-
known	Bootstrap	structure:
<!doctype	html>

<html	lang=“en”	ng-app=“ticketApp”>

<head>

				<meta	charset=“utf-8”>

				<title>Ticket	Service</title>

				<link	rel=“stylesheet”

href=““webjars/bootstrap/3.2.0/css/bootstrap.css”>

				<link	rel=“stylesheet”	href=““webjars/bootstrap/3.2.0/css/bootstrap-

theme.css”>

				<style>

								body	{

												padding-top:	60px;

								}

				</style>

</head>

<body>

<div	class=“navbar	navbar-inverse	navbar-fixed-top”	role=“navigation”>

</div>

<div	class=“container”	ng-controller=“SeatCtrl”>

				<footer>

								<p	class=“text-muted”>©	Packt	Publishing	2014</p>

				</footer>

</div>

<script	src=“webjars/angularjs/1.3.0-rc.1/angular.js”></script>

www.it-ebooks.info

http://www.it-ebooks.info/

<script	src=“webjars/angularjs/1.3.0-rc.1/angular-resource.js”></script>

<script	src=“webjars/angularjs/1.3.0-rc.1/angular-route.js”></script>

<script	src=“webjars/angular-ui-bootstrap/0.11.0/ui-bootstrap-tpls.js”>

</script>

<script	src=“scripts/app.js”></script>

<script	src=“scripts/controllers/seat.js”></script>

<script	src=“scripts/services/seatservice.js”></script>

<script	src=“scripts/services/accountservice.js”></script>

</body>

</html>

You	may	have	also	noticed	two	strange-looking	attributes	in	the	html	tags:	ng-app	and	ng-
controller.	These	are	AngularJS	directives	that	point	to	the	web	page	being	an
AngularJS	application,	and	that	the	container	div	will	use	a	SeatCtrl	controller.

Now,	we	will	need	the	following	files	placed	in	our	scripts	directory.	The	first	one	is	the
initialization	file	app.js:
‘use	strict’;

angular.module(‘ticketApp’,	[‘ngResource’,	‘ngRoute’,	‘ui.bootstrap’])

				.config(function	($routeProvider)	{

								$routeProvider.when(‘/’,	{

												controller:	‘SeatCtrl’

								}).otherwise({

												redirectTo:	‘/’

								});

				});

Next	we	will	initialize	the	address	of	our	seat	resource	in
scripts/services/seatservice.js:
‘use	strict’;

angular.module(‘ticketApp’).service(‘SeatService’,

				function	SeatService($resource)	{

								return	$resource(‘rest/seat/:seatId’,	{

												seatId:	‘@id’

								},	{

												query:	{

																method:	‘GET’,

																isArray:	true

												},

												book:	{

																method:	‘POST’

												}

								});

				});

As	you	can	see,	we	mapped	our	REST	URL	to	the	JavaScript	code	along	with	two	HTTP
methods:	GET	and	POST.	They	will	be	called	by	the	controller	to	communicate	with	the
server;	the	same	goes	for	our	account	resource,	as	shown	in	the	following	code:
‘use	strict’;

angular.module(‘ticketApp’).service(‘AccountService’,

				function	AccountService($resource)	{

								return	$resource(‘rest/account’,	{},	{

												query:	{

www.it-ebooks.info

http://www.it-ebooks.info/

																method:	‘GET’,

																isArray:	false

												},

												reset:	{

																method:	‘POST’

												}

								});

				});

Finally,	we	create	a	simple	controller	to	place	our	logic	at
scripts/controllers/seat.js:
‘use	strict’;

angular.module(‘ticketApp’).controller(

				‘SeatCtrl’,

				function	($scope,	SeatService,	AccountService)	{

								$scope.seats	=	SeatService.query();

								$scope.account	=	AccountService.query();

								$scope.alerts	=	[];

								$scope.bookTicket	=	function	(seat)	{

												seat.$book({},	function	success()	{

																$scope.account.$query();

												},	function	err(httpResponse)	{

																$scope.alerts.push({

																				type:	‘danger’,

																				msg:	‘Error	booking	ticket	for	seat	‘

																								+	httpResponse.config.data.id	+	‘:	‘

																								+	httpResponse.data.entity

																});

												});

								};

								$scope.closeAlert	=	function	(index)	{

												$scope.alerts.splice(index,	1);

								};

								$scope.clearWarnings	=	function	()	{

												$scope.alerts.length	=	0;

								};

								$scope.resetAccount	=	function	()	{

												$scope.account.$reset();

								};

				});

The	highlighted	portions	of	code	are	calls	to	the	services	we	defined	previously.	For
instance,	$scope.seats	=	SeatService.query()	will	issue	a	GET	request	to	retrieve	a	list
of	seats	in	the	JSON	format.	The	case	for	seat.$book	is	similar;	it	will	issue	a	POST
request	to	book	a	specific	seat.

Our	whole	JavaScript	logic	is	now	in	place.	One	final	move	is	to	place	some	HTML	code
bound	to	it	in	our	index.html	file.	Insert	the	following	code	in	the	index.html	file,	inside
the	content	div:
			<alert	ng-repeat=“alert	in	alerts”	type=“alert.type”

											close=“closeAlert($index)”>{{alert.msg}}

				</alert>

www.it-ebooks.info

http://www.it-ebooks.info/

				<div	class=“panel	panel-default”>

								<div	class=“panel-heading”>

												<h3	class=“panel-title”>Ticket	booking</h3>

								</div>

								<div	class=“panel-body”>

												<p>

																Remaining	money:	{{account.balance}}

												</p>

												

												<button	type=“button”	class=“btn	btn-primary	btn-xs”

																				ng-click=“clearWarnings()”>Clear	warnings

												</button>

												<button	type=“button”	class=“btn	btn-warning	btn-xs”

																				ng-click=“resetAccount()”>Reset	account

												</button>

								</div>

								<table	class=“table	table-hover	table-striped”>

												<thead><th>ID</th><th>Name</th><th>Price</th>

<th>Booked</th>							<th>Book</th></thead>

												<tbody>

												<tr	ng-repeat=“seat	in	seats”>

																<td>{{seat.id}}</td>

																<td>{{seat.name}}</td>

																<td>${{seat.price}}</td>

																<td><span

																								class=“glyphicon	glyphicon-{{seat.booked	?	‘ok’

:‘remove’}}”></td>

																<td>

																				<button	type=“button”

																												class=“btn	btn-primary	{{seat.booked?

‘disabled’	:”}}	btn-xs”	ng-click=“bookTicket(seat)”>Book

																				</button>

																</td>

												</tr>

												</tbody>

								</table>

The	code	is	similar	to	the	JSF	tables	we	created	in	the	earlier	chapters.	What	is	important
to	us	is	that	the	{{	}}	symbols	are	used	by	AngularJS	to	bind	the	displayed	data	with	a
variable	in	a	controller,	which,	in	fact,	is	a	representation	of	our	REST	endpoints.

Additionally,	the	ng-click	directives	are	bound	to	the	appropriate	methods	in	the
controller.	The	bookTicket	method	issues	a	seat.$book	call,	which	is	propagated	as	a
POST	request	to	our	backend.

We	can	now	deploy	our	application	to	the	server.	After	going	to
http://localhost:8080/ticket-agency-ws/index.html	in	your	browser,	you	should
see	your	application	running,	as	shown	in	the	following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

You	can	use	the	developer’s	tools	in	Chrome	(or	FireBug	in	Mozilla	Firefox)	to	inspect	the
rest	calls	that	are	done	against	the	server;	simply	press	F12	and	switch	to	the	Network
tab:

www.it-ebooks.info

http://www.it-ebooks.info/

Congratulations!	You	have	just	created	a	modern	Internet	application	and	combined	it	with
a	REST	API	that	was	earlier	used	by	a	standalone	console	application!

www.it-ebooks.info

http://www.it-ebooks.info/

Choosing	between	SOAP	and	REST	services
The	choice	of	adopting	SOAP	rather	than	REST	depends	on	your	application’s
requirements.	SOAP	web	services	are	exposed	using	their	own	well-defined	protocol	and
focus	on	exposing	pieces	of	application	logic	as	services.	So	if	your	requirement	is	to
consume	business	services	that	are	exposed	using	a	well-defined	and	negotiated	contract
(between	the	service	consumer	and	service	provider),	SOAP	web	services	are	a	perfect
match.

On	the	other	hand,	if	you	need	to	access	some	server	resources	using	stateless	HTTP
invocations	and	as	little	as	possible	of	the	navigation	bar	of	your	browser,	you	should
probably	go	with	RESTful	web	services.

That	being	said,	there	may	still	be	some	scenarios	that	could	fit	both	the	options,	and	you
are	free	to	choose	whichever	web	service	suits	your	requirements	the	best.	Recently,
REST	has	gained	popularity,	thanks	to	its	interoperability.	We	use	only	the	HTTP	protocol
and	JSON,	which	almost	every	language	can	handle.	Therefore,	a	REST	API	developed
using	Java	EE	can	be	used	by	a	wide	variety	of	clients	along	with	mobile	devices.	Often,
this	feature	is	a	deal	breaker	when	it	comes	to	designing	a	system.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	introduced	some	of	the	basic	web	services	concepts	so	that	you	could
get	acquainted	with	these	technologies	before	using	them	to	enhance	your	ticket
application.

Then,	we	went	through	SOAP-based	web	services	that	are	based	on	a	contract	between	the
service	and	client	defined	by	the	WSDL	file.	SOAP	web	services	are	an	excellent	option	to
integrate	systems	when	you	have	well-defined,	abstract	operations	exposed	using	standard
XML	files.

Then,	we	discussed	REST	services.	The	key	to	the	REST	methodology	is	to	write	web
services	using	an	interface	that	is	already	well	known	and	widely	used:	the	URI.	The	twist
here	is	to	identify	the	key	system	resources	(this	can	be	entities,	collections,	or	anything
else	the	designer	thinks	is	worthy	of	having	its	own	URI)	and	expose	them	using	standard
methods	that	are	mapped	to	standard	methods.	In	this	case,	the	HTTP	verbs	are	mapped	to
resource-specific	semantics.

We	created	two	applications	that	use	our	REST	API:	one	console-based	and	one	written
purely	in	JavaScript	using	AngularJS.	Both	of	these	use	the	same	REST	endpoints	and	the
second	one	knows	only	about	JSON;	it	has	no	idea	about	the	Java	classes	underneath	(or
even	about	Java).

We	discussed	application	server	resources	a	lot.	In	the	next	chapter,	we	will	explore
another	approach	for	client-server	communication:	WebSockets.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	8.	Adding	WebSockets
WebSockets	are	one	of	the	biggest	additions	in	Java	EE	7.	In	this	chapter,	we	will	explore
the	new	possibilities	that	they	provide	to	a	developer.	In	our	ticket	booking	applications,
we	already	used	a	wide	variety	of	approaches	to	inform	the	clients	about	events	occurring
on	the	server	side.	These	include	the	following:

	
JSF	polling
Java	Messaging	Service	(JMS)	messages
REST	requests
Remote	EJB	requests

All	of	them,	besides	JMS,	were	based	on	the	assumption	that	the	client	will	be	responsible
for	asking	the	server	about	the	state	of	the	application.	In	some	cases,	such	as	checking
whether	someone	else	has	not	booked	a	ticket	during	our	interaction	with	the	application,
this	is	a	wasteful	strategy;	the	server	is	in	the	position	to	inform	clients	when	it	is	needed.
What’s	more,	it	feels	like	the	developer	must	hack	the	HTTP	protocol	to	get	a	notification
from	a	server	to	the	client.	This	is	a	requirement	that	has	to	be	implemented	in	most	web
applications,	and	therefore,	deserves	a	standardized	solution	that	can	be	applied	by	the
developers	in	multiple	projects	without	much	effort.

WebSockets	are	changing	the	game	for	developers.	They	replace	the	request-response
paradigm	in	which	the	client	always	initiates	the	communication	with	a	two-point
bidirectional	messaging	system.	After	the	initial	connection,	both	sides	can	send
independent	messages	to	each	other	as	long	as	the	session	is	alive.	This	means	that	we	can
easily	create	web	applications	that	will	automatically	refresh	their	state	with	up-to-date
data	from	the	server.	You	probably	have	already	seen	this	kind	of	behavior	in	Google	Docs
or	live	broadcasts	on	news	sites.	Now	we	can	achieve	the	same	effect	in	a	simpler	and
more	efficient	way	than	in	earlier	versions	of	Java	Enterprise	Edition.	In	this	chapter,	we
will	try	to	leverage	these	new,	exciting	features	that	come	with	WebSockets	in	Java	EE	7
thanks	to	JSR	356	(https://jcp.org/en/jsr/detail?id=356)	and	HTML5.

In	this	chapter,	you	will	learn	the	following	topics:

	
How	WebSockets	work
How	to	create	a	WebSocket	endpoint	in	Java	EE	7
How	to	create	an	HTML5/AngularJS	client	that	will	accept	push	notifications	from
an	application	deployed	on	WildFly

www.it-ebooks.info

https://jcp.org/en/jsr/detail?id=356
http://www.it-ebooks.info/

An	overview	of	WebSockets
A	WebSocket	session	between	the	client	and	server	is	built	upon	a	standard	TCP
connection.	Although	the	WebSocket	protocol	has	its	own	control	frames	(mainly	to	create
and	sustain	the	connection)	coded	by	the	Internet	Engineering	Task	Force	in	the	RFC	6455
(http://tools.ietf.org/html/rfc6455),	the	peers	are	not	obliged	to	use	any	specific	format	to
exchange	application	data.	You	may	use	plaintext,	XML,	JSON,	or	anything	else	to
transmit	your	data.	As	you	probably	remember,	this	is	quite	different	from	SOAP-based
WebServices,	which	had	bloated	specifications	of	the	exchange	protocol.	The	same	goes
for	RESTful	architectures;	we	no	longer	have	the	predefined	verb	methods	from	HTTP
(GET,	PUT,	POST,	and	DELETE),	status	codes,	and	the	whole	semantics	of	an	HTTP
request.

This	liberty	means	that	WebSockets	are	pretty	low	level	compared	to	the	technologies	that
we	have	used	up	to	this	point,	but	thanks	to	this,	the	communication	overhead	is	minimal.
The	protocol	is	less	verbose	than	SOAP	or	RESTful	HTTP,	which	allows	us	to	achieve
higher	performance.	This,	however,	comes	with	a	price.	We	usually	like	to	use	the	features
of	higher-level	protocols	(such	as	horizontal	scaling	and	rich	URL	semantics),	and	with
WebSockets,	we	would	need	to	write	them	by	hand.	For	standard	CRUD-like	operations,	it
would	be	easier	to	use	a	REST	endpoint	than	create	everything	from	scratch.

What	do	we	get	from	WebSockets	compared	to	the	standard	HTTP	communication?	First
of	all,	a	direct	connection	between	two	peers.	Normally,	when	you	connect	to	a	web	server
(which	can,	for	instance,	handle	a	REST	endpoint),	every	subsequent	call	is	a	new	TCP
connection,	and	your	machine	is	treated	like	it	is	a	different	one	every	time	you	make	a
request.	You	can,	of	course,	simulate	a	stateful	behavior	(so	that	the	server	will	recognize
your	machine	between	different	requests)	using	cookies	and	increase	the	performance	by
reusing	the	same	connection	in	a	short	period	of	time	for	a	specific	client,	but	basically,	it
is	a	workaround	to	overcome	the	limitations	of	the	HTTP	protocol.

Once	you	establish	a	WebSocket	connection	between	a	server	and	client,	you	can	use	the
same	session	(and	underlying	TCP	connection)	during	the	whole	communication.	Both
sides	are	aware	of	it	and	can	send	data	independently	in	a	full-duplex	manner	(both	sides
can	send	and	receive	data	simultaneously).	Using	plain	HTTP,	there	is	no	way	for	the
server	to	spontaneously	start	sending	data	to	the	client	without	any	request	from	its	side.
What’s	more,	the	server	is	aware	of	all	of	its	connected	WebSocket	clients,	and	can	even
send	data	between	them!

The	current	solution	that	includes	trying	to	simulate	real-time	data	delivery	using	HTTP
protocol	can	put	a	lot	of	stress	on	the	web	server.	Polling	(asking	the	server	about
updates),	long	polling	(delaying	the	completion	of	a	request	to	the	moment	when	an
update	is	ready),	and	streaming	(a	Comet-based	solution	with	a	constantly	open	HTTP
response)	are	all	ways	to	hack	the	protocol	to	do	things	that	it	wasn’t	designed	for	and
have	their	own	limitations.	Thanks	to	the	elimination	of	unnecessary	checks,	WebSockets
can	heavily	reduce	the	number	of	HTTP	requests	that	have	to	be	handled	by	the	web
server.	The	updates	are	delivered	to	the	user	with	a	smaller	latency	because	we	only	need
one	round-trip	through	the	network	to	get	the	desired	information	(it	is	pushed	by	the
server	immediately).

www.it-ebooks.info

http://tools.ietf.org/html/rfc6455
http://www.it-ebooks.info/

All	of	these	features	make	WebSockets	a	great	addition	to	the	Java	EE	platform,	which
fills	the	gaps	needed	to	easily	finish	specific	tasks,	such	as	sending	updates,	notifications,
and	orchestrating	multiple	client	interactions.	Despite	these	advantages,	WebSockets	are
not	intended	to	replace	REST	or	SOAP	WebServices.	They	do	not	scale	so	well
horizontally	(they	are	hard	to	distribute	because	of	their	stateful	nature),	and	they	lack
most	of	the	features	that	are	utilized	in	web	applications.	URL	semantics,	complex
security,	compression,	and	many	other	features	are	still	better	realized	using	other
technologies.

www.it-ebooks.info

http://www.it-ebooks.info/

How	do	WebSockets	work
To	initiate	a	WebSocket	session,	the	client	must	send	an	HTTP	request	with	an	Upgrade:
websocket	header	field.	This	informs	the	server	that	the	peer	client	has	asked	the	server	to
switch	to	the	WebSocket	protocol.

Note
You	may	notice	that	the	same	happens	in	WildFly	for	Remote	EJBs;	the	initial	connection
is	made	using	an	HTTP	request,	and	is	later	switched	to	the	remote	protocol	thanks	to	the
Upgrade	mechanism.	The	standard	Upgrade	header	field	can	be	used	to	handle	any
protocol,	other	than	HTTP,	which	is	accepted	by	both	sides	(the	client	and	server).	In
WildFly,	this	allows	you	to	reuse	the	HTTP	port	(80/8080)	for	other	protocols	and
therefore	minimise	the	number	of	required	ports	that	should	be	configured.

If	the	server	can	“understand”	the	WebSocket	protocol,	the	client	and	server	then	proceed
with	the	handshaking	phase.	They	negotiate	the	version	of	the	protocol,	exchange	security
keys,	and	if	everything	goes	well,	the	peers	can	go	to	the	data	transfer	phase.	From	now
on,	the	communication	is	only	done	using	the	WebSocket	protocol.	It	is	not	possible	to
exchange	any	HTTP	frames	using	the	current	connection.	The	whole	life	cycle	of	a
connection	can	be	summarized	in	the	following	diagram:

A	sample	HTTP	request	from	a	JavaScript	application	to	a	WildFly	server	would	look
similar	to	this:

www.it-ebooks.info

http://www.it-ebooks.info/

GET	/ticket-agency-websockets/tickets	HTTP/1.1

Upgrade:	websocket

Connection:	Upgrade

Host:	localhost:8080

Origin:	http://localhost:8080Pragma:	no-cache

Cache-Control:	no-cache

Sec-WebSocket-Key:	TrjgyVjzLK4Lt5s8GzlFhA==

Sec-WebSocket-Version:	13

Sec-WebSocket-Extensions:	permessage-deflate;	client_max_window_bits,	x-

webkit-deflate-frame

User-Agent:	Mozilla/5.0	(Windows	NT	6.3;	WOW64)	AppleWebKit/537.36	(KHTML,

like	Gecko)	Chrome/34.0.1847.116	Safari/537.36

Cookie:	[45	bytes	were	stripped]

We	can	see	that	the	client	requests	an	upgrade	connection	with	WebSocket	as	the	target
protocol	on	the	URL	/ticket-agency-websockets/tickets.	It	additionally	passes
information	about	the	requested	version	and	key.

If	the	server	supports	the	request	protocol	and	all	the	required	data	is	passed	by	the	client,
then	it	would	respond	with	the	following	frame:

HTTP/1.1	101	Switching	Protocols

X-Powered-By:	Undertow	1

Server:	Wildfly	8

Origin:	http://localhost:8080

Upgrade:	WebSocket

Sec-WebSocket-Accept:	ZEAab1TcSQCmv8RsLHg4RL/TpHw=

Date:	Sun,	13	Apr	2014	17:04:00	GMT

Connection:	Upgrade

Sec-WebSocket-Location:	ws://localhost:8080/ticket-agency-

websockets/tickets

Content-Length:	0

The	status	code	of	the	response	is	101	(switching	protocols)	and	we	can	see	that	the	server
is	now	going	to	start	using	the	WebSocket	protocol.	The	TCP	connection	initially	used	for
the	HTTP	request	is	now	the	base	of	the	WebSocket	session	and	can	be	used	for
transmissions.	If	the	client	tries	to	access	a	URL,	which	is	only	handled	by	another
protocol,	then	the	server	can	ask	the	client	to	do	an	upgrade	request.	The	server	uses	the
426	(upgrade	required)	status	code	in	such	cases.

Note
The	initial	connection	creation	has	some	overhead	(because	of	the	HTTP	frames	that	are
exchanged	between	the	peers),	but	after	it	is	completed,	new	messages	have	only	2	bytes
of	additional	headers.	This	means	that	when	we	have	a	large	number	of	small	messages,
WebSocket	will	be	an	order	of	magnitude	faster	than	REST	protocols	simply	because	there
is	less	data	to	transmit!

If	you	are	wondering	about	the	browser	support	of	WebSockets,	you	can	look	it	up	at
http://caniuse.com/websockets.	All	new	versions	of	major	browsers	currently	support
WebSockets;	the	total	coverage	is	estimated	(at	the	time	of	writing)	at	74	percent.	You	can
see	this	in	the	following	screenshot:

www.it-ebooks.info

http://caniuse.com/websockets
http://www.it-ebooks.info/

After	this	theoretical	introduction,	we	are	ready	to	jump	into	action.	We	can	now	create
our	first	WebSocket	endpoint!

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	our	first	endpoint
Let’s	start	with	a	simple	example:
package	com.packtpub.wflydevelopment.chapter8.boundary;

import	javax.websocket.EndpointConfig;

import	javax.websocket.OnOpen;

import	javax.websocket.Session;

import	javax.websocket.server.ServerEndpoint;

import	java.io.IOException;

@ServerEndpoint(“/hello”)

public	class	HelloEndpoint	{

				@OnOpen

				public	void	open(Session	session,	EndpointConfig	conf)	throws

IOException	{

								session.getBasicRemote().sendText(“Hi!”);

				}

}

Java	EE	7	specification	has	taken	into	account	developer	friendliness,	which	can	be
clearly	seen	in	the	given	example.	In	order	to	define	your	WebSocket	endpoint,	you	just
need	a	few	annotations	on	a	Plain	Old	Java	Object	(POJO).	The	first	annotation
@ServerEndpoint(“/hello”)	defines	a	path	to	your	endpoint.	It’s	a	good	time	to	discuss
the	endpoint’s	full	address.	We	placed	this	sample	in	the	application	named	ticket-
agency-websockets.	During	the	deployment	of	application,	you	can	spot	information	in
the	WildFly	log	about	endpoints	creation,	as	shown	in	the	following	command	line:

02:21:35,182	INFO		[io.undertow.websockets.jsr]	(MSC	service	thread	1-7)

UT026003:	Adding	annotated	server	endpoint	class

com.packtpub.wflydevelopment.chapter8.boundary.FirstEndpoint	for	path

/hello

02:21:35,401	INFO		[org.jboss.resteasy.spi.ResteasyDeployment]	(MSC	service

thread	1-7)	Deploying	javax.ws.rs.core.Application:	class

com.packtpub.wflydevelopment.chapter8.webservice.JaxRsActivator$Proxy$_$$_WeldClientProxy

02:21:35,437	INFO		[org.wildfly.extension.undertow]	(MSC	service	thread	1-

7)	JBAS017534:	Registered	web	context:	/ticket-agency-websockets

The	full	URL	of	the	endpoint	is	ws://localhost:8080/ticket-agency-
websockets/hello,	which	is	just	a	concatenation	of	the	server	and	application	address
with	an	endpoint	path	on	an	appropriate	protocol.

The	second	used	annotation	@OnOpen	defines	the	endpoint	behavior	when	the	connection
from	the	client	is	opened.	It’s	not	the	only	behavior-related	annotation	of	the	WebSocket
endpoint.	Let’s	look	to	the	following	table:

Annotation Description

@OnOpen
The	connection	is	open.	With	this	annotation,	we	can	use	the	Session	and	EndpointConfig	parameters.	The	first	parameter	represents	the	connection	to	the	user	and	allows	further	communication.	The
second	one	provides	some	client-related	information.

@OnMessage This	annotation	is	executed	when	a	message	from	the	client	is	being	received.	In	such	a	method,	you	can	just	have	Session	and	for	example,	the	String	parameter,	where	the	String	parameter

www.it-ebooks.info

http://www.it-ebooks.info/

represents	the	received	message.

@OnError There	are	bad	times	when	an	error	occurs.	With	this	annotation,	you	can	retrieve	a	Throwable	object	apart	from	standard	Session.

@OnClose When	the	connection	is	closed,	it	is	possible	to	get	some	data	concerning	this	event	in	the	form	of	the	CloseReason	type	object.

There	is	one	more	interesting	line	in	our	HelloEndpoint.	Using	the	Session	object,	it	is
possible	to	communicate	with	the	client.	This	clearly	shows	that	in	WebSockets,	two-
directional	communication	is	easily	possible.	In	this	example,	we	decided	to	respond	to	a
connected	user	synchronously	(getBasicRemote())	with	just	a	text	message	Hi!
(sendText	(String)).	Of	course,	it’s	also	possible	to	communicate	asynchronously	and
send,	for	example,	sending	binary	messages	using	your	own	binary	bandwidth	saving
protocol.	We	will	present	some	of	these	processes	in	the	next	example.

www.it-ebooks.info

http://www.it-ebooks.info/

Expanding	our	client	application
It’s	time	to	show	how	you	can	leverage	the	WebSocket	features	in	real	life.	In	the	previous
chapter,	Chapter	7,	Adding	Web	Services	to	Your	Applications,	we	created	the	ticket
booking	application	based	on	the	REST	API	and	AngularJS	framework.	It	was	clearly
missing	one	important	feature:	the	application	did	not	show	information	concerning	ticket
purchases	of	other	users.	This	is	a	perfect	use	case	for	WebSockets!

Since	we’re	just	adding	a	feature	to	our	previous	app,	we	will	only	describe	the	changes
we	will	introduce	to	it.

In	this	example,	we	would	like	to	be	able	to	inform	all	current	users	about	other	purchases.
This	means	that	we	have	to	store	information	about	active	sessions.	Let’s	start	with	the
registry	type	object,	which	will	serve	this	purpose.	We	can	use	a	Singleton	session	bean
for	this	task,	as	shown	in	the	following	code:
@Singleton

public	class	SessionRegistry	{

				private	final	Set<Session>	sessions	=	new	HashSet<>();

				@Lock(LockType.READ)

				public	Set<Session>	getAll()	{

								return	Collections.unmodifiableSet(sessions);

				}

				@Lock(LockType.WRITE)

				public	void	add(Session	session)	{

								sessions.add(session);

				}

				@Lock(LockType.WRITE)

				public	void	remove(Session	session)	{

								sessions.remove(session);

				}

}

We	could	use	Collections.synchronizedSet	from	standard	Java	libraries	but	it’s	a	great
chance	to	remember	what	we	described	in	Chapter	3,	Introducing	Java	EE	7	–	EJBs,	about
container-based	concurrency.	In	SessionRegistry,	we	defined	some	basic	methods	to
add,	get,	and	remove	sessions.	For	the	sake	of	collection	thread	safety	during	retrieval,	we
return	an	unmodifiable	view.

We	defined	the	registry,	so	now	we	can	move	to	the	endpoint	definition.	We	will	need	a
POJO,	which	will	use	our	newly	defined	registry	as	shown:

@ServerEndpoint(“/tickets”)

public	class	TicketEndpoint	{

				@Inject

				private	SessionRegistry	sessionRegistry;

				@OnOpen

www.it-ebooks.info

http://www.it-ebooks.info/

				public	void	open(Session	session,	EndpointConfig	conf)	{

								sessionRegistry.add(session);

				}

				@OnClose

				public	void	close(Session	session,	CloseReason	reason)	{

								sessionRegistry.remove(session);

				}

				public	void	send(@Observes	Seat	seat)	{

								sessionRegistry.getAll().forEach(session	->

session.getAsyncRemote().sendText(toJson(seat)));

				}

				private	String	toJson(Seat	seat)	{

								final	JsonObject	jsonObject	=	Json.createObjectBuilder()

																.add(“id”,	seat.getId())

																.add(“booked”,	seat.isBooked())

																.build();

								return	jsonObject.toString();

				}

}

Our	endpoint	is	defined	in	the	/tickets	address.	We	injected	a	SessionRepository	to	our
endpoint.	During	@OnOpen,	we	add	Sessions	to	the	registry,	and	during	@OnClose,	we	just
remove	them.	Message	sending	is	performed	on	the	CDI	event	(the	@Observers
annotation),	which	is	already	fired	in	our	code	during	TheatreBox.buyTicket(int).	In
our	send	method,	we	retrieve	all	sessions	from	SessionRepository,	and	for	each	of	them,
we	asynchronously	send	information	about	booked	seats.	We	don’t	really	need
information	about	all	the	Seat	fields	to	realize	this	feature.	That’s	the	reason	why	we	don’t
use	the	automatic	JSON	serialization	we	know	from	the	last	chapter	here.	Instead,	we
decided	to	use	a	minimalistic	JSON	object,	which	provides	only	the	required	data.	To	do
this,	we	used	the	new	Java	API	for	JSON	Processing	(JSR-353).	Using	a	fluent-like	API,
we’re	able	to	create	a	JSON	object	and	add	two	fields	to	it.	Then,	we	just	convert	JSON	to
the	string,	which	is	sent	in	a	text	message.

Because	in	our	example	we	send	messages	in	response	to	a	CDI	event,	we	don’t	have	(in
the	event	handler)	an	out-of-the-box	reference	to	any	of	the	sessions.	We	have	to	use	our
sessionRegistry	object	to	access	the	active	ones.	However,	if	we	would	like	to	do	the
same	thing	but,	for	example,	in	the	@OnMessage	method,	then	it	is	possible	to	get	all	active
sessions	just	by	executing	the	session.getOpenSessions()	method.

These	are	all	the	changes	required	to	perform	on	the	backend	side.	Now,	we	have	to
modify	our	AngularJS	frontend	to	leverage	the	added	feature.	The	good	news	is	that
JavaScript	already	includes	classes	that	can	be	used	to	perform	WebSocket
communication!	There	are	a	few	lines	of	code	we	have	to	add	inside	the	module	defined	in
the	seat.js	file,	which	are	as	follows:
var	ws	=	new	WebSocket(“ws://localhost:8080/ticket-agency-

websockets/tickets”);

ws.onmessage	=	function	(message)	{

				var	receivedData	=	message.data;

				var	bookedSeat	=	JSON.parse(receivedData);

www.it-ebooks.info

http://www.it-ebooks.info/

				$scope.$apply(function	()	{

								for	(var	i	=	0;	i	<	$scope.seats.length;	i++)	{

												if	($scope.seats[i].id	===	bookedSeat.id)	{

																$scope.seats[i].booked	=	bookedSeat.booked;

																break;

												}

								}

				});

};

The	code	is	very	simple.	We	just	create	the	WebSocket	object	using	the	URL	to	our
endpoint,	and	then	we	define	the	onmessage	function	in	that	object.	During	the	function
execution,	the	received	message	is	automatically	parsed	from	the	JSON	to	JavaScript
object.	Then,	in	$scope.$apply,	we	just	iterate	through	our	seats,	and	if	the	ID	matches,
we	update	the	booked	state.	We	have	to	use	$scope.$apply	because	we	are	touching	an
Angular	object	from	outside	the	Angular	world	(the	onmessage	function).	Modifications
performed	on	$scope.seats	are	automatically	visible	on	the	website.	With	this,	we	can
just	open	our	ticket	booking	website	in	two	browser	sessions,	and	see	that	when	one	user
buys	a	ticket,	the	second	users	sees	almost	instantly	that	the	seat	state	is	changed	to
booked.

We	can	enhance	our	application	a	little	to	inform	users	if	the	WebSocket	connection	is
really	working.	Let’s	just	define	onopen	and	onclose	functions	for	this	purpose:
ws.onopen	=	function	(event)	{

				$scope.$apply(function	()	{

								$scope.alerts.push({

												type:	‘info’,

												msg:	‘Push	connection	from	server	is	working’

								});

				});

};

ws.onclose	=	function	(event)	{

				$scope.$apply(function	()	{

								$scope.alerts.push({

												type:	‘warning’,

												msg:	‘Error	on	push	connection	from	server	‘

								});

				});

};

To	inform	users	about	a	connection’s	state,	we	push	different	types	of	alerts.	Of	course,
again	we’re	touching	the	Angular	world	from	the	outside,	so	we	have	to	perform	all
operations	on	Angular	from	the	$scope.$apply	function.

Running	the	described	code	results	in	the	notification,	which	is	visible	in	the	following
screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

However,	if	the	server	fails	after	opening	the	website,	you	might	get	an	error	as	shown	in
the	following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Transforming	POJOs	to	JSON
In	our	current	example,	we	transformed	our	Seat	object	to	JSON	manually.	Normally,	we
don’t	want	to	do	it	this	way;	there	are	many	libraries	that	will	do	the	transformation	for	us.
One	of	them	is	GSON	from	Google.	Additionally,	we	can	register	an	encoder/decoder
class	for	a	WebSocket	endpoint	that	will	do	the	transformation	automatically.	Let’s	look	at
how	we	can	refactor	our	current	solution	to	use	an	encoder.

First	of	all,	we	must	add	GSON	to	our	classpath.	The	required	Maven	dependency	is	as
follows:
<dependency>

				<groupId>com.google.code.gson</groupId>

				<artifactId>gson</artifactId>

				<version>2.3</version>

</dependency>

Next,	we	need	to	provide	an	implementation	of	the	javax.websocket.Encoder.Text
interface.	There	are	also	versions	of	the	javax.websocket.Encoder.Text	interface	for
binary	and	streamed	data	(for	both	binary	and	text	formats).	A	corresponding	hierarchy	of
interfaces	is	also	available	for	decoders	(javax.websocket.Decoder).	Our	implementation
is	rather	simple.	This	is	shown	in	the	following	code	snippet:
public	class	JSONEncoder	implements	Encoder.Text<Object>	{

				private	Gson	gson;

				@Override

				public	void	init(EndpointConfig	config)	{

								gson	=	new	Gson();	[1]

				}

				@Override

				public	void	destroy()	{

								//	do	nothing

				}

				@Override

				public	String	encode(Object	object)	throws	EncodeException	{

								return	gson.toJson(object);	[2]

				}

}

First,	we	create	an	instance	of	GSON	in	the	init	method;	this	action	will	be	executed
when	the	endpoint	is	created.	Next,	in	the	encode	method,	which	is	called	every	time,	we
send	an	object	through	an	endpoint.	We	use	JSON	command	to	create	JSON	from	an
object.	This	is	quite	concise	when	we	think	how	reusable	this	little	class	is.	If	you	want
more	control	on	the	JSON	generation	process,	you	can	use	the	GsonBuilder	class	to
configure	the	Gson	object	before	creation.	We	have	the	encoder	in	place.	Now	it’s	time	to
alter	our	endpoint:

@ServerEndpoint(value	=	“/tickets”,	encoders={JSONEncoder.class})[1]

public	class	TicketEndpoint	{

www.it-ebooks.info

http://www.it-ebooks.info/

				@Inject

				private	SessionRegistry	sessionRegistry;

				@OnOpen

				public	void	open(Session	session,	EndpointConfig	conf)	{

								sessionRegistry.add(session);

				}

				@OnClose

				public	void	close(Session	session,	CloseReason	reason)	{

								sessionRegistry.remove(session);

				}

				public	void	send(@Observes	Seat	seat)	{

								sessionRegistry.getAll().forEach(session	->

session.getAsyncRemote().sendObject(seat));	[2]

				}

}

The	first	change	is	done	on	the	@ServerEndpoint	annotation.	We	have	to	define	a	list	of
supported	encoders;	we	simply	pass	our	JSONEncoder.class	wrapped	in	an	array.
Additionally,	we	have	to	pass	the	endpoint	name	using	the	value	attribute.

Earlier,	we	used	the	sendText	method	to	pass	a	string	containing	a	manually	created
JSON.	Now,	we	want	to	send	an	object	and	let	the	encoder	handle	the	JSON	generation;
therefore,	we’ll	use	the	getAsyncRemote().sendObject()	method.	And	that’s	all.	Our
endpoint	is	ready	to	be	used.	It	will	work	the	same	as	the	earlier	version,	but	now	our
objects	will	be	fully	serialized	to	JSON,	so	they	will	contain	every	field,	not	only	id	and
booked.

After	deploying	the	server,	you	can	connect	to	the	WebSocket	endpoint	using	one	of	the
Chrome	extensions,	for	instance,	the	Dark	WebSocket	terminal	from	the	Chrome	store
(use	the	ws://localhost:8080/ticket-agency-websockets/tickets	address).	When
you	book	tickets	using	the	web	application,	the	WebSocket	terminal	should	show
something	similar	to	the	output	shown	in	the	following	screenshot:

Of	course,	it	is	possible	to	use	different	formats	other	than	JSON.	If	you	want	to	achieve
better	performance	(when	it	comes	to	the	serialization	time	and	payload	size),	you	may
want	to	try	out	binary	serializers	such	as	Kryo	(https://github.com/EsotericSoftware/kryo).
They	may	not	be	supported	by	JavaScript,	but	may	come	in	handy	if	you	would	like	to	use

www.it-ebooks.info

https://github.com/EsotericSoftware/kryo
http://www.it-ebooks.info/

WebSockets	for	other	clients	too.	Tyrus	(https://tyrus.java.net/)	is	a	reference
implementation	of	the	WebSocket	standard	for	Java;	you	can	use	it	in	your	standalone
desktop	applications.	In	that	case,	besides	the	encoder	(which	is	used	to	send	messages),
you	would	also	need	to	create	a	decoder,	which	can	automatically	transform	incoming
messages.

www.it-ebooks.info

https://tyrus.java.net/
http://www.it-ebooks.info/

An	alternative	to	WebSockets
The	example	we	presented	in	this	chapter	is	possible	to	be	implemented	using	an	older,
lesser-known	technology	named	Server-Sent	Events	(SSE).	SSE	allows	for	one-way
communication	from	the	server	to	client	over	HTTP.	It	is	much	simpler	than	WebSockets
but	has	a	built-in	support	for	things	such	as	automatic	reconnection	and	event	identifiers.
WebSockets	are	definitely	more	powerful,	but	are	not	the	only	way	to	pass	events,	so
when	you	need	to	implement	some	notifications	from	the	server	side,	remember	about
SSE.

Another	option	is	to	explore	the	mechanisms	oriented	around	the	Comet	techniques.
Multiple	implementations	are	available	and	most	of	them	use	different	methods	of
transportation	to	achieve	their	goals.	A	comprehensive	comparison	is	available	at
http://cometdaily.com/maturity.html.

www.it-ebooks.info

http://cometdaily.com/maturity.html
http://www.it-ebooks.info/

Summary
In	this	chapter,	we	managed	to	introduce	the	new	low-level	type	of	communication.	We
presented	how	it	works	underneath	and	compares	to	SOAP	and	REST	introduced	in	the
previous	chapter.	We	also	discussed	how	the	new	approach	changes	the	development	of
web	applications.

Our	ticket	booking	application	was	further	enhanced	to	show	users	the	changing	state	of
the	seats	using	push-like	notifications.	The	new	additions	required	very	little	code	changes
in	our	existing	project	when	we	take	into	account	how	much	we	are	able	to	achieve	with
them.	The	fluent	integration	of	WebSockets	from	Java	EE	7	with	the	AngularJS
application	is	another	great	showcase	of	flexibility,	which	comes	with	the	new	version	of
the	Java	EE	platform.

In	the	next	chapter,	you	will	learn	more	about	WildFly	administration	and	management,	so
that	we	can	explore	more	system-wide	features	of	Java	EE	7	in	the	following	chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	9.	Managing	the	Application	Server
So	far,	we	have	covered	many	Java	Enterprise	examples	and	deployed	them	on	the
application	server.	We	will	now	dive	headlong	into	the	vast	and	varied	ocean	of
instruments	that	are	available	to	manage	the	application	server.	The	purpose	of	this
chapter	is	to	teach	you	how	to	use	these	instruments	to	administer	and	monitor	all	the
resources	available	on	the	application	server.

Here	is	the	list	of	topics	we	will	cover	in	this	chapter:

	
An	introduction	to	the	WildFly	Command-line	Interface	(CLI)
How	to	create	scripts	with	the	CLI
How	to	programmatically	manage	your	server	resources	using	scripting	languages
and	WildFly’s	client	API
How	to	enforce	role-based	security	for	administrators

www.it-ebooks.info

http://www.it-ebooks.info/

Entering	the	WildFly	CLI
A	CLI	is	a	complete	management	tool	that	can	be	used	to	start	and	stop	servers,	deploy
and	undeploy	applications,	configure	system	resources,	and	perform	other	administrative
tasks.	Operations	in	it	can	be	executed	in	an	atomic	way	or	in	batch	modes,	allowing	you
to	run	multiple	tasks	as	a	group.

www.it-ebooks.info

http://www.it-ebooks.info/

Launching	the	CLI
If	you	are	using	Windows,	you	can	start	the	CLI	by	entering	the	following	command	from
the	JBOSS_HOME/bin	folder	using	the	Command	Prompt:

jboss-cli.bat

Alternatively,	enter	the	following	command	if	you	are	using	Linux:

./jboss-cli.sh

Once	the	CLI	has	started,	you	can	connect	to	the	managed	server	instance	using	the
connect	command,	which	by	default	connects	to	localhost	and	the	9990	port:

[disconnected	/]	connect

[standalone@localhost:9990	/]

If	you	want	to	connect	to	another	address	or	port,	you	can	simply	pass	it	to	the	connect
command,	as	follows:

[disconnected	/]	connect	192.168.1.1

[standalone@192.168.1.1:9990	/]

It	is	also	possible	to	launch	a	CLI	in	the	connected	mode;	this	allows	it	to	be	connected
automatically	and	to	possibly	specify	the	commands	to	be	executed.	For	example,	the
following	shell	command	automatically	connects	to	a	WildFly	instance	and	issues	a
shutdown	command:

>	jboss-cli.bat	—connect	command=:shutdown

{“outcome”	=>	“success”}

CLI	is	especially	useful	for	the	automation	of	your	software	development	process
—Continuous	Integration	(CI)	and	production	environment	management	systems	can
automatically	control	the	life	cycle	of	your	application	server	with	tools	such	as	Chef
(https://www.getchef.com/)	or	Puppet	(http://puppetlabs.com/).	It	might	be	handy	if	you
would	like	to	minimize	the	number	of	manual	tasks	that	are	required	to	be	done	to	deploy
an	application.

Connecting	from	remote	hosts
Starting	from	the	7.1.0	Beta	release	of	the	application	server,	security	is	enabled	on	AS
management	interfaces	by	default	to	prevent	unauthorized	remote	access	to	the	application
server.	Although	local	clients	of	the	application	server	are	still	allowed	to	access
management	interfaces	without	any	authentication,	remote	clients	need	to	enter	a
username/password	pair	to	access	a	CLI.	Here’s	an	example	session	that	successfully
connects	to	a	remote	host	with	the	IP	address	10.13.2.255:

[disconnected	/]	connect	10.13.2.255

Authenticating	against	security	realm:	ManagementRealm

Username:	administrator

www.it-ebooks.info

https://www.getchef.com/
http://puppetlabs.com/
http://www.it-ebooks.info/

Password:

[standalone@10.13.2.255:9990	/]

Please	refer	to	Chapter	2,	Your	First	Java	EE	Application	on	WildFly,	for	more
information	about	creating	a	user	with	the	add-user.sh	shell	command.

Using	a	CLI	in	the	graphical	mode
An	interesting	option	available	for	the	command-line	interface	is	the	graphical	mode,
which	can	be	activated	by	adding	the	—gui	parameter	to	the	shell	script:

jboss-cli.bat	—gui

Here’s	how	CLI	looks	in	the	graphical	mode:

As	described	in	the	label,	the	resource	will	expand	when	you	click	on	a	folder;	on	the
other	hand,	if	you	right-click	on	a	node,	you	can	fire	an	operation	on	it.	The	graphical
mode	could	be	useful	to	explore	the	possible	configuration	values	or	if	you	are	not	a	big
fan	of	console	tools.

The	next	section	discusses	how	to	construct	CLI	commands,	which	can	be	executed	either
in	the	terminal	mode	or	the	graphical	mode.

www.it-ebooks.info

http://www.it-ebooks.info/

Constructing	CLI	commands
All	CLI	operation	requests	allow	you	to	have	low-level	interactions	with	the	server
management	model.	They	provide	a	controlled	way	to	edit	the	server	configurations.	An
operation	request	consists	of	three	parts:

	
An	address	that	is	prefixed	with	/
An	operation	name	that	is	prefixed	with	:
An	optional	set	of	parameters	contained	within	()

Determining	the	resource	address
The	server	configuration	is	presented	as	a	hierarchical	tree	of	addressable	resources.	Each
resource	node	offers	a	different	set	of	operations.	The	address	specifies	the	resource	node
on	which	to	perform	the	operation.	An	address	uses	the	following	syntax:

/node-type=node-name

The	notations	are	explained	as	follows:

	
node-type:	This	is	the	resource	node	type.	This	maps	to	an	element	name	in	the
server	configuration.
node-name:	This	specifies	the	resource	node	name.	This	maps	to	the	name	attribute	of
the	element	in	the	server	configuration.

Separate	each	level	of	the	resource	tree	with	a	slash	(/).	So,	for	example,	the	following
CLI	expression	identifies	the	ExampleDS	data	source	registered	in	the	data	source
subsystem:

/subsystem=datasources/data-source=ExampleDS

Performing	operations	on	resources
Once	you	have	identified	a	resource,	you	can	perform	operations	on	the	resource.	An
operation	uses	the	following	syntax:

:operation-name

So	in	the	previous	example,	you	can	query	the	list	of	available	resources	for	your	nodes	by
adding	the	read-resource	command	at	the	end	of	it:
/subsystem=datasources/:read-resource	

{

				“outcome”	=>	“success”,

				“result”	=>	{

								“data-source”	=>	{“ExampleDS”	=>	undefined},

								“jdbc-driver”	=>	{“h2”	=>	undefined},

								“xa-data-source”	=>	undefined

				}

www.it-ebooks.info

http://www.it-ebooks.info/

}

If	you	want	to	query	for	a	specific	attribute	of	your	node,	you	can	use	the	read-attribute
operation	instead.	For	example,	the	following	code	shows	how	to	read	the	enabled
attribute	from	the	data	source:
/subsystem=datasources/data-source=ExampleDS/:read-attribute(name=enabled)	

{

				“outcome”	=>	“success”,

				“result”	=>	false

}

Note
Apart	from	the	operations	on	a	specific	resource,	you	can	also	perform	a	set	of	commands
that	are	available	on	every	path	of	your	WildFly	subsystem,	such	as	cd	or	ls	commands.
These	commands	are	pretty	much	equivalent	to	their	Unix	shell	counterparts,	and	they
allow	you	to	navigate	through	the	WildFly	subsystems.	Other	important	additions	are	the
deploy	and	undeploy	commands	that,	as	you	might	guess,	allow	you	to	manage	the
deployment	of	applications.	These	key	commands	are	discussed	in	the	Deploying
applications	using	the	CLI	section	of	this	chapter.

The	CLI,	however,	is	not	just	about	querying	attributes	from	the	WildFly	subsystems;	you
can	also	set	attributes	or	create	resources.	For	example,	if	you	were	to	set	the	HTTP	port
of	the	HTTP	connector,	you	will	have	to	use	the	corresponding	write	attribute	on	HTTP’s
socket	binding	interface,	shown	as	follows:
/socket-binding-group=standard-sockets/socket-binding=http/:write-

attribute(name=port,value=8080)

{

				“outcome”	=>	“success”,“response-headers”	=>	{

								“operation-requires-reload”	=>	true,

								“process-state”	=>	“reload-required”

				}

}

Apart	from	the	operations	that	we	have	seen	so	far,	which	can	be	performed	on	every
resource	of	your	subsystems,	there	can	be	special	operations	that	can	be	performed
exclusively	on	one	resource.	For	example,	within	the	naming	subsystem,	you	will	be	able
to	issue	a	jndi-view	operation	that	will	display	the	list	of	JNDI	bindings,	as	shown	in	the
following	code	snippet:
/subsystem=naming/:jndi-view

{

				“outcome”	=>	“success”,

				“result”	=>	{“java:	contexts”	=>	{

								“java:”	=>	{

												“TransactionManager”	=>	{

																“class-name”	=>

“com.arjuna.ats.jbossatx.jta.TransactionManagerDelegate”,“value”	=>

“com.arjuna.ats.jbossatx.jta.TransactionManagerDelegate@afd978”

												},

					…

}

Using	the	tab	completion	helper

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	to	know	all	the	available	commands	in	the	CLI	is	a	pretty	hard	task;	this
management	interface	includes	an	essential	feature,	the	tab	completion.	Suppose	the
cursor	is	positioned	at	the	beginning	of	an	empty	line;	now	if	you	type	in	/	and	press	the
Tab	key,	you	will	get	the	following	list	of	all	the	available	node	types:
[standalone@localhost:9990	/]	/

core-service											extension														socket-binding-group

deployment													interface														subsystem

deployment-overlay					path																			system-property

After	selecting	the	node	type,	you	want	to	enter	into	the	tree	of	resources,	so	type	=	and
press	the	Tab	key	again.	This	will	result	in	a	list	of	all	the	following	node	names	available
for	the	chosen	node	type:
[standalone@localhost:9990	/]	/subsystem=

batch																jdr																		resource-adapters

datasources										jmx																		sar

deployment-scanner			jpa																		security

ee																			jsf																		threads

ejb3																	logging														transactions

infinispan											mail																	undertow

io																			naming															webservices

jaxrs																pojo																	weld

jca																		remoting

After	you	have	finished	with	the	node	path,	adding	a	colon	(:)	at	the	end	of	the	node	path
and	pressing	the	Tab	key	will	display	all	the	available	operation	names	for	the	selected
node,	which	is	shown	as	follows:
[standalone@localhost:9990	/]	/subsystem=deployment-

scanner/scanner=default:

add																										read-resource

read-attribute														read-resource-description

read-children-names										remove

read-children-resources						resolve-path

read-children-types										undefine-attribute

read-operation-description			whoami

read-operation-names									write-attribute

To	see	all	the	parameters	of	the	add	operation	(after	the	operation	name),	press	the	Tab
key:
[standalone@localhost:9990	/]	/subsystem=deployment-

scanner/scanner=default:read-attribute(

include-defaults=			name=

Choose	the	parameter	you	want	and	specify	its	value	after	=:
[standalone@localhost:9990	/]	/subsystem=deployment-

scanner/scanner=default:read-attribute(name=

runtime-failure-causes-rollback			scan-enabled

relative-to																							scan-interval

path																														auto-deploy-zipped

auto-deploy-exploded														deployment-timeout

auto-deploy-xml

Finally,	when	all	the	parameters	have	been	specified,	add)	and	press	Enter	to	issue	the

www.it-ebooks.info

http://www.it-ebooks.info/

following	command:

[standalone@localhost:9990	/]	/subsystem=deployment-

scanner/scanner=default:read-attribute(name=scan-enabled)

{

				“outcome”	=>	“success”,

				“result”	=>	true

}

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying	applications	using	the	CLI
Deploying	an	application	(in	the	standalone	mode)	can	be	easily	performed	by	copying	the
application’s	archives	into	the	deployment	folder	of	your	server	distribution.	That’s	a
pretty	handy	option;	however,	we	would	like	to	stress	the	advantage	of	using	a	CLI,	which
offers	a	wide	choice	of	additional	options	when	deploying	and	also	provides	the
opportunity	to	deploy	applications	remotely.

All	it	takes	to	deploy	an	application’s	archive	is	a	connection	to	the	management	instance,
either	local	or	remote,	and	by	issuing	of	the	deploy	shell	command.	When	used	without
arguments,	the	deploy	command	provides	a	list	of	applications	that	are	currently
deployed,	as	shown	in	the	following	command:

[disconnected	/]	connect

[standalone@localhost:9990	/]	deploy	ExampleApp.war

If	you	feed	a	resource	archive	such	as	a	WAR	file	to	the	shell,	it	will	deploy	it	on	the
standalone	server	right	away,	as	shown	in	the	following	command:

[standalone@localhost:9990	/]	deploy	../MyApp.war	

By	default,	a	CLI	uses	the	JBOSS_HOME/bin	file	as	a	source	for	your	deployment	archives.
You	can,	however,	use	absolute	paths	when	specifying	the	location	of	your	archives;	the
CLI	expansion	facility	(using	the	Tab	key)	makes	this	option	fairly	simple:

[standalone@localhost:9990	/]	deploy	c:\deployments\MyApp.war

Redeploying	the	application	requires	an	additional	flag	to	be	added	to	the	deploy
command.	Use	the	-f	argument	to	force	the	application’s	redeployment:

[standalone@localhost:9990	/]	deploy	-f	../MyApp.war

Undeploying	the	application	can	be	done	through	the	undeploy	command,	which	takes	the
application	that	is	deployed	as	an	argument.	This	is	shown	in	the	following	command:

[standalone@localhost:9990	/]	undeploy	MyApp.war

By	checking	the	WildFly	configuration	file	(for	example,	standalone.xml	or
domain.xml),	you	will	notice	that	the	deployment	element	for	your	application	has	been
removed.

Deploying	applications	to	a	WildFly	domain
When	you	are	deploying	an	application	using	the	domain	mode,	you	will	have	to	specify
to	which	server	group	the	deployment	is	associated	with.	The	CLI	lets	you	choose
between	the	following	two	options:

	
Deploy	to	all	server	groups
Deploy	to	a	single	server	group

www.it-ebooks.info

http://www.it-ebooks.info/

We	will	discuss	these	choices	in	two	separate	sections.

Deploying	to	all	server	groups
If	this	option	is	chosen,	the	application	will	be	deployed	to	all	the	available	server	groups.
The	—all-server-groups	flag	can	be	used	for	this	purpose.	For	example,	refer	to	the
following	code:
[domain@localhost:9990	/]	deploy	../application.ear	—all-server-groups

If,	on	the	other	hand,	you	want	to	undeploy	an	application	from	all	the	server	groups	that
belong	to	a	domain,	you	will	have	to	issue	the	undeploy	command	as	shown	in	the
following	command:

[domain@localhost:9990	/]	undeploy	application.ear	—all-relevant-server-

groups

Note
You	might	have	noticed	that	the	undeploy	command	uses	the	—all-relevant-server-
group	instead	of	the	—all-server-	group.	The	reason	for	this	difference	is	that	the
deployment	might	not	be	enabled	on	all	the	server	groups;	therefore,	by	using	this	option,
you	will	actually	undeploy	it	from	all	the	server	groups	in	which	the	deployment	is
enabled.

Deploying	to	a	single	server	group
The	other	option	lets	you	perform	a	selective	deployment	of	your	application	only	on	the
server	groups	you	indicate:

[domain@localhost:9990	/]	deploy	application.ear	—server-groups=main-

server-group

You	are	not	limited	to	a	single	server	group,	and	you	can	separate	multiple	server	groups
with	a	comma	(,).	For	example,	refer	to	the	following	code:

[domain@localhost:9990	/]	deploy	application.ear	—server-groups=main-

server-group,other-server-group

Successfully	deployed	application.ear

The	tab	completion	feature	will	help	you	to	complete	the	value	for	the	list	of	—server-
groups	selected	for	deployment.

Now,	suppose	we	want	to	undeploy	the	application	from	just	one	server	group.	In	this
case,	there	can	be	two	possible	outcomes.	If	the	application	is	available	just	on	that	server
group,	you	will	successfully	complete	the	undeployment	as	shown	in	the	following
command:

[domain@localhost:9990	/]	undeploy	wflyproject.war	—server-groups=main-

server-group

On	the	other	hand,	if	your	application	is	available	on	other	server	groups,	the	following
error	will	be	returned	by	the	CLI:

www.it-ebooks.info

http://www.it-ebooks.info/

Undeploy	failed:	{“domain-failure-description”	=>	{“Composite	operation

failed	and	was	rolled	back.	Steps	that	failed:”	=>	{“Operation	step-3”	=>

“Cannot	remove	deployment	wflyproject.war	from	the	domain	as	it	is	still

used	by	server	groups	[other-server-group]”}}}

It	seems	that	something	went	wrong.	As	a	matter	of	fact,	when	you	are	removing	an
application	from	a	server	group,	the	domain	controller	will	verify	that	any	other	server
group	will	not	refer	to	the	application;	otherwise,	the	previous	command	will	fail.

You	can,	however,	instruct	the	domain	controller	to	undeploy	the	application	without
deleting	the	content	as	well.	This	is	shown	in	the	following	command:

[domain@localhost:9990	/]	undeploy	application.ear	—server-groups=main-

server-group	—keep-content

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	CLI	scripts
As	a	program	developer,	you	might	be	interested	to	know	that	a	CLI	can	execute
commands	in	a	non-interactive	way	by	adding	them	to	a	file,	just	as	a	shell	script.	In	order
to	execute	the	script,	you	can	launch	the	CLI	with	the	—file	parameter	as	in	the	following
example	(for	Windows):

jboss-cli.bat	—file=test.cli

The	equivalent	command	for	Unix	users	will	be	as	follows:

./jboss-cli.sh	—file=test.cli

In	the	next	section,	we	will	look	at	some	useful	scripts	that	can	be	added	to	your
administrator	toolbox.

Deploying	an	application	to	several	WildFly	nodes
The	earlier	JBoss	AS	releases	used	to	ship	with	a	farm	folder,	which	would	trigger	a
deployment	to	all	the	nodes	that	are	part	of	a	JBoss	cluster.	This	option	is	not	included
anymore	with	JBoss	AS7	and	WildFly,	but	resurrecting	a	farm	deployment	is	just	a	matter
of	following	a	few	CLI	instructions.

In	the	following	example,	we	are	deploying	an	application	to	the	default	server	address
(127.0.0.1	and	port	9990)	and	to	another	server	instance	that	is	bound	to	the	same
address	but	to	port	10190:

connect

deploy	/usr/data/example.war

connect	127.0.0.1:10190

deploy	/usr/data/example.war

Restarting	servers	in	a	domain
A	common	requirement	for	the	domain	administrator	is	to	restart	the	application	server
nodes,	for	example,	when	some	server	libraries	are	updated.	CLI	provides	a	handy
shortcut	to	stop	and	start	all	the	servers	that	are	part	of	a	server	group:

connect

/server-group=main-server-group:start-servers

/server-group=main-server-group:stop-servers

If	you	prefer	a	more	granular	approach,	you	can	start	the	single	server	nodes	as	shown	in
the	following	example,	which	shows	how	you	can	apply	conditional	execution	logic	in
your	CLI	scripts:

connect

if	(result	==	“STARTED”)	of	/host=master/server-config=server-one:read-

attribute(name=status)

/host=master/server-config=server-one:stop

end-if

www.it-ebooks.info

http://www.it-ebooks.info/

if	(result	==	“STARTED”)	of	/host=master/server-config=server-two:read-

attribute(name=status)

/host=master/server-config=server-two:stop

end-if

/host=master/server-config=server-one:start

/host=master/server-config=server-two:start

In	the	if	end-if	part	of	the	code,	we	are	checking	for	the	server’s	status	attribute.	If	the
status	is	STARTED,	the	application	servers	are	stopped	and	then	restarted.

Installing	a	data	source	as	a	module
In	WildFly,	you	can	use	the	module	command	in	order	to	install	a	new	module.	We	already
did	something	similar	in	Chapter	5,	Combining	Persistence	with	CDI.	Now,	you	can	fully
automate	a	data	source	creation	as	shown	in	the	following	example:

connect

module	add	—name=org.postgresql	—resources=	postgresql-9.3-1101.jdbc41.jar	

—dependencies=javax.api,javax.transaction.api

/subsystem=datasources/jdbc-driver=postgresql:add(driver-module-

name=org.postgresql,driver-name=postgresql,driver-class-

name=org.postgresql.Driver)

/subsystem=datasources/data-source=PostgreSQLDS:add(jndi-

name=java:jboss/datasources/PostgreSQLDS	,	driver-name=postgresql,

connection-url=jdbc:postgresql://localhost:5432/ticketsystem,user-

name=jboss,password=jboss)

The	first	line	of	the	script,	after	the	connection,	installs	a	new	module	named
org.postgresql	in	your	server	modules’	directory,	including	the	PostgreSQL	JDBC
driver	and	the	required	dependencies.

The	second	line	installs	the	JDBC	driver	for	the	org.postgresql	module	into	the
datasources/jdbc-driver	subsystem.

Finally,	a	data	source	is	added	to	jndi	java:jboss/datasources/PostgreSQLDS	with	the
required	URL	and	credentials.

Adding	JMS	resources
Adding	a	new	JMS	destination	is	quite	easy	since	it	does	not	require	a	lengthy	set	of
commands.	However,	it	is	sometimes	your	application	that	needs	to	set	up	lots	of	JMS
destinations	in	order	to	work,	so	why	not	create	a	script	for	it	too?	The	following	is	a	tiny
script	that	adds	a	JMS	queue	to	the	server	configuration:

connect

jms-queue	add		—queue-address=queue1	—entries=queues/queue1	

The	following	is	the	corresponding	script	you	can	use	to	create	a	JMS	topic:

www.it-ebooks.info

http://www.it-ebooks.info/

connect

jms-topic	add		—topic-address=topic1	—entries=topics/topic1

www.it-ebooks.info

http://www.it-ebooks.info/

Using	advanced	languages	to	create	powerful
CLI	scripts
So	far,	we	have	learned	how	to	write	CLI	shell	commands	to	manage	the	application
server’s	resources.	This	approach	has	the	advantage	that	you	can	easily	access	every
server	resource	easily	and	quickly,	thanks	to	the	built-in	autocompletion	feature.	If,	on	the
other	hand,	you	want	to	perform	some	sophisticated	logic	around	your	commands,	then
you	need	to	find	some	other	alternatives.

If	you	are	a	shell	guru,	you	might	easily	resort	to	some	bash	scripting	in	order	to	capture
the	output	of	the	CLI	and	use	the	rich	set	of	Unix/Linux	tools	to	perform	some
administrative	actions.

Supplying	a	short	overview	of	the	bash	functionalities	might	be	an	amusing	exercise;
however,	if	we	do	this,	we	would	move	away	from	the	scope	of	this	book.	We	will	instead
document	some	built-in	functionalities	such	as	the	following:

	
In	the	first	section,	we	will	show	how	to	use	a	CLI	remote	client	API	from	within	a
Python	script
In	the	next	section,	we	will	use	the	raw	management	API	to	execute	CLI	commands
from	within	Java	applications

There	are	multiple	use	cases	in	which	the	JBoss	CLI	scripts	could	be	useful.	A	script	could
be	used	to	configure	a	developer’s	machine,	a	test	environment,	or	as	an	initial
configuration	for	production.	In	many	cases,	the	configuration	needed	to	start	a	full-blown
enterprise	application	may	be	nontrivial;	you	might	need	to	use	a	specific	port
configuration	to	cluster	tests	or	your	own	security	domain.	You	might	also	need	your
continuous	integration	server	to	do	this	for	you.	Besides	this,	it’s	better	to	have	an
automatic	configuration	script	than	set	up	the	configuration	manually	every	time,	which	is
just	a	waste	of	time	and	a	potential	source	of	bugs.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	scripting	languages	to	wrap	CLI	execution
JBoss	AS	7	has	introduced	a	new	CLI	remote	API	that	acts	as	a	facade	for	the	CLI	public
API.	The	core	class	that	acts	as	a	bridge	between	these	two	APIs	is	the
scriptsupport.CLI	class	that	is	contained	in	the	JBOSS_HOME/bin/client/jboss-cli-
client.jar	file.

Thanks	to	this	API,	you	can	execute	CLI	commands	using	lots	of	different	languages	such
as	Jython,	Groovy,	or	JavaScript.	Since	Jython	is	also	the	de	facto	management	standard
for	other	application	servers,	such	as	Oracle,	WebLogic,	and	WebSphere,	we	will	use	it	to
perform	some	basic	management	tasks.

Note
Jython	is	an	implementation	of	Python	for	JVM.	Jython	is	extremely	useful	because	it
provides	the	productivity	features	of	a	mature	scripting	language	while	running	on	a	JVM.
Unlike	a	Python	program,	a	Jython	program	can	run	in	any	environment	that	supports	a
JVM.

Jython	is	invoked	using	the	jython	script,	which	is	a	short	script	that	invokes	your	local
JVM,	running	the	Java	class	file,	org.python.util.jython.

The	first	thing	you	need	to	do	in	order	to	get	started	is	download	the	Jython	installer	from
http://www.jython.org/downloads.html.

Run	the	installer	with	the	following	command:

java	-jar	jython-installer-2.5.3.jar

Next,	add	the	JYTHON_HOME/bin	folder	(for	example,	C:\jython2.5.3\bin)	to	the	system
path	and	add	the	jboss-cli-client.jar	file	to	the	system,	CLASSPATH.	For	example,	in
Windows,	use	the	given	command:

set	JYTHON_HOME=	C:\jython2.5.3

set	PATH=%PATH%;%JYTHON_HOME%\bin

set	CLASSPATH=%CLASSPATH%;%JBOSS_HOME%\bin\client\jboss-cli-client.jar;.

Here’s	the	same	command	for	Linux:

export	PATH=$PATH:/usr/data/jython2.5.3/bin

export	CLASSPATH=$CLASSPATH$:%JBOSS_HOME%/bin/client/jboss-cli-client.jar

Ok,	now	we	will	create	our	first	script	that	will	basically	return	the	JNDI	view	of	our
application	server.

Note
Be	aware	that	Jython,	just	like	Python,	uses	indentation	to	determine	the	code	structure
instead	of	using	braces	or	keywords.	Therefore,	do	not	use	them	randomly.	An	IDE	might
help	you	with	this—for	Python	you	can	use,	for	example,	Vim	with	python-mode
(https://github.com/klen/python-mode)	or	Eclipse	with	the	PyDev	extension

www.it-ebooks.info

http://www.jython.org/downloads.html
https://github.com/klen/python-mode
http://www.it-ebooks.info/

(http://pydev.org/).

Create	a	file	named	script.py	containing	the	following	code:
from	org.jboss.as.cli.scriptsupport	import	CLI

cli	=	CLI.newInstance()

cli.connect()

cli.cmd(“cd	/subsystem=naming”)

result	=	cli.cmd(“:jndi-view”)

response	=	result.getResponse()

print	‘JNDI	VIEW	=======================	‘

print	response

cli.disconnect()

Now	execute	the	script	with	the	following	code:
jython	script.py

As	you	can	see,	the	code	is	very	self-explanatory;	we	are	importing	the
org.jboss.as.cli.scriptsupport.CLI	class,	which	is	used	to	send	commands	and	read
the	response.	Then,	we	are	connecting	to	the	local	WildFly	instance	and	issuing	a	:jndi-
view	command.

Note
The	connect	command	can	be	used	to	connect	to	a	remote	WildFly	host	as	well	by	adding
the	following	parameters:	connect	(String	controllerHost,	int	controllerPort,
String	username,	String	password).

The	response	variable	is	org.jboss.dmr.ModelNode.	This	can	be	further	inspected	as
shown	in	the	following	example,	which	goes	in	to	some	depth	about	platform	MBeans,	to
get	some	memory	statistics:
from	org.jboss.as.cli.scriptsupport	import	CLI

cli	=	CLI.newInstance()

cli.connect()

cli.cmd(“cd	/core-service=platform-mbean/type=memory/”)

result	=	cli.cmd(“:read-resource(recursive=false,proxies=false,include-

runtime=true,include-defaults=true)”)

response	=	result.getResponse()

enabled	=	response.get(“result”).get(“heap-memory-usage”)

used	=	enabled.get(“used”).asInt()

if	used	>	512000000:

				print	“Over	1/2	Gb	Memory	usage	“

else:

				print	‘Low	usage!’

www.it-ebooks.info

http://pydev.org/
http://www.it-ebooks.info/

cli.disconnect()

In	the	previous	example,	we	tracked	the	resources	contained	in	/core-
service=platform-mbean/type=memory.	The	available	resources	are,	however,	child
resources	of	the	two	kinds	of	available	heap	memory	areas	(heap-memory-usage	and	non-
heap-memory-usage),	as	shown	by	the	following	code:
[standalone@localhost:9990	/]	/core-service=platform-

mbean/type=memory:read-resource(recursive=false,proxies=false,include-

runtime=true,include-defaults=true)

{

				“outcome”	=>	“success”,“result”	=>	{

								“heap-memory-usage”	=>	{“init”	=>	67108864L,“used”	=>

59572256L,“committed”	=>	170852352L,“max”	=>	477233152L},

								“non-heap-memory-usage”	=>	{

												“init”	=>	24313856L,“used”	=>	90491328L,“committed”	=>

90701824L,“max”	=>	369098752L},

								“object-pending-finalization-count”	=>	0,“verbose”	=>	false

				}

}

Using	just	the	get	command	of	the	ModelNode	object,	you	can	refer	to	the	child	resources
of	the	memory	type	and	reach	all	the	single	attributes.	Once	you	have	got	the	attributes,
it’s	easy	to	cast	them	to	an	integer	using	the	asInt()	function	of	the	ModelNode	object	and
use	the	cool	Python	constructs	to	alert	your	administrator.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	the	raw	management	API	to	manage
the	application	server
If	you	don’t	feel	like	learning	a	scripting	language	to	manage	the	application	server,	you
can	still	use	the	raw	management	API	from	within	your	Java	classes.	Don’t	be	influenced
by	the	fact	that	we	left	this	option	as	the	last	one;	in	fact,	using	the	native	management
API	is	not	difficult	at	all	since	it	is	based	on	very	few	classes	and	has	little	compile-time
and	runtime	dependencies	on	the	WildFly	API.

For	this	reason,	you	can	use	the	management	API	as	well	from	any	Java	EE	application	by
simply	adding	the	following	dependencies	to	the	META-INF/MANIFEST.MF	file	of	your
application:
Dependencies:	org.jboss-as-controller-client,org.jboss.dmr

The	core	API	named	detyped	management	API	is	quite	simple;	the	primary	class	is
org.jboss.dmr.ModelNode,	which	we	already	mentioned	in	the	Jython	section.	A
ModelNode	class	is	essentially	just	a	wrapper	around	a	value;	the	value	is	typically	a	basic
JDK	type	that	can	be	retrieved	using	the	getType()	method	of	ModelNode.

In	addition	to	the	jboss-dmr	API,	the	other	module	that	is	used	to	connect	to	the
management	API	is	jboss-as-controller-client.

Note
You	don’t	need	to	download	any	of	these	libraries	since	both	of	these	modules	are
included	in	the	application	server	since	release	7.

www.it-ebooks.info

http://www.it-ebooks.info/

Reading	management	model	descriptions	via	the	raw
management	API
Using	the	detyped	management	API	is	not	too	different	from	its	scripting	language
counterpart;	at	first,	you	need	to	create	a	management	client	that	can	connect	to	your	target
process’s	native	management	socket	(which	can	be	an	individual	standalone	mode	server,
or	in	a	domain	mode	environment,	the	domain	controller):

ModelControllerClient	client	=

ModelControllerClient.Factory.create(InetAddress.getByName(“localhost”),

9990);

Next,	you	need	to	create	an	operation	request	object	using	the	org.jboss.dmr.ModelNode
class,	as	shown	in	the	following	command:

final	ModelNode	operation	=	new	ModelNode();

operation.get(“operation”).set(“jndi-view”);

final	ModelNode	address	=	operation.get(“address”);

address.add(“subsystem”,	“naming”);

operation.get(“recursive”).set(true);

operation.get(“operations”).set(true);

final	ModelNode	returnVal	=	client.execute(operation);

logger.info(returnVal.get(“result”).toString());

As	you	can	see,	ModelNode	objects	can	be	chained	in	order	to	reach	an	operation	(in	the
example,	the	JNDI	view),	which	is	available	on	a	node	path	(in	our	case,	the	naming
subsystem).

Once	you	have	added	the	ModelNode	attributes,	you	can	issue	the	execute	commands	on
your	node,	which	will	in	turn	return	ModelNode	where	the	result	of	the	operation	will	be
stored.

In	the	samples,	you	can	find	a	fully	working	project	containing	these	management
examples.

Creating	your	resource	watches	using	the	detyped	API
Now	that	you	have	learned	the	basics	of	the	detyped	management	API,	we	will	illustrate
a	concrete	example;	our	goal	will	be	to	monitor	a	server	resource	(the	number	of	active
JDBC	connections	for	a	data	source)	using	an	EJB.	You	can	use	this	pattern	to	create	your
own	server	watches	that	can	be	integrated	with	your	application	environment.	This	is
shown	in	the	following	code	snippet:
package	com.packtpub.wflydevelopment.chapter9;

import	org.jboss.as.controller.client.ModelControllerClient;

import	org.jboss.dmr.ModelNode;

import	javax.ejb.Schedule;

www.it-ebooks.info

http://www.it-ebooks.info/

import	javax.ejb.Stateless;

import	java.io.Closeable;

import	java.net.InetAddress;

import	java.util.logging.Level;

import	java.util.logging.Logger;

@Stateless

public	class	WatchMyDB	{

				private	final	static	Logger	logger	=

Logger.getLogger(WatchMyDB.class.getName());

				@Schedule(dayOfWeek	=	“*”,	hour	=	“*”,	minute	=	“*”,	second	=

												“*/30”,	year	=	“*”,	persistent	=	false)

				public	void	backgroundProcessing()	{

								ModelControllerClient	client	=	null;

								try	{

												client	=

ModelControllerClient.Factory.create(InetAddress.getByName(“localhost”),

9990);

												final	ModelNode	operation	=	new	ModelNode();

												operation.get(“operation”).set(“read-resource”);

												operation.get(“include-runtime”).set(true);

												final	ModelNode	address	=	operation.get(“address”);

												address.add(“subsystem”,	“datasources”);

												address.add(“data-source”,	“ExampleDS”);

												address.add(“statistics”,	“pool”);

												final	ModelNode	returnVal	=	client.execute(operation);

												final	ModelNode	node2	=	returnVal.get(“result”);

												final	String	stringActiveCount	=

node2.get(“ActiveCount”).asString();

												if	(stringActiveCount.equals(“undefined”))	{

																return;	//	Connection	unused

												}

												int	activeCount	=	Integer.parseInt(stringActiveCount);

												if	(activeCount	>	50)	{

																alertAdministrator();

												}

								}	catch	(Exception	exc)	{

												logger.log(Level.SEVERE,	“Exception	!”,	exc);

								}	finally	{

												safeClose(client);

								}

				}

				public	void	safeClose(final	Closeable	closeable)	{

								if	(closeable	!=	null)	{

												try	{

																closeable.close();

												}	catch	(Exception	e)	{

																logger.log(Level.SEVERE,	“Exception	closing	the	client!	“,

e);

												}

www.it-ebooks.info

http://www.it-ebooks.info/

								}

				}

				private	void	alertAdministrator()	{

								//	Implement	it	!

				}

}

We	will	not	rehash	the	basic	concepts	about	EJB	Timers,	which	have	been	discussed	in
Chapter	3,	Introducing	Java	EE	7	–	EJBs.	We	suggest	that	you	have	a	look	at	the
highlighted	section	of	the	code,	which	shows	how	you	can	chain	your	ModelNode	objects
in	order	to	reach	the	attribute	that	we	are	going	to	monitor	(the	activeCount	attribute	of
the	ExampleDS	datasource).

Once	you	have	the	value	of	the	activeCount	attribute,	we	leave	it	to	your	imagination	to
envision	all	the	possible	actions	you	can	undertake!

It	is	worth	noting	that	there	are	additional	means	of	monitoring	WildFly.	One	of	them	is
using	the	hawt.io	plugin	for	JBoss	(http://hawt.io/plugins/jboss/).	We	already	tried	this	for
ActiveMQ	when	we	were	developing	MessageBeans.	Another	tool	is	Jolokia
(http://www.jolokia.org/),	which	exposes	JMX	beans	over	HTTP.	So,	if	you	are	not	into
writing	your	own	monitors,	there	are	other	options	worth	exploring.

www.it-ebooks.info

http://hawt.io/plugins/jboss/
http://www.jolokia.org/
http://www.it-ebooks.info/

Role-based	security
In	JBoss	7,	a	logged-in	administrator	has	unlimited	power	over	every	configuration	aspect
of	a	running	server.	This	could	be	a	problem	in	a	production	environment	when	multiple
users	have	access	to	the	server	to	do	different	tasks.	One	user	could	only	be	interested	in
deploying	new	applications,	another	should	only	be	able	to	restart	the	server,	and	there
could	be	one	who	should	not	be	able	to	change	anything	(for	example,	a	monitoring	agent
sending	data	about	the	execution	of	an	application).

To	support	these	kinds	of	requirements,	WildFly	brings	two	access	control	strategies:

	
Simple,	which	is	the	all-or-nothing	approach	known	from	JBoss	AS	7	and	EAP	in
versions	earlier	than	6.2	(every	authenticated	administrator	has	full	access	to	the
application	server).	This	is	the	default	strategy.
Role	based	access	control	(RBAC),	which	allows	you	to	assign	administrative	users
to	specific	management	roles.

Let’s	navigate	to	http://localhost:8080/console	and	log	in	with	our	administrator
password.	The	upper	menu	contains	a	tab	named	Administration.	This	is	used	to
configure	the	access	control	mechanism.	Once	you	click	on	it	(you	should	see	a	message
box	informing	you	that	RBAC	is	not	yet	enabled),	we	will	see	three	subtabs:	Users,
Groups,	and	Roles.	Let’s	take	a	closer	look	at	each	of	these	objects.

Users	are	defined	using	the	add-user.bat	(.sh)	scripts	in	the	JBOSS_HOME/bin	directory.
We	have	already	defined	one	before	the	first	time	we	accessed	the	JBoss	console.	The
created	user,	however,	requires	some	additional	information	in	order	to	determine	his	or
her	security	level.	The	easiest	way	to	achieve	this	is	to	organize	them	into	groups.	The
assignment	can	be	done	via	the	user	creation	scripts	or	by	the	mgmt-groups.properties
files	in	the	WildFly’s	configuration	directory.	Another	way	to	do	this	is	to	define	a	security
realm	connected	to	an	external	source	(an	LDAP	server	for	instance).	We	will	talk	more
about	security	realms	in	the	next	chapter.	For	now,	you	can	create	a	user	assigned	to	a
group	named	TestGroup.

A	group	is	mapped	to	a	set	of	security	roles	to	provide	specific	permissions.	For	example,
we	can	create	user	groups	for	developers	and	junior	administrators	and	map	them	to	a
subset	of	desired	roles.	A	user	can	be	part	of	multiple	groups,	so	there	is	also	a	possibility
to	exclude	a	role	for	a	specific	group	so	that	no	other	group	could	grant	it.

Finally,	we	have	roles	that	cover	multiple	areas	of	the	server’s	functionality.	Every	role
has	a	set	of	permissions	assigned	and	some	of	them	are	additionally	constrained	(for
instance,	to	allow	you	to	configure	modifications	in	only	specific	subsystems	such	as	data
sources).	A	list	of	built-in	roles	is	available	in	the	following	table:

Role Permissions Sensitive	data	(passwords	and	auditing)

Monitor Read-only	access	to	configuration	and	runtime	state. No	access.

Operator All	permissions	of	Monitor.	This	role	can	restart	the	server,	control	JMS	destination,	and	database	connection	pools.	It	cannot	modify	the	configuration. No	access.

www.it-ebooks.info

http://www.it-ebooks.info/

Maintainer All	permissions	of	Operator.	This	role	can	modify	the	configuration	(including	deploying	new	applications). No	access.

Deployer All	permissions	of	Maintainer,	but	with	restrictions	on	deploying	new	applications	(cannot	change	the	configuration	of	the	server). No	access.

Administrator All	permissions	of	Maintainer. Read/write	access.	No	access	to	the	audit
system.

Auditor All	permissions	of	Monitor. Read-only	access.	Full	access	to	the	auditing
system.

Super	User
Everything	is	permitted.	The	administrator	known	from	JBoss	AS	7	and	the	simple	strategy	in	WildFly.	Also,	this	is	the	default	role	for	a	local	user
(connecting	from	a	localhost). Full	access.

Besides	relying	on	the	group-role	mapping	mechanism,	you	have	another	option	to	assign
users	to	roles.	You	can	use	the	Administration/Users	screen	in	the	admin	console	to
directly	assign	a	user	to	a	role	(be	sure	to	select	Include	as	the	type).	Assign	the
SuperUser	role	now	to	your	current	user	using	the	Add	button.	Additionally,	you	can	use
Administration/Groups	to	add	our	newly	created	TestGroup	to,	for	instance,	the	Monitor
role.

Our	configuration	is	now	in	place;	try	and	check	it	out.	To	switch	to	the	RBAC	strategy,
we	will	need	to	issue	the	following	command	using	the	CLI	interface:

/core-service=management/access=authorization:write-

attribute(name=provider,	value=rbac)

Reload	the	server	and	log	in	to	the	web	console	again	using	the	account	you	designed	as
SuperUser.

Note
We	are	testing	the	web	console,	but	the	RBAC	mechanism	also	works	for	the	CLI.	Note
that	the	CLI	will	allow	you	to	access	it	from	localhost	as	long	as	you	have	the	$local
user	allowed	in	your	security	realm:
		<security-realm	name=“ManagementRealm”>

				<authentication>

					<local	default-user=”$local”	allowed-users=”*”/>

					<properties	path=“mgmt-users.properties”	relative-

to=“jboss.server.config.dir”/>

				</authentication>

				<authorization	map-groups-to-roles=“false”>

					<properties	path=“mgmt-groups.properties”	relative-

to=“jboss.server.config.dir”/>

				</authorization>

</security-realm>

If	you	wish	to	disable	it,	simply	remove	this	line.

If	you	are	wondering	what	your	current	role	is,	you	can	click	on	Username	in	the	upper-
right	corner	of	the	screen.	You	should	see	a	bit	of	information	about	the	currently	logged-
in	administrator	in	the	following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

In	the	preceding	screenshot,	we	can	see	that	the	user	root	is	logged	in	as	a	SuperUser	role.
Besides	having	the	possibility	to	do	everything	with	the	application	server,	the	SuperUser
role	has	one	additional	feature.	It	can	impersonate	other	roles	using	Run	as…,	which	can
be	useful	if	you	want	to	check	what	are	the	limitations	of	another	role.	Feel	free	to	check
them	out	right	now.	For	instance,	as	a	Monitor,	you	should	not	be	able	to	alter	any	settings
in	the	admin	console.

You	can	also	relogin	with	the	user	you’ve	created	earlier,	which	is	assigned	to	TestGroup.
It	should	have	the	Monitor	role	shown	in	the	upper-right	corner	of	the	screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing	administrative	operations
WildFly	introduces	an	audit-log	feature	that	allows	the	administrators	to	track	the
configuration	changes	made	on	the	server.	The	feature	is	initially	disabled	but	can	be
useful	in	some	scenarios,	so	let’s	take	a	short	look	at	it.

The	audit-log	configuration	consists	of	three	parts:

	
Formatter:	This	formats	the	log	output.	By	default,	it’s	based	on	JSON.
Handler:	This	handles	the	output.	By	default,	it	is	a	file-based	handler,	but	it	is
possible	to	use	a	TCP	or	UDP	to	send	the	logs	to	a	remote	server.
Logger:	This	controls	the	login	process.

Detailed	configuration	can	be	found	in	the	official	WildFly	documentation	at
https://docs.jboss.org/author/display/WFLY8/Audit+logging.

The	audit	log	is	disabled	by	default.	To	enable	it,	we	must	issue	the	following	CLI
command:

/core-service=management/access=audit/logger=audit-log:write-

attribute(name=enabled,	value=true)

Now	you	can	try	to	do	any	administrative	action	using	the	web	console	(for	instance,
disabling	a	data	source).	After	this,	you	should	find	a	trace	of	it	in
JBOSS_HOME/standalone/data/audit-log.log	(along	with	information	about	switching
the	audit	logging	on).

www.it-ebooks.info

https://docs.jboss.org/author/display/WFLY8/Audit+logging
http://www.it-ebooks.info/

Patching	a	running	instance
The	newest	version	of	the	JBoss	Application	Server	comes	with	a	patching	utility	that
allows	you	to	automatically	update	parts	of	the	server	with	newer	versions.	Currently,	the
patching	is	done	using	a	CLI.	Any	patch	can	be	reverted,	and	the	administrator	is	able	to
track	the	history	of	patches.

A	patch	can	be	applied	by	simply	calling	the	patch	apply	<file	path>	(without	-)
command.	A	complementary	command	is	patch	rollback	—patch-id	=	id,	a	patch-
rollback	command.	To	obtain	information	about	the	installed	patches,	simply	call	patch
info.	Patches	are	distributed	by	teams	responsible	for	specific	WildFly	subsystems.	Visit
their	websites	if	you	need	a	patch	for	a	specific	module.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	covered	the	application	server’s	management	API	from	a	developer’s
perspective,	which	will	enable	you	to	write	your	own	scripts	to	monitor	the	health	of	your
application	server.

The	most	effective	tool	for	monitoring	the	application	server	is	the	command-line
interface.	However,	if	you	want	to	spice	it	up	with	some	typical	programming	logic,	you
can	resort	to	some	other	alternatives	such	as	scripting	languages	or	the	raw	management
API.

We	also	explored	some	of	the	new,	advanced	features	that	were	introduced	with	WildFly.
You	now	know	how	to	restrict	access	to	your	management	console	and	how	to	audit	the
changes	done	to	the	configuration.

We	have	now	completed	our	review	of	management.	In	the	next	chapter,	we	are	going	to
discuss	clustering,	which	is	the	environment	where	critical	applications	are	deployed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	10.	Securing	WildFly	Applications
In	the	previous	chapter,	we	described	how	to	manage	your	application	server.	The	next
stop	in	our	journey	will	be	learning	about	security,	which	is	a	key	element	of	any
Enterprise	application.	You	must	be	able	to	control	and	restrict	who	is	permitted	to	access
your	applications	and	what	operations	users	may	perform.

The	Java	Enterprise	Edition	specification	defines	a	simple	role-based	security	model	for
Enterprise	JavaBeans	and	web	components.	The	implementation	of	WildFly	security	is
delivered	by	the	Picketbox	framework	(formerly	known	as	JBoss	Security),	which	is	part
of	the	application	server	and	provides	the	authentication,	authorization,	auditing,	and
mapping	capabilities	for	Java	applications.

Here	is	the	list	of	topics	we	will	cover	in	this	chapter:

	
A	short	introduction	to	the	Java	security	API
The	foundation	of	the	WildFly	security	subsystem
Defining	and	applying	login	modules	to	secure	Java	EE	applications
Using	the	Secure	Sockets	Layer	(SSL)	protocol	to	encrypt	the	traffic

www.it-ebooks.info

http://www.it-ebooks.info/

Approaching	the	Java	security	API
Java	EE	security	services	provide	a	robust	and	easily	configurable	security	mechanism	to
authenticate	users	and	authorize	access	to	application	functions	and	the	associated	data.	To
better	understand	the	topics	related	to	security,	we	should	first	lay	out	some	basic
definitions:

	
Authentication:	This	is	the	process	by	which	you	can	verify	who	is	currently
executing	an	application,	regardless	of	whether	it	is	an	EJB	or	a	servlet	(and	so	on).
Authentication	is	usually	performed	by	means	of	a	Login	module	contained	in	a
web/standalone	application.	The	Java	EE	specification	provides	only	general
requirements	that	must	be	met	by	all	compliant	containers.	This	means	that	every
application	server	provides	its	own	authentication	mechanisms,	which	is	a	problem
when	it	comes	to	portability	of	applications	and	their	configuration.
Authorization:	This	is	the	process	by	which	you	can	verify	if	a	user	has	the	right
(permission)	to	access	system	resources	or	invoke	certain	operations.	Authorization,
therefore,	presupposes	that	authentication	has	occurred;	it	would	be	impossible	to
grant	any	access	control	if	you	don’t	know	who	the	user	is	first.	Java	EE	specification
provides	means	to	authorize	a	user’s	actions.	The	authorization	declarations	are
usually	portable	between	different	application	servers.	The	difference	between
authentication	and	authorization	is	depicted	in	the	following	diagram:

In	Java	EE,	the	containers	are	responsible	for	providing	application	security.	A	container
basically	provides	two	types	of	security:	declarative	and	programmatic.	Let’s	take	a	look
at	both	of	them:

	
Declarative	security:	This	expresses	an	application	component’s	security
requirements	by	means	of	deployment	descriptors.	Because	deployment	descriptor
information	is	contained	in	an	external	file,	it	can	be	changed	without	the	need	to
modify	the	source	code.

For	example,	Enterprise	JavaBeans	components	use	an	EJB	deployment	descriptor,
which	must	be	named	ejb-jar.xml	and	placed	in	the	META-INF	folder	of	the	EJB
JAR	file.

Web	components	use	a	web	application	deployment	descriptor	named	web.xml,
which	is	located	in	the	WEB-INF	directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Tip
Since	the	release	of	Java	EE	5,	you	can	apply	declarative	security	by	means	of
annotations	just	like	we	have	for	other	key	APIs	(EJB,	web	services,	and	so	on).
Annotations	are	specified	within	a	class	file,	and	when	the	application	is	deployed,
the	application	server	translates	this	information	internally.

Programmatic	security:	This	is	embedded	in	an	application	and	used	to	make
security	decisions.	It	can	be	used	when	declarative	security	alone	is	not	sufficient	to
express	the	security	model	of	an	application.	The	Java	EE	security	API	allows	the
developer	to	test	whether	or	not	the	current	user	has	access	to	a	specific	role,	using
the	following	calls:

isUserInRole()	for	servlets	and	JSPs	(adopted	in
javax.servlet.http.HttpServletRequest)
isCallerInRole()	for	EJBs	(adopted	in	javax.ejb.SessionContext)

Additionally,	there	are	other	API	calls	that	provide	access	to	the	user’s	identity,
which	are	as	follows:

getUserPrincipal()	for	servlets	and	JSPs	(adopted	in
javax.servlet.http.HttpServletRequest)
getCallerPrincipal()	for	EJBs	(adopted	in	javax.ejb.SessionContext)

Using	these	APIs,	you	can	develop	arbitrarily	complex	authorization	models.

www.it-ebooks.info

http://www.it-ebooks.info/

The	WildFly	security	subsystem
WildFly	security	qualifies	as	an	extension	to	the	application	server	and	is	included,	by
default,	both	in	standalone	and	domain	servers	using	the	following	code:
<extension	module=“org.jboss.as.security”/>

WildFly	defines	security	policies	using	two	terms:	security	realms	and	security	domains.
Security	realms	are	configuration	sets	mapped	to	external	connectors	(for	example,	EJB
remoting	and	management	interface).	They	allow	every	connection	type	to	have	its	own
appropriate	authentication	and	authorization	properties	defined.	For	instance,	both
management	and	application	realms	define	two	separate	files,	which	store	the	allowed
usernames.	Additionally,	the	application	realm	contains	a	reference	to	a	file	that	defines
user	role.

The	configuration	defined	in	the	security	realm	is	then	passed	to	a	security	domain
requested	by	the	deployed	application.	The	security	domain	defines	a	set	of	login	modules
that	are	responsible	for	checking	the	user’s	credentials	and	creating	a	security	principal
representing	the	client	(along	with	a	set	of	roles	for	the	requester).

The	following	is	an	extract	from	the	default	security	subsystem	contained	in	the	server
configuration	file,	which	contains	the	RealmDirect	login	that	will	be	used	in	the	next
section	to	secure	the	Ticket	example	application:
<subsystem	xmlns=“urn:jboss:domain:security:1.2”>

				<security-domains>

								<security-domain	name=“other”	cache-type=“default”>

												<authentication>

																<login-module	code=“Remoting”	flag=“optional”>

																				<module-option	name=“password-stacking”

value=“useFirstPass”/>

																</login-module>

																<login-module	code=“RealmDirect”	flag=“required”>

																				<module-option	name=“password-stacking”

value=“useFirstPass”/>

																</login-module>

												</authentication>

								</security-domain>

								<security-domain	name=“jboss-web-policy”	cache-type=“default”>

												<authorization>

																<policy-module	code=“Delegating”	flag=“required”/>

												</authorization>

								</security-domain>

								<security-domain	name=“jboss-ejb-policy”	cache-type=“default”>

												<authorization>

																<policy-module	code=“Delegating”	flag=“required”/>

												</authorization>

								</security-domain>

				</security-domains>

</subsystem>

Configuration	files	are	defined	in	the	security	realm	using	the	following	code:
<security-realm	name=“ApplicationRealm”>

				<authentication>

www.it-ebooks.info

http://www.it-ebooks.info/

								<local	default-user=”$local”	allowed-users=”*”/>

												<properties	path=“application-users.properties”	relative-

to=“jboss.server.config.dir”/>

					</authentication>

				<authorization>

								<properties	path=“application-roles.properties”	relative-

to=“jboss.server.config.dir”/>

			</authorization>

</security-realm>

As	you	can	see,	the	configuration	is	pretty	short	as	it	relies	largely	on	default	values,
especially	for	high-level	structures	such	as	the	security	management	area.	By	defining
your	own	security	management	options,	you	could,	for	example,	override	the	default
authentication/authorization	managers	with	your	implementations.	Since	it	is	likely	that
you	will	not	need	to	override	these	interfaces,	we	will	rather	concentrate	on	the	security-
domain	element,	which	is	the	core	aspect	of	WildFly	security.

A	security	domain	can	be	thought	of	as	a	Customs	Office	for	foreigners.	Before	the
request	crosses	WildFly	borders,	the	security	domain	performs	all	the	required
authentication	and	authorization	checks	and	eventually	notifies	if	he/she	can	proceed	or
not.

Security	domains	are	generally	configured	at	server	startup	and	subsequently	bound	into
the	JNDI	tree	under	the	key	java:/jaas/.	Within	the	security	domain,	you	can	configure
login	authentication	modules	so	that	you	can	easily	change	your	authentication	provider
by	simply	changing	its	login-module	element.

There	are	several	implementations	of	login	modules	available	out	of	the	box;	there	is
obviously	not	enough	room	here	to	describe	in	detail	the	features	of	each	module,	though
we	will	offer	a	comprehensive	description	of	some	popular	options,	such	as:

	
The	RealmDirect	login	module,	which	can	be	used	for	basic	file-based	authentication
The	Database	login	module,	which	checks	user	credentials	against	a	relational
database

Note
Should	you	need	further	information	about	login	modules,	check	out	the	WildFly
documentation	at:

	
https://docs.jboss.org/author/display/WFLY8/Security+subsystem+configuration
https://docs.jboss.org/author/display/WFLY8/Security+Realms

www.it-ebooks.info

https://docs.jboss.org/author/display/WFLY8/Security+subsystem+configuration
https://docs.jboss.org/author/display/WFLY8/Security+Realms
http://www.it-ebooks.info/

Setting	up	your	first	login	module
In	the	following	section,	we	will	demonstrate	how	to	secure	an	application	using	the
RealmDirect	security	domain,	which	was	introduced	earlier.	The	RealmDirect	login
module	is	based	on	the	following	two	files:

	
application-users.properties:	This	contains	the	list	of	usernames	and	passwords
application-roles.properties:	This	contains	the	mapping	between	the	users	and
their	roles

These	files	are	located	in	the	application	server	configuration	folder	and	they	are	updated
each	time	you	add	a	new	user	via	the	add-user.sh/add-user.cmd	script.	For	our	purpose,
we	will	create	a	new	application	user	named	demouser,	which	belongs	to	the	role	Manager,
as	shown	in	the	following	screenshot:

Once	the	user	is	added,	the	application-users.properties	file	will	contain	the
username	and	the	MD5	encoding	of	the	password,	shown	as	follows:
demouser=9e21f32c593ef5248e7d6b2aab28717b

Conversely,	the	application-roles.properties	file	will	contain	the	roles	granted	to	the
demouser	username	once	logged	in:
demouser=Manager

www.it-ebooks.info

http://www.it-ebooks.info/

Using	the	login	module	in	the	Ticket	web	application
We	can	now	apply	the	RoleDirect	login	module	in	the	Ticket	web	application	described
in	Chapter	4,	Learning	Context	and	Dependency	Injection	(you	could	pick	the	version
from	another	chapter	if	you	like).	We	will	first	show	how	to	provide	a	BASIC	web
authentication,	and	then	we	will	show	a	slightly	more	complex	example	using	FORM-
based	authentication.

Note
BASIC-access	authentication	is	the	simplest	way	to	provide	a	username	and	password
when	making	a	request	through	a	browser.

It	works	by	sending	an	encoded	string	containing	the	user	credentials.	This	Base64-
encoded	string	is	transmitted	and	decoded	by	the	receiver,	resulting	in	colon-separated
username	and	password	strings.	When	it	comes	to	safety,	BASIC	authentication	is	usually
not	the	best	solution.	The	password	can	be	stolen	during	the	transmission,	so	SSL	is	a
must	in	order	to	protect	it.

Turning	on	web	authentication	requires	the	security-constraints	element	to	be	defined
in	the	web	application	configuration	file	(web.xml),	as	shown	in	the	following	code
snippet:
<web-app	xmlns=“http://xmlns.jcp.org/xml/ns/javaee”

									xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”

									xsi:schemaLocation=“http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd”

									version=“3.1”>

…	…

				<security-constraint>

								<web-resource-collection>

												<web-resource-name>HtmlAuth</web-resource-name>

												<description>application	security	constraints

												</description>

												<url-pattern>/*</url-pattern>

												<http-method>GET</http-method>

												<http-method>POST</http-method>

								</web-resource-collection>

								<auth-constraint>

												<role-name>Manager</role-name>

								</auth-constraint>

				</security-constraint>

				<login-config>

								<auth-method>BASIC</auth-method>

				</login-config>

				<security-role>

								<role-name>Manager</role-name>

				</security-role>

</web-app>

This	configuration	will	add	a	security	constraint	on	any	JSP/servlet	of	the	web	application
that	will	restrict	access	to	users	authenticated	with	the	role	Manager.	All	login	modules

www.it-ebooks.info

http://www.it-ebooks.info/

shown	in	the	earlier	section	define	this	role,	so	you	can	just	use	the	login	module	that	suits
your	needs	best.

From	Java	EE	7,	there	are	two	more	methods	to	express	your	security	constraints.	Firstly,
you	can	use	a	new	container	provided	role:	**.	It	indicates	that	you	are	referring	to	any
authenticated	user,	without	taking	its	roles	into	account.

The	second	one	is	the	deny-http-uncovered-methods	tag,	which	can	be	used	in	a
web.xml	file	to	forbid	access	to	every	HTTP	method	that	is	not	covered	by	a	separate
security	constraint.

The	next	configuration	tweak	needs	to	be	performed	on	the	JBoss	web	deployment’s
descriptor,	WEB-INF/jboss-web.xml.	You	need	to	declare	the	security	domain	here,	which
will	be	used	to	authenticate	the	users.	Since	we	are	using	RealmDirect,	which	is	part	of
the	other	built-in	login	module,	we	will	need	to	include	the	java:/jaas/other	context
information:
<jboss-web>	

						<security-domain>java:/jaas/other</security-domain>

</jboss-web>

The	following	diagram	illustrates	the	whole	configuration	sequence	applied	to	a	Database
login	module:

Once	you	have	deployed	your	application,	the	outcome	should	be	a	blocking	pop	up
requesting	user	authentication.	The	window	will	look	a	little	different	on	every	browser
and	its	appearance	cannot	be	changed.

Logging	in	with	demouser	username	and	the	valid	password	will	grant	access	to	the
application	with	the	Manager	role.

www.it-ebooks.info

http://www.it-ebooks.info/

Switching	to	FORM-based	security
FORM-based	authentication	lets	developers	customize	the	authentication	user	interface,
adapting	it,	for	example,	to	your	company’s	standards.	Configuring	it	in	your	application
requires	you	to	basically	modify	just	the	login-config	stanza	of	the	security	section	of
your	web.xml	file.	Within	it,	we	will	define	a	login	landing	page	(login.xhtml)	and	an
error	page	(error.xhtml),	in	case	the	login	fails.	The	code	snippet	for	it	is	as	follows:
<login-config>

				<auth-method>FORM</auth-method>

				<form-login-config>

						<form-login-page>/faces/login.xhtml</form-login-page>

						<form-error-page>/faces/error.xhtml</form-error-page>

				</form-login-config>

</login-config>

The	login	form	must	contain	fields	to	enter	a	username	and	password.	These	fields	must
be	named	j_username	and	j_password,	respectively.	The	authentication	form	should	post
these	values	to	the	j_security_check	logical	name.	All	these	names	beginning	with	j_
are	standardized	by	the	Java	Servlet	specification—we	just	need	to	follow	the	convention
in	order	to	let	the	automatic	mechanisms	work.	Here’s	a	simple	login.xhtml	page,	which
can	be	used	to	pass	the	required	values	to	the	security	system:
<?xml	version=‘1.0’	encoding=‘UTF-8’	?>

<!DOCTYPE	html	PUBLIC	“-//W3C//DTD	XHTML	1.0	Transitional//EN”

								“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html	xmlns=“http://www.w3.org/1999/xhtml”

						xmlns:h=“http://xmlns.jcp.org/jsf/html”>

<head>

				<title>FORM	based	Login</title>

</head>

<body>

<form	method=“post”	action=“j_security_check”	name=“loginForm”>

				<h:panelGrid	columns=“2”>

								<h:outputLabel	id=“userNameLabel”	for=“j_username”

value=“Username:”/>

								<h:inputText	id=“j_username”	autocomplete=“off”/>

								<h:outputLabel	id=“passwordLabel”	for=“j_password”

value=“Password:”/>

								<h:inputSecret	id=“j_password”	autocomplete=“off”/>

								<div/>

								<h:panelGroup>

												<h:commandButton	type=“submit”	value=“Login”/>

												<h:commandButton	type=“reset”	value=“Clear”/>

								</h:panelGroup>

				</h:panelGrid>

</form>

</body>

</html>

For	the	sake	of	brevity,	we	won’t	include	the	error	page,	which	will	simply	alert	that	the
user	entered	an	incorrect	combination	of	username	and	password.	The	expected	outcome
is	the	following	login	screen,	which	will	intercept	all	user	access	to	your	application	and

www.it-ebooks.info

http://www.it-ebooks.info/

grant	access	to	the	default	home	page	if	the	username	and	password	credentials	are
correct.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	a	Database	login	module
The	UserRoles	login	module	is	a	good	starting	point	to	learn	how	to	put	together	all	the
pieces	required	to	secure	a	web	application.	In	real-world	cases,	there	are	better
alternatives	to	protect	your	applications,	such	as	the	Database	login	module.	A	database
security	domain	follows	the	same	logic	exposed	in	the	earlier	example;	it	just	stores	the
credentials	within	the	database.	In	order	to	run	this	example,	we	will	refer	to	a	data	source
defined	in	Chapter	5,	Combining	Persistence	with	CDI	(bound	at	the	JNDI	name
java:jboss/datasources/wflydevelopment),	which	needs	to	be	deployed	on	the
application	server:
<security-domain	name=“dbdomain”	cache-type=“default”>

				<authentication>

								<login-module	code=“Database”	flag=“required”>

												<module-option	name=“dsJndiName”	value=”

java:jboss/datasources/wflydevelopment”/>

												<module-option	name=“principalsQuery”	value=“select	passwd	from

USERS	where	login=?”/>

												<module-option	name=“rolesQuery”	value=“select	role	‘Roles’

from	USER_ROLES	where	login=?”/>

								</login-module>

				</authentication>

</security-domain>

In	order	to	get	this	configuration	working,	you	have	to	first	create	the	required	tables	and
insert	some	sample	data	in	it	using	the	following	queries:
CREATE	TABLE	USERS(login	VARCHAR(64)	PRIMARY	KEY,	passwd	VACHAR(64));

CREATE	TABLE	USER_ROLES(login	VARCHAR(64),	role	VARCHAR(32));

INSERT	into	USERS	values(‘admin’,	‘admin’);

INSERT	into	USER_ROLES	values(‘admin’,	‘Manager’);

As	you	can	see,	the	admin	user	will	map	again	to	the	Manager	role.	One	caveat	of	this
configuration	is	that	it	uses	clear	text	passwords	in	the	database;	so	before	rolling	this
module	into	production,	you	should	consider	adding	additional	security	to	your	login
module.	Let’s	see	how	to	do	this	in	the	next	section.

Encrypting	passwords
Storing	passwords	in	the	database	as	a	clear	text	string	is	not	considered	a	good	practice;
as	a	matter	of	fact,	a	database	has	even	more	potential	security	holes	than	a	regular
filesystem.	Imagine,	for	example,	that	a	DBA	added	a	public	synonym	for	some	tables,
forgetting	that	one	of	those	tables	held	sensitive	information	such	as	application
passwords,	as	shown	in	the	following	screenshot!	You	then	need	to	be	sure	that	no
potential	attackers	will	ever	be	able	to	deliver	the	following	query.

Fortunately,	securing	application	passwords	is	relatively	easy;	you	can	add	a	few	extra
options	to	your	login	module,	specifying	that	the	stored	passwords	are	encrypted	using	a
message	digest	algorithm.	For	example,	in	the	Database	login	module,	you	should	add	the

www.it-ebooks.info

http://www.it-ebooks.info/

following	highlighted	options	at	the	bottom:
<login-module	code=“Database”	flag=“required”>

					<module-option	name=“dsJndiName”

value=“java:jboss/datasources/wflydevelopment”/>

					<module-option	name=“principalsQuery”	value=“select	passwd	from	USERS

where	login=?”/>

					<module-option	name=“rolesQuery”	value=“select	role,	‘Roles’	from

USER_ROLES	where	login=?”/>

					<module-option	name=“hashAlgorithm”	value=“SHA-256”/>

					<module-option	name=“hashEncoding”	value=“BASE64”/>

</login-module>

Here,	we	specified	that	the	password	will	be	hashed	against	an	SHA	hash	algorithm;
alternatively,	you	can	use	any	other	algorithm	allowed	by	your	JCA	provider.

Note
For	an	excellent	introduction	to	hashing	algorithms,	refer	to
http://www.unixwiz.net/techtips/iguide-crypto-hashes.html.

For	the	sake	of	completeness,	we	include	a	small	application	as	follows,	which	generates
the	Base64	hashed	password	that	is	to	be	inserted	in	Database:
public	class	Hash	{

				public	static	void	main(String[]	args)	throws	Exception{

							String	password	=	args[0];

							MessageDigest	md	=	MessageDigest.getInstance(“SHA-256”);

							byte[]	passwordBytes	=	password.getBytes();

							byte[]	hash	=	md.digest(passwordBytes);

							String	passwordHash	=	

												Base64.getEncoder().encodeToString(hash);

							System.out.println(“password	hash:	“+passwordHash);

}

Running	the	main	program	with	admin	as	the	argument	will	generate	the	hash
jGl25bVBBBW96Qi9Te4V37Fnqchz/Eu4qB9vKrRIqRg=.	This	hash	will	be	your	updated
password,	which	needs	to	be	updated	in	your	database,	as	shown	in	the	following
screenshot.	Update	the	password	using	the	following	code:
UPDATE	USERS	SET	PASSWD	=		‘jGl25bVBBBW96Qi9Te4V37Fnqchz/Eu4qB9vKrRIqRg=’

WHERE	LOGIN	=	‘admin’;

You	can	update	it	with	any	SQL	client	of	your	choice.

Using	the	Database	login	module	in	your	application
Once	you	are	done	with	the	login	module	configuration,	don’t	forget	to	reference	it
through	the	JBoss	web	deployment’s	descriptor,	WEB-INF/jboss-web.xml:
<jboss-web>	

						<security-domain>java:/jaas/dbdomain</security-domain>

www.it-ebooks.info

http://www.unixwiz.net/techtips/iguide-crypto-hashes.html
http://www.it-ebooks.info/

</jboss-web>

www.it-ebooks.info

http://www.it-ebooks.info/

Securing	EJBs
Securing	applications	by	means	of	a	web	login	form	is	the	most	frequently	used	option	in
Enterprise	applications.	Nevertheless,	the	HTTP	protocol	is	not	the	only	choice	available
to	access	applications.	For	example,	EJBs	can	be	accessed	by	remote	clients	using	the
RMI-IIOP	protocol.	In	such	a	case,	you	should	further	refine	your	security	policies	by
restricting	access	to	the	EJB	components,	which	are	usually	involved	in	the	business	layer
of	your	applications.

Tip
How	does	security	work	at	the	EJB	level?

Authentication	must	be	performed	before	any	EJB	method	is	called.	Authorization,	on	the
other	hand,	occurs	at	the	beginning	of	each	EJB	method	call.

One	vast	area	of	improvement	introduced	in	Java	EE	5	concerns	the	use	of	annotations,
which	can	also	be	used	to	perform	the	basic	security	checks.	There	are	five	available
annotations,	which	are	listed	as	follows:

	
@org.jboss.ejb3.annotation.SecurityDomain:	This	specifies	the	security	domain
that	is	associated	with	the	class/method.
@javax.annotation.security.RolesAllowed:	This	specifies	the	list	of	roles
permitted	to	access	a	method(s)	in	an	EJB	application.
@javax.annotation.security.RunAs:	This	assigns	a	role	dynamically	to	the	EJB
application	during	the	invocation	of	the	method.	It	can	be	used,	for	example,	if	we
need	to	temporarily	allow	permission	to	access	certain	methods.
@javax.annotation.security.PermitAll:	This	specifies	that	an	EJB	application
can	be	invoked	by	any	client.	The	purpose	of	this	annotation	is	to	widen	security
access	to	some	methods	in	situations	where	you	don’t	exactly	know	what	role	will
access	the	EJB	application	(imagine	that	some	modules	have	been	developed	by	a
third	party	and	they	access	your	EJB	application	with	some	roles	that	are	not	well
identified).
@javax.annotation.security.DenyAll:	This	specifies	that	an	EJB	application
cannot	be	invoked	by	external	clients.	It	has	the	same	considerations	as	those	for
@PermitAll.

The	following	snippet	is	an	example	of	how	to	secure	the	TheatreBooker	SFSB,	which
we	discussed	in	Chapter	4,	Learning	Context	and	Dependency	Injection:

@RolesAllowed(“Manager”)

@SecurityDomain(“dbdomain”)

@Stateful

@Remote(TheatreBooker.class)	

public	class	TheatreBooker	implements	TheatreBooker	{

}

Note

www.it-ebooks.info

http://www.it-ebooks.info/

Be	careful!	There	is	more	than	one	SecurityDomain	API	available.	You	have	to	include
org.jboss.ejb3.annotation.SecurityDomain.	The	@RolesAllowed	annotation,	on	the
other	hand,	needs	to	import	javax.annotation.security.RolesAllowed.

The	JBoss-specific	annotations	can	be	found	in	the	following	maven	dependency:
<groupId>org.jboss.ejb3</groupId>

<artifactId>jboss-ejb3-ext-api</artifactId>

<version>2.0.0</version>

<scope>provided</scope>

Annotations	can	also	be	applied	at	the	method	level;	for	example,	if	we	want	to	secure	just
the	bookSeat	object	of	the	TheatreBookerBean	class,	we	will	tag	the	bookSeat	method	as
follows:

@RolesAllowed(“Manager”)

@SecurityDomain(“dbdomain”)

public	String	bookSeat(int	seatId)	throws	SeatBookedException	{

}

What	if	you	don’t	want	to	use	annotations	to	establish	security	roles?	For	example,	if	you
have	a	security	role	that	is	used	crosswise	by	all	your	EJB	applications,	perhaps	it	is
simpler	to	use	a	plain	old	XML	configuration	instead	of	tagging	all	EJBs	with	annotations.
In	this	scenario,	you	have	to	declare	the	security	constraints	first	in	the	generic	META-
INF/ejb-jar.xml	file,	shown	as	follows:
<ejb-jar	xmlns=“http://java.sun.com/xml/ns/javaee”

xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”

		version=“3.2”

		xsi:schemaLocation=“http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_2.xsd”>

		<assembly-descriptor>

				<method-permission>

						<role-name>Manager</role-name>

						<method>

								<ejb-name>*</ejb-name>

								<method-name>*</method-name>

						</method>

				</method-permission>

		</assembly-descriptor>

</ejb-jar>

Then,	inside	the	META-INF/jboss-ejb3.xml	configuration	file,	just	add	a	reference	to	your
security	domain:
<?xml	version=“1.0”	encoding=“UTF-8”?>

<jboss:ejb-jar	xmlns=“http://java.sun.com/xml/ns/javaee”

		xmlns:jboss=“http://www.jboss.com/xml/ns/javaee”

xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”

		xmlns:s=“urn:security:1.1”	version=“3.1”	impl-version=“2.0”>

		<assembly-descriptor>

				<s:security>

						<ejb-name>*</ejb-name>

						<s:security-domain>dbdomain</s:security-domain>

				</s:security>

www.it-ebooks.info

http://www.it-ebooks.info/

		</assembly-descriptor>

</jboss:ejb-jar>

Here’s	a	snapshot	illustrating	the	role	configuration	of	the	EJB	file:

Note
If	you	want	to	use	a	login	module	via	EJB	remoting,	you	must	configure	your	security
realm	accordingly	using	the	JAAS	entry,	as	shown	in	the	following	code:
<security-realm	name=“ApplicationRealm”>

		<authentication>

			<jaas	name=“dbdomain”/>

		</authentication>

</security-realm>

Additionally,	you	should	place	the	following	entries	in	jbossyourjboss-ejb-client-
properties:
remote.connection.default.username=admin

remote.connection.default.password=admin

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOPLAINTEXT=false

remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=true

These	entries	will	ensure	(besides	passing	the	credentials),	that	the	transmitted	password
will	not	be	additionally	hashed	by	the	remoting	mechanism.

Securing	web	services
Web	service	authorization	can	basically	be	carried	out	in	two	ways,	depending	on	whether
we	are	dealing	with	a	POJO-based	web	service	or	an	EJB-based	web	service.Security
changes	to	POJO	web	services	are	identical	to	those	we	introduced	for	servlets/JSP,
consistent	in	defining	the	security-constraints	element	in	web.xml	and	the	login
modules	in	jboss-web.xml.

If	you	are	using	a	web	client	to	access	your	web	service,	it	is	all	you	need	to	get
authenticated.	If	you	are	using	a	standalone	client,	you	will	need	to	specify	the	credentials
in	the	JAX-WS	Factory.	The	following	is	an	example	of	how	to	access	the	secured
CalculatePowerService	instance,	which	was	described	in	Chapter	7,	Adding	Web

www.it-ebooks.info

http://www.it-ebooks.info/

Services	to	Your	Applications:
JaxWsProxyFactoryBean	factory	=	new	JaxWsProxyFactoryBean();

factory.getInInterceptors().add(new	LoggingInInterceptor());

factory.getOutInterceptors().add(new	LoggingOutInterceptor());

factory.setServiceClass(CalculatePowerWebService.class);

factory.setAddress(“http://localhost:8080/pojoService”);

factory.setUsername(“admin”);

factory.setPassword(“admin”);

CalculatePowerWebService	client	=	(CalculatePowerWebService)

factory.create();

What	about	EJB-based	web	services?	The	configuration	is	slightly	different;	since	the
security	domain	is	not	specified	in	web	descriptors,	we	have	to	provide	it	by	means	of
annotations:
@Stateless

@WebService(targetNamespace	=	“http://www.packtpub.com/”,	serviceName	=

“TicketWebService”)	

@WebContext(authMethod	=	“BASIC”,

												secureWSDLAccess	=	false)

@SecurityDomain(value	=	“dbdomain”)

@RolesAllowed(“Manager”)

public	class	TicketSOAPService	implements	TicketSOAPServiceItf,

Serializable	{

			…	.	

}

As	you	can	see,	the	@org.jboss.ws.api.annotation.Webcontext	annotation	basically
reflects	the	same	configuration	options	as	that	of	POJO-based	web	services,	with	BASIC
authentication	and	unrestricted	WSDL	access.

Note
The	@WebContext	annotation	can	be	found	in	the	following	dependency:
				<dependency>

						<groupId>org.jboss.ws</groupId>

						<artifactId>jbossws-api</artifactId>

						<version>1.0.2.Final</version>

						<scope>provided</scope>

				</dependency>

The	@org.jboss.ejb3.annotation.SecurityDomain	annotation	should	be	familiar	to	you
since	we	introduced	it	to	illustrate	how	to	secure	an	EJB.	As	you	can	see,	it’s	a
replacement	for	the	information	contained	in	the	jboss-web.xml	file,	except	that	the
security	domain	is	referenced	directly	by	dbdomain	(instead	of	java:/jaas/dbdomain).

Note
The	previous	security	configuration	can	also	be	specified	by	means	of	the	META-INF/ejb-
jar.xml	and	META-INF/jboss-ejb3.xml	file	in	case	you	prefer	using	standard
configuration	files.

www.it-ebooks.info

http://www.it-ebooks.info/

To	pass	your	login	credentials	to	the	web	service,	you	can	use	the	RequestContext	object:
final	TicketWebService	infoService	=

service.getPort(TicketWebService.class);

Map<String,	Object>	requestContext	=	((BindingProvider)

infoService).getRequestContext();

requestContext.put(BindingProvider.USERNAME_PROPERTY,	“admin”);

requestContext.put(BindingProvider.PASSWORD_PROPERTY,	“admin”);

The	username	and	password	values	will	be	passed	to	the	login	module	defined	in	the
security	domain,	just	like	in	every	other	authentication	method.

www.it-ebooks.info

http://www.it-ebooks.info/

Securing	the	transport	layer
If	you	were	to	create	a	mission-critical	application	with	just	the	bare	concepts	you	learned
until	now,	you	would	be	exposed	to	all	sorts	of	security	threats.	For	example,	if	you	need
to	design	a	payment	gateway,	where	the	credit	card	information	is	transmitted	by	means	of
an	EJB	or	servlet,	using	just	the	authorization	and	authentication	stack	is	really	not
enough,	as	the	sensitive	information	is	still	sent	across	a	network	and	it	could	be	disclosed
by	a	hacker.

In	order	to	prevent	disclosure	of	critical	information	to	unauthorized	individuals	or
systems,	you	have	to	use	a	protocol	that	provides	encryption	of	the	information.
Encryption	is	the	conversion	of	data	into	a	form	that	cannot	be	understood	by
unauthorized	people.	Conversely,	decryption	is	the	process	of	converting	encrypted	data
back	into	its	original	form	so	that	it	can	be	understood.

The	protocols	used	to	secure	the	communication	are	SSL	and	TLS,	the	latter	being
considered	a	replacement	for	the	older	SSL.

Tip
The	differences	between	the	two	protocols	are	minor	and	very	technical.	In	short,	TLS
uses	stronger	encryption	algorithms	and	has	the	ability	to	work	on	different	ports.	For	the
rest	of	this	chapter,	we	will	refer	to	SSL	for	both	protocols.	Check	out	Wikipedia	for	more
information	on	it:	http://en.wikipedia.org/wiki/Transport_Layer_Security.

There	are	two	basic	techniques	to	encrypt	information:	symmetric	encryption	(also	called
secret-key	encryption)	and	asymmetric	encryption	(also	called	public-key	encryption).

Symmetric	encryption	is	the	oldest	and	best-known	technique.	It	is	based	on	a	secret	key,
which	is	applied	to	the	text	of	a	message	to	change	the	content	in	a	particular	way.	As	long
as	both	the	sender	and	recipient	know	the	secret	key,	they	can	encrypt	and	decrypt	all
messages	that	use	this	key.	These	encryption	algorithms	typically	work	fast	and	are	well
suited	to	encrypt	blocks	of	messages	at	once.

One	significant	issue	with	symmetric	algorithms	is	the	requirement	of	a	safe
administrative	organization	to	distribute	keys	to	users.	This	generally	results	in	increased
overhead	from	the	administrative	aspect	while	the	keys	remain	vulnerable	to	unauthorized
disclosure	and	potential	abuse.

For	this	reason,	a	mission-critical	enterprise	system	usually	relies	on	the	asymmetric
encryption	algorithms,	which	tend	to	be	easier	to	employ,	manage,	and	are	ultimately
more	secure.

Asymmetric	cryptography,	also	known	as	public-key	cryptography,	is	based	on	the
concept	that	the	key	used	to	encrypt	is	not	the	same	as	the	key	that	is	used	to	decrypt	the
message.	In	practice,	each	user	holds	a	couple	of	keys:	the	public	key	that	is	distributed	to
other	parties	and	the	private	key	that	is	kept	as	a	secret.	Each	message	is	encrypted	with
the	recipient’s	public	key	and	can	only	be	decrypted	(by	the	recipient)	with	his	private	key,
as	shown	in	the	following	diagram:

www.it-ebooks.info

http://en.wikipedia.org/wiki/Transport_Layer_Security
http://www.it-ebooks.info/

Using	asymmetric	encryption,	you	can	be	sure	that	your	message	cannot	be	disclosed	to	a
third	party.	However,	there	is	still	one	vulnerability.

Suppose	you	want	to	exchange	some	valuable	information	with	a	business	partner	and	to
that	end	are	requesting	his	public	key	by	telephone	or	email.	A	fraudulent	user	intercepts
your	e-mail	or	simply	listens	to	your	conversation	and	quickly	sends	you	a	fake	mail	with
his	public	key.	Now,	even	if	your	data	transmission	is	secured,	it	will	be	directed	to	the
wrong	person!

In	order	to	solve	this	issue,	we	need	a	document	to	verify	that	the	public	key	belongs	to	a
particular	individual.	This	document	is	called	a	digital	certificate	or	public-key
certificate.	A	digital	certificate	consists	of	a	formatted	block	of	data	that	contains	the	name
of	the	certificate	holder	(which	may	be	either	a	user	or	system	name)	and	the	holder’s
public	key,	along	with	the	digital	signature	of	a	Certification	Authority	(CA)	for
authentication.	The	CA	attests	that	the	sender’s	name	is	the	one	associated	with	the	public
key	in	the	document.

www.it-ebooks.info

http://www.it-ebooks.info/

Public	key	certificates	are	commonly	used	to	secure	the	interaction	with	websites.	By
default,	the	web	browser	ships	with	a	set	of	predefined	CAs;	they	are	used	to	verify	that
the	public	certificate	served	to	a	browser	when	you	enter	a	secure	site	has	actually	been
issued	by	the	owner	of	the	website.	In	short,	if	you	connect	your	browser	to
https://www.abc.com	and	your	browser	doesn’t	give	any	certificate	warning,	you	can
safely	interact	with	the	entity	in	charge	of	the	site,	that	is,	unless	the	site	or	your	browser
has	been	hacked.	However,	this	is	another	story.

Note
Simple	authentication	and	client	authentication

In	the	previous	example,	we	depicted	a	simple	authentication,	(also	called	server
authentication).	In	this	scenario,	the	only	party	that	needs	to	prove	its	identity	is	the	server.

SSL,	however,	is	able	to	perform	mutual	authentication	(also	called	client	or	two-way
authentication);	here	too,	the	server	requests	a	client	certificate	during	the	SSL	handshake
over	the	network.

Client	authentication	requires	a	client	certificate	in	the	x.509	format	from	a	CA.	The	x.509
format	is	an	industry-standard	format	for	SSL	certificates.	In	the	next	section,	we	will
explore	which	tools	are	available	to	generate	digital	certificates,	and	how	to	get	your
certificates	signed	by	a	CA.

www.it-ebooks.info

http://www.it-ebooks.info/

Enabling	the	Secure	Socket	Layer	on	WildFly
WildFly	uses	the	Java	Secure	Socket	Extension	(JSSE),	which	is	bundled	in	the	Java	SE
to	leverage	the	SSL/TLS	communication.

An	Enterprise	application	can	be	secured	at	two	different	locations:	the	HTTP	level	for
web	applications,	and	the	RMI	level	for	applications	using	EJB.	HTTP	communication	is
handled	by	the	web	subsystem	within	the	standalone.xml/domain.xml	file.	Securing	the
RMI	transport	is,	on	the	other	hand,	not	always	a	compelling	requirement	of	your
applications.	Actually,	in	most	production	environments,	WildFly	is	placed	behind	a
firewall.

As	you	can	see	from	the	following	diagram,	this	implies	that	your	EJBs	are	not	directly
exposed	to	untrusted	networks,	which	usually	connect	through	the	web	server	placed	in	a
demilitarized	zone:

In	order	to	get	started	with	WildFly	and	SSL,	we	need	a	tool	that	generates	a
public/private	key	pair	in	the	form	of	an	x.509	certificate	for	use	by	the	SSL	server
sockets.	This	is	covered	in	the	next	section.

Certificate	management	tools
One	tool	that	can	be	used	to	set	up	a	digital	certificate	is	keytool,	a	key	and	certificate
management	utility	that	ships	with	the	Java	SE.	It	enables	users	to	administer	their	own
public/private	key	pairs	and	associated	certificates	for	use	in	self-authentication	(where	the
user	authenticates	himself	or	herself	to	other	users	or	services)	or	data	integrity	and
authentication	services,	using	digital	signatures.	It	also	allows	users	to	cache	the	public
keys	(in	the	form	of	certificates)	of	their	communicating	peers.

The	keytool	stores	the	keys	and	certificates	in	a	file	termed	keystore,	a	repository	of
certificates	used	to	identify	a	client	or	server.	Typically,	a	keystore	contains	a	client	or
server’s	identity,	which	is	protected	by	a	password.	Let’s	see	an	example	of	the	keystore
generation:

keytool	-genkey	-keystore	wildfly.keystore	-storepass	mypassword	-keypass

mypassword	-keyalg	RSA	-validity	180		-alias	wflyalias			-dname	“cn=John

Smith,o=PackPub,c=GB”

This	command	creates	the	keystore	named	wildfly.keystore	in	the	working	directory,
and	assigns	it	the	password	mypassword.	It	generates	a	public/private	key	pair	for	the
entity	whose	unique	name	has	the	common	name	John	Smith,	organization	PacktPub,	and

www.it-ebooks.info

http://www.it-ebooks.info/

two-letter	country	code	GB.

The	result	of	this	action	will	be	a	self-signed	certificate	(using	the	RSA	signature
algorithm),	which	includes	the	public	key	and	the	unique	name.	This	certificate	will	be
valid	for	180	days,	and	is	associated	with	the	private	key	in	a	keystore	entry	referred	to	by
the	alias	wflyalias.

Tip
A	self-signed	certificate	is	a	certificate	that	has	not	been	verified	by	a	CA	and	thus,	leaves
you	vulnerable	to	the	classic	man-in-the-middle	attack.	A	self-signed	certificate	is	only
suitable	for	in-house	use	or	for	testing	while	you	wait	for	your	real	certificate	to	arrive.

Securing	the	HTTP	communication	with	a	self-signed	certificate
Now	let’s	see	how	you	can	use	this	keystore	file	to	secure	your	WildFly	web	channel.
Open	your	server	configuration	file	and	locate	the	web	subsystem.

Within	the	web	subsystem,	you	have	to	first	change	the	default	http-listener	and
socket-binding	to	https-listener	and	“https”,	and	add	the	security-realm	element
to	it.	Next,	you	have	to	insert	an	ssl	stanza	within	it,	which	contains	the	details	of	your
keystore	object	(in	our	example,	we	dropped	the	file	jboss.keystore	into	the	server
configuration	directory):
<subsystem	xmlns=“urn:jboss:domain:undertow:1.0”>

												<buffer-caches>

																<buffer-cache	name=“default”	buffer-size=“1024”	buffers-

per-region=“1024”	max-regions=“10”/>

												</buffer-caches>

												<server	name=“default-server”>

																<https-listener	name=“default”	socket-binding=“https”

security-realm=“EJBRealm”/>

																<host	name=“default-host”	alias=“localhost”>

																				<location	name=”/”	handler=“welcome-content”/>

																				<filter-ref	name=“server-header”/>

																				<filter-ref	name=“x-powered-by-header”/>

																</host>

												</server>

												<servlet-container	name=“default”	default-buffer-

cache=“default”	stack-trace-on-error=“local-only”>

																<jsp-config/>

												</servlet-container>

												//	some	more	code

								</subsystem>

As	you	can	see,	we	referenced	EJBRealm	in	the	configuration,	but	we	still	need	to	define	it.
We	will	do	this	in	the	next	sections.

Generating	the	server	and	client	certificates
Start	by	generating	a	public/private	key	pair	for	the	entity	whose	unique	name	has	the
common	name	John	Smith,	organization	PacktPub,	and	two-letter	country	code	GB.

keytool	-genkey	-v	-alias	wflyAlias	-keyalg	RSA	-keysize	1024	-keystore

wfly.keystore	-validity	180	-keypass	mypassword	-storepass	mypassword	-

www.it-ebooks.info

http://www.it-ebooks.info/

dname	“cn=John	Smith,o=PacktPub,c=GB”

Next,	export	the	server’s	public	key	into	a	certificate	named	sslPublicKey.cer	that	uses
the	password	mypassword.

keytool	-export	-keystore	jboss.keystore	-alias	wflyAlias	-file

sslPublicKey.cer	-keypass	mypassword	-storepass	mypassword

Now	that	we	have	finished	configuring	the	server,	we	will	generate	a	key	pair	for	the
client	too.	We	will	do	this	by	using	the	alias	ejbclientalias	and	the	same	properties	as
we	did	for	the	server’s	keystore	object:

keytool	-genkey	-v	-alias	ejbclientalias	-keyalg	RSA	-keysize	1024	-

keystore	jbossClient.keystore	-validity	180	-keypass	clientPassword	-

storepass	clientPassword	-dname	“cn=John	Smith,o=PacktPub,c=GB”

The	client	public	key	will	also	be	exported	to	a	certificate	named	clientPublicKey.cer.

keytool	-export	-keystore	jbossClient.keystore	-alias	ejbclientalias	-file

clientPublicKey.cer	-keypass	clientPassword	-storepass	clientPassword

Now,	in	order	to	complete	the	SSL	handshake	successfully,	we	need	to	first	import	the
client’s	public	key	into	the	server’s	truststore	object:

keytool	-import	-v	-trustcacerts	-alias	ejbclientalias	-file

clientPublicKey.cer	-keystore	jboss.keystore	-keypass	mypassword	-storepass

mypassword

The	server	certificate	also	needs	to	be	trusted	by	the	client.	You	have	two	available	options
to	solve	this	issue,	as	follows:

	
Import	the	server	certificate	into	the	client’s	JDK	bundle	of	certificates
Create	a	new	repository	of	certificates	trusted	by	the	client	(truststore)

Importing	the	server	certificate	into	the	client	JDK	means	executing	a	certificate	import
into	the	client’s	certified	authorities.

keytool	-import	-v	-trustcacerts	-alias	wflyAlias	-file	sslPublicKey.cer	-

keystore	C:\Java\jdk1.8.0_20\jre\lib\security\cacerts			

We	just	have	to	replace	the	path	we	used	with	our	actual	JDK	path	and	use	the	client
store’s	password	in	order	to	complete	this	operation	(the	default	value	is	changeit).

Otherwise,	if	you	want	to	import	the	certificate	into	a	newly	created	truststore	object,
just	substitute	the	cacerts	destination	with	your	client’s	truststore	object.

keytool	-import	-v	-trustcacerts	-alias	wflyAlias	-file	sslPublicKey.cer	-

keystore	jbossClient.keystore	-keypass	clientPassword	-storepass	

clientPassword

Note

www.it-ebooks.info

http://www.it-ebooks.info/

If	you	choose	the	latter	option,	you	need	to	add	the	following	properties	to	your	client’s
JDK	arguments,	which	will	override	the	default	JDK’s	truststore	object:

java	-Djavax.net.ssl.trustStore=<truststorefile>

-Djavax.net.ssl.trustStorePassword=<password>

Creating	an	SSL-aware	security	realm
Within	WildFly,	security	realms	are	used	to	secure	access	to	the	management	interfaces,
HTTP	interface,	and	remote	JNDI	and	EJB	access.	Within	a	security	realm,	it	is	also
possible	to	define	an	identity	for	the	server;	this	identity	can	be	used	for	both	inbound
connections	to	the	server	and	outbound	connections	being	established	by	the	server.

Therefore,	in	order	to	enable	SSL	communication	for	our	EJB	communication	and	HTTP,
we	will	define	a	security	realm	(named	EJBRealm)	that	is	bound	to	a	server	identity,	which
references	the	server’s	keystore	object,	shown	as	follows:
<security-realm	name=“EJBRealm”>

<server-identities>

						<ssl>

							<keystore	path=“jboss.keystore”	relative-

to=“jboss.server.config.dir”	keystore-password=“mypassword”/>

						</ssl>

			</server-identities>

			<authentication>

								<jaas	name=“ejb-security-domain”/>

			</authentication>

</security-realm>

Besides	containing	the	location	where	SSL	certificates	are	stored,	this	security	realm	also
contains	the	authentication	policy	used	by	your	EJBs,	which	is	defined	by	the	JAAS’s
security	domain,	named	ejb-security-domain.

The	following	is	a	security	domain	definition,	which	is	a	simple	file-based	security
domain	containing	the	user	credentials	and	roles	in	the	files	ejb-users.properties	and
ejb-roles.properties,	respectively:
<security-domain	name=“ejb-security-domain”	cache-type=“default”>

<authentication>

		<login-module	code=“Remoting”	flag=“optional”>

				<module-option	name=“password-stacking”	value=“useFirstPass”/>

		</login-module>

		<login-module	code=“org.jboss.security.auth.spi.UsersRolesLoginModule”

flag=“required”>

				<module-option	name=“defaultUsersProperties”

value=”${jboss.server.config.dir}/ejb-users.properties”/>

				<module-option	name=“defaultRolesProperties”

value=”${jboss.server.config.dir}/ejb-roles.properties”/>

				<module-option	name=“usersProperties”

value=”${jboss.server.config.dir}/ejb-users.properties”/>

				<module-option	name=“rolesProperties”

value=”${jboss.server.config.dir}/ejb-roles.properties”/>

				<module-option	name=“password-stacking”	value=“useFirstPass”/>

		</login-module>

</authentication>

www.it-ebooks.info

http://www.it-ebooks.info/

</security-domain>

As	you	can	imagine,	you	need	to	create	the	two	property	files,	each	with	some	values	in
them.	For	example,	here’s	the	ejb-user.properties	file	to	be	placed	in	the	server
configuration’s	folder:
adminUser=admin123

The	following	is	the	corresponding	ejb-roles.properties	file	that	grants	the	role
ejbRole	to	the	adminUser	role:
adminUser=ejbRole

The	last	configuration	effort	would	be	to	specify	it	in	the	security-realm	attribute	of
your	remoting	connector’s	element:
<subsystem	xmlns=“urn:jboss:domain:remoting:2.0”>

				<endpoint	worker=“default”/>

				<http-connector	name=“http-remoting-connector”	

				connector-ref=“default”	

				security-realm=“EJBRealm”/>

</subsystem>

Let’s	check	the	outcome	of	our	work.	First,	we	will	try	out	the	HTTPS	connection.

You	have	to	restart	WildFly	to	activate	the	changes.	You	should	see	the	following	log	at
the	bottom	of	your	console,	which	informs	you	about	the	new	HTTPS	channel	running	on
port	8443:
[org.wildfly.extension.undertow]	(MSC	service	thread	1-9)	JBAS017519:

Undertow	HTTP	listener	default	listening	on	/127.0.0.1:8443

The	following	screen	is	what	will	be	displayed	by	the	Internet	Explorer	(don’t	try	this	at
home)	browser	(the	same	kind	of	error	message,	with	a	different	format,	will	be	displayed
by	other	browsers	such	as	Firefox	and	Google	Chrome)	if	you	try	to	access	the	Ticket
example	using	the	secured	channel	(for	example,	https://localhost:8443/ticket-
agency-cdi):

www.it-ebooks.info

http://www.it-ebooks.info/

What	happened?	Once	you	establish	a	secure	connection	with	the	web	server,	the	server
certificate	is	sent	to	the	browser.	Since	the	certificate	has	not	been	signed	by	any
recognized	CA,	the	browser	security	sandbox	warns	the	user	about	the	potential	security
threat.

This	is	an	in-house	test	so	we	can	safely	proceed	by	choosing	Continue	to	this	website.
That’s	all	you	need	to	do	in	order	to	activate	the	Secure	Socket	Layer	with	a	self-signed
certificate.

Securing	HTTP	communication	with	a	certificate	signed	by	a	CA
Having	your	certificate	signed	requires	a	certificate-signing	request	(CSR)	to	be	issued
to	a	CA,	which	will	return	a	signed	certificate	to	be	installed	on	your	server.	This	implies	a
cost	for	your	organization,	which	depends	on	how	many	certificates	you	request,	the
encryption	strength,	and	other	factors.

Firstly,	generate	a	CSR	using	the	newly	created	keystore	and	keyentry:

keytool	-certreq	-keystore	jboss.keystore	-alias	wflyalias	-storepass

mypassword	-keypass	mypassword		-keyalg	RSA		-file	certreq.csr

This	will	create	a	new	certificate	request	named	certreq.csr,	bearing	the	following
format:
–—BEGIN	NEW	CERTIFICATE	REQUEST–—

…	…

–—END	NEW	CERTIFICATE	REQUEST–—

The	previous	certificate	needs	to	be	transmitted	to	the	CA.	At	the	end	of	the	enrollment
phase,	the	CA	will	return	a	signed	certificate,	which	needs	to	be	imported	into	your
keychain.	The	following	code	assumes	you	saved	your	CA	certificate	in	a	file	named
signed_ca.txt:

keytool	-import	-keystore	jboss.keystore	-alias	testkey1	-storepass

mypassword	-keypass	mypassword	-file	signed_ca.txt

Now,	your	web	browser	will	recognize	your	new	certificate	as	being	signed	by	a	CA,	so	it
won’t	complain	about	not	being	able	to	validate	the	certificate.

Securing	EJB	communication
EJB	clients	interact	with	the	Enterprise	EJB	tier	using	the	RMI-IIOP	protocol.	The	RMI-
IIOP	protocol	has	been	developed	by	Sun	to	combine	the	RMI	programming	model	with
the	IIOP	underlying	transport.

Securing	the	EJB	transport	is	required	for	applications	that	have	strict	secure	policies,
which	cannot	be	carried	out	using	clear	text	transmission.	In	order	to	do	this,	we	need	to
be	sure	to	complete	the	following	steps:

	
1.	 First,	generate	the	SSL	certificates	and	then	store	the	client’s	public	key	in	the

server’s	keystore	object	and	the	server’s	public	key	on	the	client’s	truststore;
we’ve	already	done	this	in	order	to	prepare	our	HTTPS	connector.

www.it-ebooks.info

http://www.it-ebooks.info/

2.	 Next,	we	need	to	create	an	SSL-aware	security	realm,	which	will	be	used	by	the
remoting	transport.	We	can	use	the	one	created	for	the	HTTPS	communication.

3.	 Finally,	we	need	to	apply	some	changes	to	our	EJB	application	so	that	it	actually	uses
the	SSL	secure	channel.	We	will	cover	this	in	the	next	subsection.

Connecting	to	an	SSL-aware	security	realm
As	you	saw	in	Chapter	3,	Introducing	Java	EE	7	–	EJBs,	the	RMI-IIOP	connection
properties	are	specified	in	the	jboss-ejb-client.properties	file,	which	needs	to	be
tweaked	a	bit	to	enable	SSL	connections:
remote.connections=node1	

remote.connection.node1.host=localhost

remote.connection.node1.port	=	4447

remote.connection.node1.username=adminUser

remote.connection.node1.password=admin123

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=true

remote.connection.node1.connect.options.org.xnio.Options.SSL_STARTTLS=true

remote.connection.node1.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=true

The	SSL_ENABLED	option,	when	set	to	true,	enables	the	remoting	connector’s	SSL
communication.

The	STARTTLS	option	specifies	whether	to	use	the	Tunneled	Transport	Layer	Security
(TTLS)	mode	at	startup	or	when	needed.

The	SASL_POLICY_NOANONYMOUS	option	specifies	whether	Simple	Authentication	and
Security	Layer	(SASL)	mechanisms,	which	accept	anonymous	logins,	are	permitted.

Finally,	since	our	security	realm	also	includes	an	authentication	security	domain,	we	can
choose	to	restrict	access	to	some	methods	by	specifying	a	@RolesAllowed	annotation,
which	requires	the	role	ejbRole:

@RolesAllowed(“ejbRole”)

public	String	bookSeat(int	seatId)		throws	SeatBookedException	{

…	.

}

In	order	to	activate	the	security	domain	on	your	EJBs,	we	need	to	mention	it	in	the
assembly	descriptor	of	your	jboss-ejb3.xml	file:
<jboss:ejb-jar>

		<assembly-descriptor>

				<s:security>

						<ejb-name>*</ejb-name>

										<s:security-domain>ejb-security-domain</s:security-domain>

				</s:security>

		</assembly-descriptor>

</jboss:ejb-jar>

Now,	redeploy	the	Ticket	EJB	example	application,	following	the	directions	contained	in
Chapter	3,	Introducing	Java	EE	7	–	EJBs,	and	execute	the	client.

If	the	connection	is	successful,	then	you	have	configured	a	fully	working	and	secured
remoting	connection.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
We	started	this	chapter	by	discussing	the	basic	concepts	of	security	and	the	difference
between	authentication	and	authorization.

WildFly	uses	the	PicketBox	framework	sitting	on	top	of	the	Java	Authentication	and
Authorization	Service	(JAAS),	which	secures	all	the	Java	EE	technologies	running	in	the
application.	The	core	section	of	the	security	subsystem	is	contained	in	the	security-domain
element	that	performs	all	the	required	authorization	and	authentication	checks.

Then,	we	took	a	much	closer	look	at	the	login	modules,	which	are	used	to	store	the	user
credentials	and	their	associated	roles.	In	particular,	you	learned	how	to	apply	the	file-based
UserRoles	login	module	and	the	Database	login	module.	Each	login	module	can	be	used
by	Enterprise	applications	in	either	a	programmatic	or	declarative	way.	While
programmatic	security	can	provide	a	fine-grained	security	model,	you	should	consider
using	declarative	security,	which	allows	a	clean	separation	between	the	business	layer	and
the	security	policies.

Finally,	in	the	last	section	of	this	chapter,	we	covered	how	to	encrypt	the	communication
channel	using	the	Secure	Socket	Layer	and	the	certificates	produced	by	the	keytool	Java
utility.

In	the	next	chapter,	we	are	going	to	discuss	clustering,	which	is	the	environment	where
critical	applications	are	deployed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	11.	Clustering	WildFly	Applications
In	the	previous	chapters,	we	went	through	the	most	interesting	aspects	of	developing	Java
Enterprise	applications.	Once	you	are	ready	to	roll	out	your	applications,	it	is	important
that	you	guarantee	your	customers	a	responsive	and	fault-tolerant	environment.	This
requirement	can	be	achieved	through	application	server	clustering.

WildFly	clustering	is	not	the	product	of	a	single	library	or	specification,	but	rather	a	blend
of	technologies.	In	this	chapter,	we	will	first	introduce	some	of	the	basics	of	clustered
programming.	Then,	we	will	quickly	move	on	to	the	cluster	configuration	and	its	setup,
which	will	be	required	to	deploy	some	clustered	applications.

The	following	list	is	a	preview	of	the	topics	that	will	be	covered	in	this	chapter:

	
What	clustering	is	and	how	WildFly	implements	it
Setting	up	clusters	in	the	standalone	and	domain	mode
Developing	clustered	Java	EE	7	applications	in	order	to	achieve	load	balancing	and
high	availability

www.it-ebooks.info

http://www.it-ebooks.info/

Clustering	basics
A	cluster	of	application	servers	consists	of	multiple	server	instances	(cluster	nodes)
running	simultaneously	and	working	together	to	provide	increased	scalability	and
reliability.	The	nodes	that	make	up	a	cluster	can	be	located	either	on	the	same	machine	or
different	machines.	From	the	client’s	point	of	view,	this	is	irrelevant	because	the	cluster
appears	as	a	single	server	instance.

Introducing	clustering	in	your	applications	will	produce	the	following	benefits:

	
Horizontal	scalability	(scaling	out):	Adding	a	new	node	to	a	cluster	should	allow
the	overall	system	to	service	a	higher	client	load	than	that	provided	by	a	simple	basic
configuration.	Ideally,	it	should	be	possible	to	service	any	given	load	simply	by
adding	the	appropriate	number	of	servers	or	machines.
Load	balancing:	In	a	clustered	environment,	the	individual	nodes	that	compose	the
cluster	should	each	process	a	fair	share	of	the	overall	client	load.	This	can	be
achieved	by	distributing	client	requests	across	multiple	servers,	which	is	also	known
as	load	balancing.
High	availability:	Applications	running	in	a	cluster	can	continue	to	do	so	when	a
server	instance	fails.	This	is	achieved	because	applications	are	deployed	on	multiple
nodes	of	the	cluster,	and	so	if	a	server	instance	fails,	another	server	instance	on	which
that	component	is	deployed	can	continue	with	application	processing.

www.it-ebooks.info

http://www.it-ebooks.info/

WildFly	clustering
Clustering	is	available	in	WildFly	out	of	the	box.	There	is	no	all-in-one	library	that	deals
with	clustering,	but	rather	a	set	of	libraries	that	cover	different	kinds	of	aspects.

The	following	diagram	shows	the	basic	clustering	architecture	adopted	by	WildFly:

The	backbone	of	JBoss	clustering	is	the	JGroups	library,	which	provides	communication
between	members	of	the	cluster	using	a	multicast	transmission.

Note
Multicast	is	a	protocol	where	data	is	transmitted	simultaneously	to	a	group	of	hosts	that
have	joined	the	appropriate	multicast	group.	You	can	think	about	multicast	as	a	radio	or
television	streaming	where	only	those	tuned	to	a	particular	frequency	receive	the
streaming.

The	next	building	block	is	Infinispan,	which	handles	the	consistency	of	your	application
across	the	cluster	by	means	of	a	replicated	and	transactional	JSR-107-compatible	cache.

Note
JSR-107	specifies	the	API	and	semantics	for	temporary	in-memory	caching	of	Java
objects,	including	object	creation,	shared	access,	spooling,	invalidation,	and	consistency
across	JVMs.

Before	diving	into	some	cluster	examples,	we	will	first	need	to	describe	how	to	set	up	a
cluster	of	WildFly	nodes	using	the	two	available	nodes:	standalone	cluster	and	domain
cluster.	If	you	don’t	remember	the	difference	between	the	standalone	and	domain	mode
or	what	core	domain	elements	are,	you	can	revise	the	material	from	Chapter	2,	Your	First
Java	EE	Application	on	WildFly.

www.it-ebooks.info

http://www.it-ebooks.info/

Starting	a	cluster	of	standalone	nodes
A	standalone	server	starts	as	a	single	JVM	process;	therefore,	we	need	to	start	each	server
using	the	standalone.bat/standalone.sh	command,	passing	all	the	required	parameters.
In	the	following	example,	we	are	starting	a	cluster	of	two	server	nodes	on	two	different
boxes	that	are	bound	to	the	IP	addresses	192.168.1.10	and	192.168.1.11,	respectively:

./standalone.sh	-c	standalone-ha.xml	-b	192.168.1.10

./standalone.sh	-c	standalone-ha.xml	-b	192.168.1.11

The	-c	parameter	specifies	the	server	configuration	to	be	used;	out	of	the	box,	the
application	server	includes	two	standalone	clustering	configurations:	standalone-ha.xml
and	standalone-full-ha.xml.	The	latter	one	also	includes	the	messaging	subsystem	and
other	elements	of	the	Java	EE	full	profile;	therefore,	it	has	been	named	the	full
configuration.

The	other	parameter	(-b)	should	sound	familiar	to	older	JBoss	users,	as	it’s	still	used	to
specify	the	server-binding	address,	which	needs	to	be	unique	in	order	to	avoid	port
conflicts.

In	this	other	example,	we	are	starting	another	cluster	of	two	nodes	on	the	same	box	using
some	additional	parameters	in	order	to	avoid	port	conflicts:

./standalone.sh	-c	standalone-ha.xml	-Djboss.node.name=node1		

./standalone.sh	-c	standalone-ha.xml	-Djboss.node.name=node2	-

Djboss.socket.binding.port-offset=200

As	you	can	see,	we	had	to	specify	two	additional	parameters:	jboss.node.name	in	order	to
assign	a	unique	server	name	to	each	node	and	a	socket-binding	port,	which	uses	an	offset
of	200.	So,	for	example,	the	second	node	would	respond	to	the	HTTP	channel	on	port	8280
instead	of	port	8080.

Note
Don’t	be	surprised	if	you	don’t	see	any	message	about	clustering	on	your	server	console.
Clustering	modules	are	activated	on	demand,	so	first	you	need	to	deploy	an	application
that	is	cluster-aware.	In	a	few	minutes,	we	will	show	you	how.

www.it-ebooks.info

http://www.it-ebooks.info/

Starting	a	cluster	of	domain	nodes
In	order	to	configure	a	cluster	running	on	a	domain	of	server	nodes,	you	need	to	configure
the	main	domain.xml	file	for	your	domain	controller.	Then,	for	every	WildFly	host	that	is
a	part	of	the	cluster,	you	need	to	provide	a	host.xml	configuration	file,	which	describes
the	configuration	of	a	single-server	distribution.

The	domain	controller	configuration
The	domain.xml	file	is	located	at	JBOSS_HOME/domain/configuration/.	It	includes	the
main	domain	configuration,	which	is	shared	by	all	server	instances.	In	the	domain.xml
file,	we	will	define	the	server	group	configurations	specifying	a	profile	that	is	compatible
with	clustering.	Out	of	the	box,	a	WildFly	domain	ships	with	four	different	profiles:

	
default:	This	profile	has	the	support	of	Java	EE	Web	Profile	and	some	extensions,
such	as	RESTful	web	services,	or	support	for	Enterprise	JavaBeans	(EJB)	3	remote
invocations
full:	This	profile	supports	all	the	default	subsystems	contained	in	the	default	profile
and	the	messaging	subsystem
ha:	This	profile	corresponds	to	the	default	profile	extended	with	clustering
capabilities
full-ha:	This	is	the	full	profile	with	clustering	capabilities

So,	first	specify	a	cluster-aware	profile	for	your	server	groups	in	your	domain.xml	file.	In
our	example,	we	have	adopted	the	full-ha	profile	for	both	the	server	groups	so	that	you
can	run	the	full	Java	EE	stack	on	all	your	domain	servers:
<server-groups>

				<server-group	name=“main-server-group”	profile=“full-ha”>

								<jvm	name=“default”>

												<heap	size=“64m”	max-size=“512m”/>

								</jvm>

								<socket-binding-group	ref=”full-ha-sockets“/>

				</server-group>

				<server-group	name=“other-server-group”	profile=“full-ha”>

								<jvm	name=“default”>

												<heap	size=“64m”	max-size=“512m”/>

								</jvm>

								<socket-binding-group	ref=“full-sockets”/>

				</server-group>

</server-groups>

When	using	a	full-ha	profile,	you	need	to	configure	HornetQ	clustering	security.	You	can
just	disable	it,	or	you	need	to	additionally	set	a	completely	random	user	credential	for	a
JMS	cluster.	Find	the	profile	settings	in	domain.xml,	and	add	the	following	code	to	the
messaging	subsystem:
<subsystem	xmlns=“urn:jboss:domain:messaging:2.0”>

				<hornetq-server>

								<cluster-user>randomUser</cluster-user>

								<cluster-password>randomPassword</cluster-password>

www.it-ebooks.info

http://www.it-ebooks.info/

											…	

				</hornetq-server>

</subsystem>

In	addition	to	the	domain.xml	file,	you	need	to	check	whether	your	domain	controller’s
host.xml	file	contains	a	reference	to	the	local	host,	as	shown	in	the	following	code
snippet:

<host	name=“master”	xmlns=“urn:jboss:domain:2.0”>

				…

				<domain-controller>

							<local/>

				</domain-controller>

				…

</host>

The	local	stanza	means	that	this	host	controller	will	take	the	role	of	a	domain	controller.
For	all	other	hosts	controllers,	you	must	specify	the	remote	domain	controller	host	and	its
port	(in	this	example,	we	added	some	variables	as	placeholders).	We	will	cover	them	in
the	next	section.

Finally,	you	need	to	create	a	management	user	that	will	be	used	to	establish	a	connection
between	the	slave	nodes	and	the	domain	controller.	For	this	purpose,	launch	the	add-
user.sh/add-user.cmd	script,	which	is	located	in	the	JBOSS_HOME/bin	directory	of	your
distribution:

What	type	of	user	do	you	wish	to	add?

a)	Management	User	(mgmt-users.properties)

b)	Application	User	(application-users.properties)

(a):	a

Enter	the	details	of	the	new	user	to	add.

Using	realm	‘ManagementRealm’	as	discovered	from	the	existing	property

files.

Username	:	admin1234

Password	recommendations	are	listed	below.	To	modify	these	restrictions

edit	the	add-user.properties	configuration	file.

-	The	password	should	not	be	one	of	the	following	restricted	values	{root,

admin,	administrator}

-	The	password	should	contain	at	least	8	characters,	1	alphabetic

character(s),	1	digit(s),	1	non-alphanumeric	symbol(s)

-	The	password	should	be	different	from	the	username

Password	:

Re-enter	Password	:

What	groups	do	you	want	this	user	to	belong	to?	(Please	enter	a	comma

separated	list,	or	leave	blank	for	none)[]:

About	to	add	user	‘admin1234’	for	realm	‘ManagementRealm’

Is	this	correct	yes/no?	yes

Added	user	‘admin1234’	to	file	‘D:\Dev\Servers\wildfly-

8.1.0.Final\standalone\configuration\mgmt-users.properties’

Added	user	‘admin1234’	to	file	‘D:\Dev\Servers\wildfly-

8.1.0.Final\domain\configuration\mgmt-users.properties’

Added	user	‘admin1234’	with	groups		to	file	‘D:\Dev\Servers\wildfly-

8.1.0.Final\standalone\configuration\mgmt-groups.properties’

www.it-ebooks.info

http://www.it-ebooks.info/

Added	user	‘admin1234’	with	groups		to	file	‘D:\Dev\Servers\wildfly-

8.1.0.Final\domain\configuration\mgmt-groups.properties’

Is	this	new	user	going	to	be	used	for	one	AS	process	to	connect	to	another

AS	process?

e.g.	for	a	slave	host	controller	connecting	to	the	master	or	for	a	Remoting

connection	for	server	to	server	EJB	calls.

yes/no?	yes

To	represent	the	user	add	the	following	to	the	server-identities	definition

<secret	value=“c2xvZHppYWsxMjM0”	/>

Press	any	key	to	continue	…

As	you	can	see	from	the	preceding	listing,	you	have	to	create	a	management	user	by
specifying	a	username	and	password	for	it.	You	should	answer	the	previous	question	with
either	yes	or	y	to	indicate	that	the	user	will	be	used	to	connect	to	the	domain	controller
from	the	host	controller.	The	generated	secret	value	is	the	Base64-encoded	password	of
the	newly	created	user.

Now	we	can	start	the	domain	controller	by	specifying	the	address	that	will	be	used	for
public	and	management	interfaces	(in	our	example,	192.168.1.10)	with	the	following
command:

domain.sh	–host-config=host-master.xml	-b	192.168.1.10	-

Djboss.bind.address.management=192.168.1.10

We	have	set	the	bind	address	of	the	physical	network	to	the	host	configuration	with	the
jboss.bind.address.management	property.	The	management	interface	must	be	reachable
for	all	the	hosts	in	the	domain	in	order	to	establish	a	connection	with	the	domain
controller.

Host	configurations
After	the	domain	controller	is	configured	and	started,	the	next	step	is	to	set	up	the	other
hosts	that	will	connect	to	the	domain	controller.	On	each	host,	we	also	need	an	installation
of	WildFly,	where	we	will	configure	the	host.xml	file.	(As	an	alternative,	you	can	name
the	host	file	as	you	like	and	start	the	domain	with	the	-host-config	parameter,	for
example,	./domain.sh	-host-config=host-slave.xml.)

The	first	thing	is	to	choose	a	unique	name	for	each	host	in	our	domain	in	order	to	avoid
name	conflicts.	Otherwise,	the	default	is	the	hostname	of	the	server.

<host	name=“server1”	xmlns=“urn:jboss:domain:2.0”>

				…

</host>

Also,	you	have	to	choose	a	unique	name	for	the	other	host:

<host	name=“server2”	xmlns=“urn:jboss:domain:2.0”>

				…

</host>

Next,	we	need	to	specify	that	the	host	controller	will	connect	to	a	remote	domain
controller.	We	will	not	specify	the	actual	IP	address	of	the	domain	controller	but	leave	it	as
a	property	named	jboss.domain.master.address.

www.it-ebooks.info

http://www.it-ebooks.info/

Additionally,	we	need	to	specify	the	username	that	will	be	used	to	connect	to	the	domain
controller.	So	let’s	add	the	user	admin1234,	which	we	created	on	the	domain	controller
machine:
<domain-controller>

							<remote	host=”${jboss.domain.master.address}”					

port=”${jboss.domain.master.port:9999}”

							username=“admin1234”	

							security-realm=“ManagementRealm”/>

</domain-controller>

Finally,	we	need	to	specify	the	Base64	password	for	the	server	identity	that	we	included	in
the	remote	element:
<management>

			<security-realms>

						<security-realm	name=“ManagementRealm”>

									<server-identities>

												<secret	value=“QWxlc3NhbmRybzIh”	/>

									</server-identities>

									<authentication>

												<properties	path=“mgmt-users.properties”	relative-

to=“jboss.domain.config.dir”	/>

									</authentication>

						</security-realm>

						<security-realm	name=“ApplicationRealm”>

									<authentication>

												<properties	path=“application-users.properties”	relative-

to=“jboss.domain.config.dir”	/>

									</authentication>

						</security-realm>

			</security-realms>

			<management-interfaces>

						<native-interface	security-realm=“ManagementRealm”>

									<socket	interface=“management”

port=”${jboss.management.native.port:9999}”	/>

						</native-interface>

			</management-interfaces>

</management>

The	final	step	is	to	configure	the	server	nodes	inside	the	host.xml	file	on	both	the	hosts.
So,	on	the	first	host,	we	will	configure	server-one	and	server-two	to	add	them	to	main-
server-group:
<servers>

								<server	name=“server-one”	group=“main-server-group”/>

								<server	name=“server-two”	group=“main-server-group”	auto-

start=“false”>	

												<socket-bindings	port-offset=“150”/>

								</server>

</servers>

On	the	second	host,	we	will	configure	server-three	and	server-four	to	add	them	to
other-server-group:
<servers>

					<server	name=“server-three”	group=“other-server-group”/>

www.it-ebooks.info

http://www.it-ebooks.info/

					<server	name=“server-four”	group=“other-server-group”>	auto-

start=“false”>

												<socket-bindings	port-offset=“150”/>

					</server>

</servers>

Please	note	that	the	auto-start	flag	value	indicates	that	the	server	instances	will	not	be
started	automatically	if	the	host	controller	is	started.

For	server-two	and	server-four,	a	port-offset	value	of	150	is	configured	to	avoid	port
conflicts.	Okay,	now	we	are	done	with	our	configuration.	Assuming	that	the	first	host	has
an	IP	address	of	192.168.1.10,	we	can	start	the	first	host	with	the	following	code	snippet:
domain.sh	\

-host-conifg=host.xml

-b	192.168.1.10		\

-Djboss.domain.master.address=192.168.1.1	\

-Djboss.bind.address.management=192.168.1.10

The	second	host	(192.168.1.11)	can	be	started	with	the	following	code	snippet:
domain.sh	\

-host-conifg=host.xml

-b	192.168.1.11	\

-Djboss.domain.master.address=192.168.1.1	\

-Djboss.bind.address.management=192.168.1.11

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying	clustered	applications
If	you	have	tried	starting	your	standalone	or	domain	set	of	cluster	nodes,	you	will	be
surprised	that	there	is	no	information	at	all	about	clustering	in	your	server	logging.	Believe
me,	it	is	not	a	bug	but	a	feature!	One	of	the	key	features	of	WildFly	is	that	only	a	minimal
set	of	services	is	started;	therefore,	in	order	to	see	a	cluster’s	live	demonstration,	you	need
to	deploy	a	cluster-aware	application.	In	order	to	trigger	clustering	libraries	in	your
application,	you	can	follow	two	approaches:

	
If	your	application	uses	Enterprise	JavaBeans,	you	don’t	have	to	do	anything	more.
This	area	brings	some	important	changes	in	WildFly.	Now,	by	default,	the	data	of	all
stateful	session	beans	is	replicated	in	HA	profiles,	and	all	stateless	beans	are
clustered.	If	your	application	is	deployed	on	a	container	started	with	the	standalone-
ha.xml	configuration,	all	remote	Stateless	Session	Bean	(SLSB)	support	failover
capabilities	by	default.
If	your	application	includes	a	web	application	archive,	you	can	use	the	portable
<distributable	/>	element	in	your	web.xml	file.

Let’s	have	a	look	at	both	the	approaches,	starting	from	clustering	EJBs.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	HA	Stateful	Session	Beans
Clustered	Stateful	Session	Beans	(SFSB)	have	built-in	failover	capabilities.	This	means
that	the	state	of	@Stateful	EJBs	is	replicated	across	the	cluster	nodes	so	that	if	one	of	the
nodes	in	the	cluster	goes	down,	some	other	node	will	be	able	to	take	over	the	invocations
addressed	to	it.	It	is	possible	to	disable	this	feature	for	specific	beans	using	the
@Stateful(passivationCapable=false)	annotation.

The	following	diagram	depicts	a	typical	exchange	of	information	between	the	EJB	client
application	and	the	remote	EJB	component:

As	you	can	see,	after	a	successful	lookup	of	an	SFSB	via	Java	Naming	and	Directory
Interface	(JNDI),	a	proxy	is	returned	to	the	client	for	subsequent	method	invocations.

Note
Since	the	EJB	is	clustered,	it	will	return	a	session	ID	and	along	with	it	the	affinity	of	that
session,	that	is,	the	name	of	the	cluster	to	which	the	stateful	bean	belongs	to	on	the	server
side.	This	affinity	will	later	help	the	EJB	client	to	route	the	invocations	on	the	proxy
appropriately	to	a	specific	node	in	the	cluster.

While	this	session	creation	request	is	going	on,	NodeA	will	also	send	back	an
asynchronous	message	that	contains	the	cluster	topology.	The	JBoss	EJB	Client
implementation	will	take	note	of	this	topology	information	and	will	later	use	it	to	create
connections	to	the	nodes	within	the	cluster	and	route	invocations	to	those	nodes,	whenever
necessary.

Now	let’s	assume	that	NodeA	goes	down	and	the	client	application	subsequently	invokes
on	the	proxy.	At	this	stage,	the	JBoss	EJB	Client	implementation	will	be	aware	of	the
cluster	topology;	therefore,	it	knows	that	the	cluster	has	two	nodes:	NodeA	and	NodeB.
Now	when	the	invocation	arrives,	it	detects	that	NodeA	is	down,	so	it	uses	a	selector	to
fetch	a	suitable	node	from	among	the	cluster	nodes.	This	exchange	is	shown	in	the
following	diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

If	a	suitable	node	is	found,	the	JBoss	EJB	Client	implementation	creates	a	connection	to
that	node	(in	our	case	NodeB)	and	creates	an	EJB	receiver	out	of	it.	At	the	end	of	this
process,	the	invocation	has	now	been	effectively	failed	over	to	a	different	node	within	the
cluster.

Clustering	the	Ticket	example
In	Chapter	3,	Introducing	Java	EE	7	–	EJBs,	we	discussed	our	ticket	system	example,
which	was	built	around	the	following:

	
A	stateful	EJB	to	hold	the	session	data
A	singleton	EJB	to	store	the	cache	of	data
A	stateless	EJB	to	perform	some	business	methods

Let’s	see	how	to	apply	the	necessary	changes	to	start	our	application	in	a	cluster	context.

The	stateless	and	stateful	beans	are	ready	to	be	clustered—no	additional	code	is	required;
however,	there’s	a	pitfall.	As	a	matter	of	fact,	the	singleton	EJB	that	is	used	to	hold	the
cache	of	a	seat	will	be	instantiated	once	in	each	JVM	of	the	cluster.	This	means	that	if
there’s	a	server	failure,	the	data	in	the	cache	will	be	lost	and	new	data	(inconsistent)	will
be	used.

There	are	several	alternatives	to	set	up	a	cache	in	a	clustered	environment:

	
Use	a	JBoss	proprietary	solution	that	deploys	a	clustered	version	of
SingletonService,	which	exposes	an	HA	singleton	of
org.jboss.msc.service.Service	(an	example	of	this	approach	is	contained	in	the
WildFly	quickstart	demo	at	https://github.com/wildfly/quickstart/tree/master/cluster-
ha-singleton)
Move	your	cache	to	a	persistent	storage,	which	means	using	JPA	to	store	and	read
data	from	the	cache	(see	Chapter	5,	Combining	Persistence	with	CDI,	which	includes
a	JPA-based	example	of	our	application)
Use	a	distributed	data	cache	such	as	Infinispan	to	store	data,	providing	a	failover	and

www.it-ebooks.info

https://github.com/wildfly/quickstart/tree/master/cluster-ha-singleton
http://www.it-ebooks.info/

data	consistency	to	your	cache

Showing	all	the	possible	solution	implementations	would,	however,	make	this	section
excessively	long;	therefore,	we	will	illustrate	how	to	use	the	last	option,	which	can
provide	a	good	architectural	pattern	with	the	least	amount	of	effort.

Turning	your	cache	into	a	distributed	cache
Infinispan	is	a	distributed	data	grid	platform	that	exposes	a	JSR-107-compatible	cache
interface	in	which	you	can	store	data	and	enhance	it	by	providing	additional	APIs	and
features	(such	as	transactional	cache,	data	eviction	and	expiration,	asynchronous
operations	on	the	cache,	and	more).	Its	primary	interface	is	javax.cache.Cache,	which	is
similar	to	the	java.util.ConcurrentMap	Java	SE,	with	some	modifications	for	distributed
environments.	In	particular,	it	adds	the	ability	to	register,	deregister,	and	list	event
listeners.	Also,	it	defines	a	CacheLoader	interface	to	load/store	cached	data.	Cache
instances	can	be	retrieved	using	an	appropriate	CacheManager	interface,	which	represents
a	collection	of	caches.

So	here’s	our	singleton	TheatreBox	class	rewritten	using	the	Infinispan	API:
@Singleton

@Startup

@AccessTimeout(value	=	5,	unit	=	TimeUnit.MINUTES)

public	class	TheatreBox	{

				private	static	final	Logger	logger	=

												Logger.getLogger(TheatreBox.class);

				private	Map<Integer,	Seat>	seats;

				@Resource(lookup	=	“java:jboss/infinispan/tickets”)

				private	EmbeddedCacheManager	container;

				@PostConstruct

				public	void	setupTheatre()	{

								try	{

												this.cache	=	container.getCache();

												logger.info(“Got	Infinispan	cache”);

												int	id	=	0;

												for	(int	i	=	0;	i	<	5;	i++)	{

																addSeat(new	Seat(++id,	“Stalls”,	40));

																addSeat(new	Seat(++id,	“Circle”,	20));

																addSeat(new	Seat(++id,	“Balcony”,	10));

												}

												logger.info(“Seat	Map	constructed.”);

								}	catch	(Exception	e)	{

												logger.info(“Error!	”	+	e.getMessage());

								}

				}

				private	void	addSeat(Seat	seat)	{

								seats.put(seat.getId(),	seat);

				}

www.it-ebooks.info

http://www.it-ebooks.info/

				@Lock(READ)

				public	Collection<Seat>	getSeats()	{

								return	Collections.unmodifiableCollection(seats.values());

				}

				@Lock(READ)

				public	int	getSeatPrice(int	seatId)	throws	NoSuchSeatException	{

								return	getSeat(seatId).getPrice();

				}

				@Lock(WRITE)

				public	void	buyTicket(int	seatId)	throws	SeatBookedException,

NoSuchSeatException	{

								final	Seat	seat	=	getSeat(seatId);

								if	(seat.isBooked())	{

												throw	new	SeatBookedException(“Seat	”	+	seatId	+	”	already

booked!”);

								}

								addSeat(seat.getBookedSeat());

				}

				@Lock(READ)

				private	Seat	getSeat(int	seatId)	throws	NoSuchSeatException	{

								final	Seat	seat	=	cache.get(seatId);

								if	(seat	==	null)	{

												throw	new	NoSuchSeatException(“Seat	”	+	seatId	+	”	does	not

exist!”);

								}

								return	seat;

				}

}

The	first	thing	we	want	to	stress	on	is	the	@Resource	annotation,	which	injects	an
EmbeddedCacheManager	instance.	When	the	WildFly	deployer	encounters	this	annotation,
your	application	will	include	a	dependency	on	the	requested	cache	container.
Consequently,	the	cache	container	will	automatically	start	during	deployment	and	stop
(including	all	caches)	during	undeployment	of	your	application.

Subsequently,	when	the	EJB	is	instantiated	(see	the	method	start,	which	is	annotated	as
@PostConstruct),	org.infinispan.Cache	is	created	using	EmbeddedCacheManager	as	a
factory.	This	cache	will	be	used	to	store	our	highly	available	set	of	data.

The	operations	performed	against	the	distributed	cache	are	quite	intuitive:	the	put	method
is	used	to	store	instances	of	the	Seat	object	in	the	cache	and	the	corresponding	get
method	is	used	to	retrieve	elements	from	it,	just	what	you	would	do	using	an	ordinary
hashmap.	The	only	difference	is	that	in	our	clustered	cache,	every	entry	must	be
serializable.	Be	sure	to	mark	Seat	as	Serializable	and	create	a	default	constructor	for	it.

As	far	as	application	deployment	is	concerned,	you	need	to	state	a	dependency	to	the
Infinispan	API	explicitly,	which	is	not	included	as	an	implicit	dependency	in	WildFly’s
class-loading	policy.	This	is	most	easily	done	by	adding	the	following	line	to	your
application’s	META-INF/MANIFEST.MF:
Dependencies:	org.infinispan	export

www.it-ebooks.info

http://www.it-ebooks.info/

We	additionally	need	to	add	the	new	cache	container	to	the	appropriate	profile	in	our
domain.xml	file	(in	the	Infinispan	subsystem):
<cache-container	name=“tickets”	default-cache=“default”	jndi-

name=“java:jboss/infinispan/tickets”	module=“deployment.ticket-agency-

cluster.jar”>

<transport	lock-timeout=“60000”/>

<replicated-cache	name=“default”	batching=“true”	mode=“SYNC”>

<locking	isolation=“REPEATABLE_READ”/>

</replicated-cache>

</cache-container>

Note
In	our	sample,	we	are	using	the	seats.values()	call	to	get	all	the	elements	from	our
distributed	map,	which	is	in	fact	an	instance	of	org.infinispan.Cache.	This	operation	is
normally	discouraged	in	distributed	caches	(not	replicated)	and	has	its	own	limitations.
Check	out	the	Javadoc	for	this	method	at
https://docs.jboss.org/infinispan/6.0/apidocs/org/infinispan/Cache.html#values()	for	more
information.	This	is	however,	no	longer	the	case	for	the	newest	version	of	Infinispan:
http://infinispan.org/infinispan-7.0/.

Coding	the	cluster-aware	remote	client
The	remote	EJB	client	will	not	need	any	particular	change	in	order	to	be	able	to	achieve
high	availability.

We	will	only	need	to	prepare	a	jboss-ejb-client.properties	file,	which	will	contain
the	list	of	servers	that	will	be	initially	contacted	(via	remoting)	by	our	client	application:
remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

remote.connections=node1,node2

remote.connection.node1.host=localhost

remote.connection.node1.port	=	8080

remote.connection.node1.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

remote.connection.node2.host=localhost

remote.connection.node2.port	=	8280

remote.connection.node2.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

As	you	can	see	from	this	file,	we	assume	that	you	are	running	a	two-node	cluster	on	the
localhost	address:	the	first	one	running	the	default	port	settings	and	the	second	one	using
an	offset	of	200	(just	as	shown	in	the	second	paragraph	of	the	Starting	a	cluster	of
standalone	nodes	section).

Replace	the	remote.connection.nodeX.host	variable’s	value	with	the	actual	IP	or	host	if
you	are	running	your	server	nodes	on	different	machines	from	your	client.

Deploying	and	testing	high	availability
Deploying	an	application	to	a	cluster	can	be	achieved	in	several	ways;	if	you	prefer
automation	instead	of	manually	copying	each	archive	into	the	deployments	folder,	you
can	reuse	the	CLI	deployment	script	contained	in	the	previous	chapter.

Alternatively,	if	you	are	using	the	WildFly	Maven	plugin	to	deploy,	you	can	parameterize
its	configuration,	including	the	hostname	and	the	port	as	variables,	which	will	be	passed	to

www.it-ebooks.info

https://docs.jboss.org/infinispan/6.0/apidocs/org/infinispan/Cache.html#values()
http://infinispan.org/infinispan-7.0/
http://www.it-ebooks.info/

the	command	line:
<plugin>

						<groupId>org.wildfly.plugins</groupId>

						<artifactId>wildfly-maven-plugin</artifactId>

						<version>1.0.2.Final</version>

						<configuration>

										<filename>${project.build.finalName}.jar</filename>

										<hostname>${hostname}</hostname>

										<port>${port}</port>	

						</configuration>

</plugin>

Therefore,	you	will	use	the	following	shell	to	compile	the	package	and	deploy	the
application	on	the	first	node:

mvn	install	wildfly:deploy	–Dhostname=localhost	–Dport=9999

For	the	second	node,	you	will	use	the	following:

mvn	install	wildfly:deploy	–Dhostname=localhost	–Dport=10194

Note
Deploying	the	application	in	the	domain	node	works	the	same	as	mentioned	in	the
preceding	example,	except	that	you	need	to	add	the	domain	tag	to	your	configuration	and
need	to	specify	at	least	one	server	group.	Visit
https://docs.jboss.org/wildfly/plugins/maven/latest/examples/deployment-example.html
for	more	information.

Once	you	have	deployed	both	the	applications	on	your	server	node,	you	should	be	able	to
see	the	cluster	view	in	the	server	console	logs	and	also	see	that	the	Infinispan	cache	has
been	started	and	has	discovered	other	nodes	in	the	cluster.	You	should	see	something
similar	to	the	following	on	one	of	the	nodes:

www.it-ebooks.info

https://docs.jboss.org/wildfly/plugins/maven/latest/examples/deployment-example.html
http://www.it-ebooks.info/

Before	you	launch	your	application,	update	Maven’s	exec	plugin	information,	which
should	now	reference	our	remote	EJB	client	application	as	shown	in	the	highlighted
section	of	the	following	code	snippet:
<plugin>

			<groupId>org.codehaus.mojo</groupId>

			<artifactId>exec-maven-plugin</artifactId>

			<version>${version.exec.plugin}</version>

			<executions>

					<execution>

									<goals>

												<goal>exec</goal>

									</goals>

					</execution>

			</executions>

			<configuration>

					<executable>java</executable>

					<workingDirectory>${project.build.directory}/exec-working-

directory</workingDirectory>

					<arguments>

							<argument>-classpath</argument>

							<classpath>

							</classpath>

						

<argument>com.packtpub.wflydevelopment.chapter11.client.TicketAgencyClient</argument>

					</arguments>

			</configuration>

</plugin>

www.it-ebooks.info

http://www.it-ebooks.info/

You	can	run	it	using	the	following	command:

mvn	exec:exec

The	first	part	of	the	client	will	show	the	evidence	that	we	have	successfully	completed	the
first	transaction.	On	the	client	console,	you	will	see	the	return	value	of	the	booking
transaction	and	the	Seat	list,	as	shown	in	the	following	screenshot:

The	following	screenshot	shows	the	server	node	where	our	EJB	client	landed:

Now	shut	down	the	preceding	server	node	(Ctrl	+	C	would	suffice	if	you	are	starting	it	as
a	foreground	process)	and	press	Enter	(or	Return	on	a	Mac)	on	the	client	application.

As	you	can	see	from	the	following	screenshot,	you	should	see	that	the	session	continues	to
run	on	the	survivor	node	and	correctly	displays	the	session	values	(the	money	left).	Your
client	window	should	also	display	the	updated	cache	information.

www.it-ebooks.info

http://www.it-ebooks.info/

Web	application	clustering
Web	application	clustering	involves	two	aspects:	setting	up	an	HTTP	load	balancer	and
telling	WildFly	to	make	the	application’s	user	sessions	as	HA.	How	to	do	the	former
depends	on	what	load	balancer	you	would	choose	(mod_cluster	is	our	suggested	choice—
it	is	preconfigured	and	integrates	with	WildFly	out	of	the	box);	the	latter	could	not	be
simpler—just	add	the	<distributable/>tag	to	your	application’s	web.xml	file.	Whenever
a	node	fails,	the	user’s	HTTP	session	will	be	handled	by	another	one.	If	everything	goes
well,	the	end	user	will	not	know	that	there	was	a	failure—everything	will	be	handled
behind	the	scenes.

Let’s	see	how	to	action	both	these	steps	in	concrete	terms.

www.it-ebooks.info

http://www.it-ebooks.info/

Load	balancing	your	web	applications
You	have	several	choices	available	in	order	to	achieve	load	balancing	of	your	HTTP
requests.	You	can	opt	for	a	hardware	load	balancer	that	sits	in	front	of	your	cluster	of
servers	or	you	can	choose	from	the	many	available	software	solutions	for	WildFly,	which
include	the	following:

	
Use	Apache	Tomcat’s	mod_jk	module	to	route	your	requests	to	your	nodes
Use	Apache	mod_proxy	that	configures	Apache	to	act	as	a	proxy	server	and	forwards
requests	to	WildFly	nodes
Use	WildFly’s	built-in	solution	mod_cluster	to	achieve	dynamic	load	balancing	of
your	requests

Here,	we	will	illustrate	how	to	get	started	with	mod_cluster—a	module	for	the	Apache
HTTP	server.	The	advantage	of	using	mod_cluster	against	other	options	can	be
summarized	in	the	following	key	points:

	
Dynamic	clustering	configuration
Server-side	pluggable	load	metrics
Life	cycle	notifications	of	the	application	status

As	a	matter	of	fact,	when	using	a	standard	load	balancer	such	as	mod_jk,	you	have	to
provide	a	static	list	of	nodes	that	is	used	to	spread	the	load.	This	is	a	very	limiting	factor,
especially	if	you	have	to	deliver	upgrades	to	your	configuration	by	adding	or	removing
nodes;	alternatively,	you	simply	need	to	upgrade	software	used	by	single	nodes.	Besides
this,	using	a	flat	cluster	configuration	can	be	tedious	and	it	is	prone	to	errors,	especially	if
the	number	of	cluster	nodes	is	high.

When	using	mod_cluster,	you	can	dynamically	add	or	remove	nodes	from	your	cluster
because	cluster	nodes	are	discovered	through	an	advertising	mechanism.

In	practice,	the	mod_cluster	libraries	on	the	HTTP	side	send	UDP	messages	on	a
multicast	group,	which	is	subscribed	by	WildFly	nodes.	This	allows	WildFly	nodes	to
automatically	discover	HTTP	proxies	when	application	life	cycle	notifications	are	sent.

The	next	diagram	illustrates	this	concept	better:

www.it-ebooks.info

http://www.it-ebooks.info/

Installing	mod_cluster
The	mod_cluster	module	is	implemented	as	a	core	WildFly	module,	which	is	a	part	of	the
distribution.	On	the	HTTP	side,	it	is	available	as	a	set	of	libraries	installed	on	the	Apache
web	server.

On	the	WildFly	side,	you	can	find	the	mod_cluster	module’s	subsystem	already	bundled
as	part	of	the	clustered	configuration	file.	You	can	locate	it	in	either	the	standalone-
ha.xml	file	or	the	standalone-full-ha.xml	(and	of	course	in	the	domain.xml	file)
configuration	file:
<subsystem	xmlns=“urn:jboss:domain:modcluster:1.2”>

		<mod-cluster-config	advertise-socket=“modcluster”	connector=“ajp”>

			<dynamic-load-provider>

							<load-metric	type=“cpu”/>

			</dynamic-load-provider>

		</mod-cluster-config>

</subsystem>

The	subsystem	contains	just	a	bare-bones	configuration	that	references	its	socket	binding
through	the	advertise-socket	element:
<socket-binding	name=“modcluster”	port=“0”	multicast-address=“224.0.1.105”

multicast-port=“23364”/>

On	the	Apache	web	server	side,	we	have	to	install	the	core	libraries	that	are	used	to
interact	with	mod_cluster.	This	is	a	very	simple	procedure;	just	point	the	browser	to	the
latest	mod_cluster	release	at	http://www.jboss.org/mod_cluster/downloads.	Be	sure	to
choose	a	version	that	suits	your	operating	system	and	architecture	(x86	or	x64).

Once	the	binaries	are	downloaded,	extract	the	archive	to	a	folder;	then,	navigate	to	the
extracted	folder.	The	mod_cluster	binaries	essentially	consist	of	a	bundled	Apache	web
server	with	all	the	required	libraries	installed.	To	preconfigure	your	installation,	be	sure	to
run	the	\httpd-2.2\bin\installconf.bat	file.

Note
It	is	possible	to	use	your	own	Apache	web	server	2.2	installation;	just	pick	up	the	modules
from	the	mod_cluster	bundle	and	copy	them	to	the	modules	folder	of	your	Apache	web

www.it-ebooks.info

http://www.jboss.org/mod_cluster/downloads
http://www.it-ebooks.info/

server.

If	you	choose	to	use	your	own	Apache	web	server	over	the	bundled	one,	you	have	to	load
the	following	libraries	into	your	httpd.conf	file	(the	same	set	is	used	in	the	bundled
Apache	HTTP):
LoadModule	proxy_module	modules/mod_proxy.so

LoadModule	proxy_ajp_module	modules/mod_proxy_ajp.so

LoadModule	proxy_http_module	modules/mod_proxy_http.so

LoadModule	proxy_cluster_module	modules/mod_proxy_cluster.so

LoadModule	manager_module	modules/mod_manager.so

LoadModule	slotmem_module	modules/mod_slotmem.so

LoadModule	advertise_module	modules/mod_advertise.so

Each	of	these	modules	covers	an	important	aspect	of	load	balancing,	listed	as	follows:

	
mod_proxy,	mod_proxy_http,	and	mod_proxy_ajp:	These	are	the	core	modules	that
forward	requests	to	cluster	nodes	using	either	the	HTTP/HTTPS	or	AJP	protocol
mod_manager:	This	module	reads	the	information	from	AS	7	and	updates	the	shared
memory	information	in	conjunction	with	mod_slotmem
mod_proxy_cluster:	This	module	contains	the	balancer	for	mod_proxy
mod_advertise:	This	is	an	additional	module	that	allows	HTTP	to	advertise	via
multicast	packets—the	IP	and	port—where	the	mod_cluster	module	is	listening

The	next	part	of	the	configuration	that	we	need	to	add	is	the	core	load	balancing
configuration:
Listen	192.168.10.1:8888

<VirtualHost	192.168.10.1:8888>

<Location	/>

				Order	deny,allow

				Deny	from	all

				Allow	from	192.168.10.

</Location>

		KeepAliveTimeout	60

		MaxKeepAliveRequests	0

		ManagerBalancerName	mycluster

		ServerAdvertise	On

</VirtualHost>

Basically,	you	have	to	replace	the	192.168.10.1	IP	address	with	the	one	that	your	Apache
web	server	listens	for	requests	and	the	port	value	of	8888	with	the	one	you	want	to	use	to
communicate	with	WildFly.

As	it	is,	the	Apache	virtual	host	allows	you	to	have	incoming	requests	from	the
subnetwork	192.168.10.

The	KeepAliveTimeout	directive	allows	you	to	reuse	the	same	connection	within	60
seconds.	The	number	of	requests	per	connection	is	unlimited	since	we	are	setting
MaxKeepAliveRequests	to	0.	The	ManagerBalancerName	directive	provides	the	balancer
name	for	your	cluster	(defaults	to	mycluster).

What’s	most	important	for	us	is	the	ServerAdvertise	directive	that	is	set	to	On	and	uses

www.it-ebooks.info

http://www.it-ebooks.info/

the	advertise	mechanism	to	tell	WildFly	whom	it	should	send	the	cluster	information	to.

This	option	is	disabled	in	the	bundled	server	by	default.	Be	sure	to	uncomment	the
ServerAdvertise	directive	in	its	httpd.conf	file.

Now,	restart	the	Apache	web	server	and	the	single	application	server	nodes.	If	you	have
correctly	configured	the	mode	cluster	on	the	HTTP	side,	you	will	see	that	each	WildFly
node	will	start	receiving	UDP	multicast	messages	from	mod_cluster.

Note
If	you	are	running	on	a	Windows	machine,	be	sure	to	run	your	web	server	as	an
administrator.

If	everything	goes	well,	you	can	visit	http://127.0.0.1:6666/mod_cluster_manager	to
see	the	status	of	your	load	balancer	and	the	interconnected	nodes.	Be	sure	to	not	use
Google	Chrome	for	this	because	it	considers	the	6666	port	as	an	unsecure	one	(it	is	an	IRC
port	by	default).	You	should	see	the	following	information	on	the	simple	webpage:

mod_cluster/1.2.6.Final

Auto	Refresh	show	DUMP	output	show	INFO	output	

Node	michal-pc	(ajp://localhost:8009):	

Enable	Contexts	Disable	ContextsBalancer:	mycluster,LBGroup:	,Flushpackets:

Off,Flushwait:	10000,Ping:	10000000,Smax:	65,Ttl:	60000000,Status:

OK,Elected:	0,Read:	0,Transferred:	0,Connected:	0,Load:	100

If	you	don’t	have	a	running	WildFly	instance	now,	be	sure	to	start	it	with	one	of	the
full-HA	configuration	files.	Refresh	Apache’s	configuration	web	page	after	the	server	is
up.

Clustering	your	web	applications
Clustering	web	applications	requires	the	least	amount	of	effort	to	be	put	in	by	the
developer.	As	we	have	just	discussed,	all	you	need	to	do	to	switch	on	clustering	in	a	web
application	is	to	add	the	following	directive	to	the	web.xml	descriptor:
<web-app>

		<distributable/>

</web-app>

Once	your	application	ships	with	the	distributable	stanza	in	it,	the	cluster	will	start,	and
provided	you	have	correctly	designed	your	session	layer,	it	will	be	load	balanced	and	fault
tolerant	as	well.

You	could	check	it	out	by	pointing	the	browser	to	your	HTTP	proxy.	For	the	default	setup,
it	would	be	http://localhost:6666/your_web_application/.

Programming	considerations	to	achieve	HA

In	order	to	support	in-memory	replication	of	HTTP	session	states,	all	servlets	and	JSP
session	data	must	be	serializable.

Note
Serialization	is	the	conversion	of	an	object	to	a	series	of	bytes	so	that	the	object	can	be

www.it-ebooks.info

http://www.it-ebooks.info/

easily	saved	to	a	persistent	storage	or	streamed	across	a	communication	link.	The	byte
stream	can	then	be	deserialized,	converting	the	stream	into	a	replica	of	the	original	object.

Additionally,	in	an	HTTP	servlet	that	implements	javax.servlet.http.HttpSession,
you	need	to	use	the	setAttribute	method	to	change	the	attributes	in	a	session	object.	If
you	set	the	attributes	in	a	session	object	with	setAttribute,	by	default	the	object	and	its
attributes	are	replicated	using	the	Infinispan	API.	Every	time	a	change	is	made	to	an
object	that	is	in	the	session,	setAttribute	should	be	called	to	update	that	object	across	the
cluster.

Likewise,	you	need	to	use	removeAttribute	to	remove	an	attribute	from	a	session	object.

Achieving	HA	in	JSF	applications

In	the	applications	included	in	this	book,	we	have	used	JSF	and	the	CDI	API	to	manage
the	web	session.	In	this	case,	we	transparently	replicate	the	other	server	nodes	to	the
beans,	which	are	marked	as	@SessionScoped.

Note
Clustering	JSF-based	applications	requires	special	attention	if	you	are	dealing	with	both
HTTP	and	EJB	sessions	created	by	SFSB.	In	the	earlier	servlet-centric	frameworks,	the
usual	approach	was	to	store	references	of	Stateful	Session	Beans	in
javax.servlet.http.HttpSession.	When	dealing	with	high-level	JSF	and	CDI	Beans,	it
is	vital	to	provide	a	@SessionScoped	controller	to	your	application,	which	gets	injected	in
the	SFSB	reference;	otherwise,	you	will	end	up	creating	a	new	Stateful	Session	Beans
upon	each	request.

The	following	is	an	example	of	how	to	adapt	your	Ticket	CDI	application	(described	in
Chapter	4,	Learning	Context	and	Dependency	Injection)	to	a	clustered	environment.	At
first,	as	we	said,	we	need	to	include	the	distributable	stanza	in	your	web.xml	file	to	trigger
clustering	modules:
<web-app>

				<distributable/>

</web-app>

Next,	apply	the	same	changes	to	the	TheatreBox	singleton	that	we	described	in	the
Turning	your	cache	into	a	distributed	cache	section:
@Singleton

@Startup

public	class	TheatreBox	{

				@Resource(lookup=“java:jboss/infinispan/container/cluster”)

				private	CacheContainer	container;

				//	Apply	the	same	changes	described	in

				//	“Turning	your	Cache	into	a	distributed	cache	section

}

Since	our	controller	component	is	bound	to	a	@SessionScoped	state,	you	don’t	need	to
apply	any	changes	in	order	to	propagate	your	session	across	server	nodes:

www.it-ebooks.info

http://www.it-ebooks.info/

@Named

@SessionScoped

public	class	TheatreBooker	implements	Serializable	{

}

Finally,	remember	to	include	the	Infinispan	dependency	in	your	META-INF/MANIFEST.MF:
Dependencies:	org.infinispan	export

Once	your	application	is	deployed	on	both	the	nodes	of	your	cluster,	you	can	test	it	by
hitting	the	Apache	web	server	(http://localhost:6666/ticket-agency-cluster	in	our
example)	and	start	booking	tickets:

Since	the	mod_cluster	subsystem	is	configured	to	use	sticky	web	sessions	by	default,	all
subsequent	requests	from	the	same	client	will	be	redirected	to	the	same	server	node.
Therefore,	by	shutting	down	the	sticky	server	node,	you	will	get	evidence	that	a	new
cluster	view	has	been	created	and	you	can	continue	shopping	on	the	other	server	node.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
This	chapter	was	all	about	the	world	of	clustered	applications.	Here,	we	took	you	through
the	robust	clustering	features	of	WildFly	and	applied	them	to	some	of	the	examples
discussed	in	this	book.

The	number	of	topics	related	to	clustering	might	be	expanded	to	cover	a	full	book	of	its
own;	however,	we	decided	to	stress	only	on	some	features.	In	particular,	we	learned	how
to	cluster	EJBs	and	achieve	fault	tolerance	in	case	there	is	a	change	in	the	server	topology.

Next,	we	discussed	clustering	web	applications	and	the	integration	with	load	balancing
solutions	such	as	the	Apache	web	server	and	mod_cluster.

In	the	next	chapter,	we	will	focus	on	some	new	topics	added	to	Java	EE	7	related	to	long-
term	task	execution:	batch	processing	and	concurrency	utilities’	usage.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	12.	Long-term	Tasks’	Execution
So	far,	our	applications	focused	on	interaction	with	the	user.	This	may	be	the	most
important	aspect	of	your	future	projects,	but	there	are	some	scenarios	that	require	a
different	approach.	Maintenance	tasks,	importing	big	sets	of	data	or	time-consuming
computations	are	usually	addressed	in	a	batch	mode	instead	of	an	interactive	manner.
Often,	these	kinds	of	jobs	are	not	part	of	the	standard	operations	and	should	be	invoked
only	when	the	server	load	is	at	its	lowest	or	periodical.

Before	Java	EE	7,	there	was	no	standardized	way	to	implement	batch	jobs	(operations	that
do	not	require	user	interaction).	The	deal	changed	with	JSR	352
(https://jcp.org/en/jsr/detail?id=352)	and	the	introduction	of	the	batch	framework,	which
uses	an	XML	language	to	define	jobs.

When	it	comes	to	processor-intensive	tasks,	the	natural	way	is	to	think	about
parallelization.	Modern	CPUs	have	multiple	cores,	which	can	be	easily	utilized	by	the
JVM.	The	only	problem	is	that	in	Java	EE,	using	concurrency	primitives	known	from	Java
SE	is	discouraged.	The	programmer	may	impair	the	stability	and	availability	of	the	whole
container.

Once	more,	the	new	JSR	236	(https://jcp.org/en/jsr/detail?id=236)	provides	new	ways	to
overcome	this	architectural	obstacle.	The	new	specification	ManagedExecutorService	is	a
container-aware	version	of	ExecutorService	known	from	Java	SE.

In	this	chapter,	we	will	cover	the	following	topics:

	
How	to	create	and	execute	batch	jobs
What	are	the	differences	between	different	batch	job	types
How	to	create	our	custom	worker	threads	inside	a	Java	EE	container

www.it-ebooks.info

https://jcp.org/en/jsr/detail?id=352
https://jcp.org/en/jsr/detail?id=236
http://www.it-ebooks.info/

The	overview	of	the	batching	framework
The	batching	framework	defines	the	concept	of	a	batch	job,	which	is	a	feature	of	the
application	that	can	be	executed	without	user	interaction.	A	single	job	consists	of	one	or
more	steps,	which	can	be	executed	sequentially	or	in	parallel.	Additionally,	a	sequence	of
steps	can	be	grouped	into	a	flow.	The	start	of	a	parallel	execution	is	called	a	switch.	And
finally,	if	we	want	to	control	the	sequence	of	steps	using	conditional	statements,	we	should
use	decisions.	These	following	five	nouns	are	the	basic	building	blocks	of	a	batch
application.	To	compose	such	an	application,	we	will	use	a	specification	language	written
in	an	XML	file,	as	shown	in	the	following	code	snippet:
<job	id=“jobName”>

				<step>	…	</step>

				<step>	…	</step>

				<decision>	…	</decision>

				<flow>	…	</flow>

				<split>	…	</split>

</job>

A	step	is	the	basic	unit	of	work	and	our	main	area	of	interest.	The	batching	framework
defines	two	types	of	steps,	which	are	as	follows:

	
Chunk	steps:	These	work	on	chunks	of	data	in	three	phases:	reading,	processing,	and
writing	(for	each	phase,	a	separate	class	is	created).	The	chunks	can	be	configured
with	a	number	of	elements	that	should	be	processed	in	one	transaction.
Task	steps:	These	execute	a	specific	block	of	code	created	by	the	programmer,
without	any	special	constraints.	They	are	used	for	most	non-data	processing	errands.

Additionally,	the	batching	framework	allows	listeners	to	register	for	the	whole	job	or
specific	phases	of	the	tasks.

Now	that	we’ve	covered	the	basic	vocabulary,	it	will	be	best	to	jump	straight	to	coding.

www.it-ebooks.info

http://www.it-ebooks.info/

Our	first	batch	job
WildFly	comes	with	an	implementation	of	JSR	352	called	JBeret
(https://github.com/jberet/jsr352).	This	means	that	we	can	easily	extend	our	ticket
application	with	batch	jobs,	by	simply	implementing	the	required	interfaces;	no	additional
dependencies	are	required.	All	APIs	are	already	in	place	in	our	current	samples,	so	we
only	need	to	create	some	classes	and	an	XML	file	to	specify	the	job	flow.

As	a	base	for	our	development	in	this	chapter,	it	would	be	best	to	use	the	code	from
Chapter	5,	Combining	Persistence	with	CDI.	The	persistence	layer	will	allow	us	to	code	a
sample	import	batching	job.	To	keep	it	simple,	let’s	start	by	defining	an	artificial	external
service	that	will	provide	us	with	IDs	of	tickets	that	should	be	booked.	We	can	deploy	it	as
part	of	our	application	or	as	a	separate	WAR	file.	This	sample	is	based	on	a	REST
endpoint,	so	be	sure	to	configure	JAX-RS	in	your	deployment	(for	details,	check	out
Chapter	7,	Adding	Web	Services	to	Your	Applications).	This	is	shown	in	the	following
code	snippet:
@Singleton

@Startup

@ConcurrencyManagement(ConcurrencyManagementType.BEAN)

@Path(“/external”)

@Produces(MediaType.TEXT_PLAIN)

public	class	PendingSeats	{

				private	final	Queue<Integer>	seats	=	

																															new	ConcurrentLinkedQueue<>();

				@PostConstruct

				private	void	setUp()	{

								for	(int	i	=	5;	i	<	10;	i++)	{

												seats.add(i);

								}

				}

				@GET

				public	Integer	getNextSeat()	{

								return	seats.poll();

				}

}

As	you	can	see	in	the	preceding	code	snippet,	our	sample	is	initialized	with	IDs	from	5	to
9,	and	on	every	GET	request,	it	will	provide	the	ID	as	the	output.	When	all	IDs	are
emitted,	a	null	value	will	be	returned.	This	endpoint	will	serve	as	a	model	of	a	reservation
system.	For	simplicity,	it	produces	plaintext	values	instead	of	JSON.	Of	course,	a	flat	file
or	any	other	source	of	data	could	also	be	used	for	integration.

Creating	a	chunk-based	batch	step
Our	integration	scenario	will	be	pretty	straightforward.	We	need	to	read	all	of	the
reservation	IDs	from	the	external	system	to	get	the	corresponding	seats	from	our	database
and	write	the	changes	back	to	the	database.	It	would	also	be	great	to	write	a	log	with	the
operations	made	by	the	import.	Let’s	start	with	the	item	reader:

www.it-ebooks.info

https://github.com/jberet/jsr352
http://www.it-ebooks.info/

package	com.packtpub.wflydevelopment.chapter12.batching;

import	java.io.Serializable;

import	javax.batch.api.chunk.AbstractItemReader;

import	javax.inject.Named;

import	javax.ws.rs.client.Client;

import	javax.ws.rs.client.ClientBuilder;

import	javax.ws.rs.client.WebTarget;

@Named

public	class	ExternalSystemReader	extends	AbstractItemReader	{

				private	WebTarget	target;

				@Override

				public	void	open(Serializable	checkpoint)	throws	Exception	{

								final	Client	restclient	=	ClientBuilder.newClient();

								this.target	=	restclient.target(“http://localhost:8080/ticket-

agency-longterm/rest/external”);

				}

				@Override

				public	Object	readItem()	throws	Exception	{

								return	target.request().get(String.class);

				}

}

Our	reader	extends	the	AbstractItemReader	class	so	that	we	don’t	have	to	implement	all
methods	of	the	javax.batch.api.chunk.ItemReader	interface.	The	only	two	methods	we
are	interested	in	are	open	and	readItem.	The	first	one	initializes	the	REST	client,	which
will	get	the	data	from	the	server.	The	implementation	is	optional	because	not	every	reader
needs	initialization	logic.	Note	that	a	checkpoint	parameter	is	passed	to	the	method.	It	can
be	used	to	restart	the	batch	job	from	a	specific	point.	We	will,	however,	leave	out	this
feature.

The	readItem	method	requests	the	data	from	an	external	service	and	returns	a	single	item
to	the	batch	framework.	A	null	value	is	an	indicator	that	there	is	no	more	data.	Additional
methods	of	the	ItemReader	interface	are	responsible	for	checkpoint	handling	and	closing
of	the	reader.

When	we	define	the	XML	specification	for	the	batch	job,	we	must	use	the	names	of
managed	beans	to	refer	to	the	reader,	processor,	or	writer	we	want	(just	like	in	JSF).
Therefore,	we	need	the	@Named	annotation	in	order	to	provide	a	string-based	qualifier;	by
default,	it	will	be	a	lowercase	name	of	the	class	on	which	the	annotation	is	placed.	For	the
ExternalSystemReader	bean,	we	will	use	the	externalSystemReader	name.

After	an	item	is	read,	we	may	process	it.	Our	SeatProcessor	class	goes	as	the	following
code	snippet:
package	com.packtpub.wflydevelopment.chapter12.batching;

import	javax.batch.api.chunk.ItemProcessor;

import	javax.inject.Inject;

import	javax.inject.Named;

www.it-ebooks.info

http://www.it-ebooks.info/

import	com.packtpub.wflydevelopment.chapter12.control.SeatDao;

import	com.packtpub.wflydevelopment.chapter12.entity.Seat;

@Named

public	class	SeatProcessor	implements	ItemProcessor	{

				@Inject

				private	SeatDao	dao;

				@Override

				public	Object	processItem(Object	id)	throws	Exception	{

								Seat	seat	=	dao.find(Long.parseLong((String)	id));

								if	(seat	!=	null)	{

												if	(seat.getBooked()	==	true)	{

																return	null;

												}

												seat.setBooked(true);

								}

								return	seat;

				}

}

Our	processor	retrieves	IDs	from	the	reader	and	finds	the	corresponding	entry	in	the
database.	To	find	the	entity,	we	reuse	our	SeatDao	class	known	from	previous	chapters.
Because	we	have	CDI	working	on	the	batch	framework,	we	can	just	inject	our	EJB
without	caring	about	transaction	handling.

If	the	seat	is	found,	we	check	if	it’s	already	booked.	If	yes,	we	can	simply	return	a	null
value	to	omit	this	item	from	further	processing.

The	last	step	is	SeatWriter.	This	is	shown	in	the	following	code	snippet:
package	com.packtpub.wflydevelopment.chapter12.batching;

import	javax.batch.api.chunk.AbstractItemWriter;

import	javax.batch.runtime.context.JobContext;

import	javax.inject.Inject;

import	javax.inject.Named;

import	javax.persistence.EntityManager;

import	javax.persistence.PersistenceContext;

@Named

public	class	SeatWriter	extends	AbstractItemWriter	{

				public	static	final	String	FILENAME_PARAM	=	“logFile”;

				@Inject

				private	JobContext	jobContext;

				@PersistenceContext

				private	EntityManager	em;

				private	BufferedWriter	writer;

				@Override

				public	void	open(Serializable	ckpt)	throws	Exception	{

www.it-ebooks.info

http://www.it-ebooks.info/

								Properties	jobProperties	=	jobContext.getProperties();

								String	fileName	=	jobProperties.getProperty(FILENAME_PARAM);

								writer	=	new	BufferedWriter(new	FileWriter(fileName));

								writer.write(“Importing…”);

								writer.newLine();

				}

				@Override

				public	void	writeItems(List<Object>	items)	throws	Exception	{

								writer.write(“Chunk	size:	”	+	items.size());

								writer.newLine();

								for	(Object	obj	:	items)	{

												em.persist(obj);

												writer.write(“Persisted:	”	+	obj);

												writer.newLine();

								}

				}

				@Override

				public	void	close()	throws	Exception	{

								writer.write(“Import	finished”);

								writer.newLine();

								writer.close();

				}

}

Our	ItemWriter	class	starts	by	defining	an	open	method,	which	gets	a	file	for	writing.	The
name	of	the	newly	created	logfile	is	taken	from	the	job	properties.	Our	source	of
information	about	the	current	batch	job	is	the	injected	JobContext	class	(there	is	also	a
StepContext	object	that	provides	information	about	a	specific	step).	It	gives	us	the
possibility	to	get	the	properties	defined	for	a	job,	its	current	ID,	status,	and	additional
transient	data.

The	heart	of	our	writer	is,	of	course,	the	writeItem	method.	It	receives	a	list	of	items
(seats	in	our	case)	to	be	written	and	its	responsibility	is	to	persist	them.	This	method	can
be	invoked	multiple	times	up	to	the	moment	when	there	is	no	more	data	to	be	written.	You
can	configure	the	number	of	elements	that	will	be	processed	in	every	chunk.	What’s	more,
every	chunk	runs	in	its	own	transaction.

Finally,	when	the	last	chunk	is	written,	the	close	method	writes	a	summary	and	closes	the
file.

All	elements	are	now	in	place,	so	we	need	to	create	a	batch	job	specification.	The	file
externalSystem.xml	should	be	placed	in	the	src/main/resources/META-INF/batch-
jobs	directory	in	your	project.	The	contents	are	as	follows:
<job	id=”externalSystem”	xmlns=“http://xmlns.jcp.org/xml/ns/javaee”

				version=“1.0”>	[1]

				<properties>

								<property	name=”logFile”	value=“log.txt”	/>	[2]

				</properties>

				<step	id=“processData”>

								<chunk	item-count=“2”>	[3]

www.it-ebooks.info

http://www.it-ebooks.info/

												<reader	ref=”externalSystemReader”	/>	[4]

												<processor	ref=”seatProcessor”	/>

												<writer	ref=”seatWriter”	/>

								</chunk>

				</step>

</job>

The	structure	is	pretty	straightforward.	First,	we	define	a	job	ID	matching	the	filename
[1].	Next,	in	the	properties	section,	we	set	a	property	logFile	with	the	log.txt	value	[2]
we	used	it	in	our	SeatWriter	to	create	an	output	file	[3].	Then,	we	define	a	step	with	a
data	chunk.	The	item-count	attribute	defines	the	number	of	items	we	process	in	one
transaction.	Finally,	we	reference	our	reader,	processor,	and	writer	in	their	matching	tags
[4].

Now,	when	our	job	is	defined,	it	is	time	to	start	it.	To	do	this,	we	need	to	the	use	the
BatchRuntime’s	static	method,	getJobOperator.	In	order	to	simplify	the	solution,	we	will
use	a	REST	endpoint’s	GET	method	as	a	way	to	invoke	our	code:
package	com.packtpub.wflydevelopment.chapter12.batching;

import	java.util.Properties;

import	javax.batch.runtime.BatchRuntime;

import	javax.ejb.Stateless;

import	javax.ws.rs.GET;

import	javax.ws.rs.Path;

@Stateless

@Path(“/job”)

public	class	JobStarter	{

				@GET

				public	String	start()	{

								long	jobId	=	BatchRuntime.getJobOperator()

								.start(“externalSystem”,	new	Properties());

								return	Long.toString(jobId);

				}

}

The	JobOperator	start	method	returns	a	job	ID,	which	is	a	representation	of	the	ongoing
batch	process.	We	need	to	provide	the	name	of	the	file	defining	the	batch	job	without	the
XML	extension	and	a	set	of	runtime	parameters.

Note
The	properties	provided	during	runtime	are	not	the	same	as	we	used	earlier!	These	kinds
of	properties	are	not	bound	to	a	specific	job	(in	contrast	to	the	ones	defined	in	the	XML
file),	but	can	be	accessed	from	the	job	execution.	The	batching	framework	calls	them
parameters.	If	you	need	this	kind	of	logic	in	your	application,	you	should	just	pass	them
during	a	job’s	startup	and	use	the	job	execution	ID	to	access	them:
JobOperator	operator	=	BatchRuntime.getJobOperator();

Properties	properties	=	new	Properties();

properties.put(“propertyName”,	“propertyValue”);

long	jobId	=	operator.start(“externalSystem”,	properties);

www.it-ebooks.info

http://www.it-ebooks.info/

JobExecution	execution	=	operator.getJobExecution(jobId);

Properties	jobParameters	=	execution.getJobParameters();

You	can	point	your	browser	to	http://localhost:8080/ticket-agency-
longterm/rest/job	and	your	batch	job	should	start	running!	Be	sure	to	set	up	your	seats
before	running	the	job	(the	console	is	available	at	http://localhost:8080/ticket-
agency-longterm/faces/views/setup.xhtml).

A	sample	output	file	in	your	WildFly’s	bin	directory	would	look	like	the	following:

Importing…

Chunk	size:	2

Persisted:	Seat	[id=5,	booked=true,

seatType=com.packtpub.wflydevelopment.chapter12.entity.SeatType@a55bb6e]

Persisted:	Seat	[id=6,	booked=true,

seatType=com.packtpub.wflydevelopment.chapter12.entity.SeatType@a55bb6e]

Chunk	size:	2

Persisted:	Seat	[id=7,	booked=true,

seatType=com.packtpub.wflydevelopment.chapter12.entity.SeatType@440a007]

Persisted:	Seat	[id=8,	booked=true,

seatType=com.packtpub.wflydevelopment.chapter12.entity.SeatType@440a007]

Chunk	size:	1

Persisted:	Seat	[id=9,	booked=true,

seatType=com.packtpub.wflydevelopment.chapter12.entity.SeatType@307124b7]

Import	finished

Of	course,	you	could	also	start	the	batch	job	using	a	Java	EE	timer	after	a	specific	event	in
your	application	or	even	as	an	effect	of	an	incoming	JMS	message.	You	can	also	use	the
retrieved	job	IDs	to	monitor	the	already	running	jobs	or	terminate	them	on	demand.	The
batching	framework	API	gives	you	many	possibilities	without	too	many	complications	in
the	area	of	job	management.

Creating	a	job-based	batch	step
Our	chunk-based	job	was	great	to	process	big	data	sets.	However,	what	if	we	only	want	to
perform	a	specific	task?	Besides	creating	chunks,	we	can	also	define	steps	that	will	simply
call	a	process	method	of	a	specific	class.	These	kinds	of	classes	must	implement	the
Batchlet	interface	(or	extend	the	AbstractBatchlet	class).

In	our	sample,	let’s	try	to	contact	an	external	API	to	ask	about	the	current	Bitcoin
exchange	rate	(a	decentralized,	virtual	currency).	Then,	we	will	store	the	current	prices	of
our	tickets	in	a	simple	flat	file.	Our	batchlet	would	be	as	follows:
@Named

public	class	BitcoinTask	extends	AbstractBatchlet	{	

				private	static	final	String	EXTERNAL_API	=

“https://api.bitcoinaverage.com/exchanges/USD”;

				public	static	final	String	FILENAME_PARAM	=	“bitcoinFile”;

				@Inject

				private	SeatTypeDao	seatTypeDao;

				@Inject

www.it-ebooks.info

http://www.it-ebooks.info/

				private	JobContext	jobContext;

				@Override

				public	String	process()	throws	Exception	{	//	[1]

								WebTarget	api	=	ClientBuilder.newClient().target(EXTERNAL_API);

								Response	response	=	api.request().get();

								JsonObject	entity	=	response.readEntity(JsonObject.class);	//	[2]

								double	averageValue	=

entity.getJsonObject(“btce”).getJsonObject(“rates”).getJsonNumber(“bid”).doubleValue();

								Map<SeatType,	Double>	pricesInBitcoins	=

calculeteBitcoinPrices(averageValue,	seatTypeDao.findAll());	//	[3]

								writeToFile(pricesInBitcoins);	//	[4]

								return	“OK”;

				}

				private	Map<SeatType,	Double>	calculeteBitcoinPrices(double

averageValue,	List<SeatType>	findAll)	{

								return	findAll.stream().collect(

																Collectors.toMap(seatType	->	seatType,	seatType	->

seatType.getPrice()	/	averageValue));

				}

				private	void	writeToFile(Map<SeatType,	Double>	pricesInBitcoins)	throws

Exception	{

								Properties	jobProperties	=	jobContext.getProperties();	//	[5]

								String	fileName	=	jobProperties.getProperty(FILENAME_PARAM);

								try	(BufferedWriter	writer	=	new	BufferedWriter(new

FileWriter(fileName)))	{

												writer.write(pricesInBitcoins.toString());

												writer.newLine();

								}

				}

}

The	process	method	[1]	is	our	entry	point	to	the	batchlet.	We	will	start	by	making	a	REST
request	against	an	external	API	[2]	and	use	the	response	to	calculate	our	prices	in	bitcoins
[3].	Finally,	we	will	try	to	write	so	as	to	gathered	data	into	a	file.	As	you	can	see,	once
more,	we	use	JobContext	to	get	the	configuration	properties	from	the	batching	framework
(the	filename	in	this	case).

You	may	wonder,	what	is	the	point	of	the	return	type	in	the	process	method?	It	simply
indicates	the	status	of	the	job,	if	it	has	been	completed	successfully	or	not.

That’s	all	we	wanted	to	do	and	we	achieved	it	in	a	single	batch	step:	reading,	processing,
and	writing.	In	the	chunk-oriented	approach,	we	will	have	three	separate	mechanisms	for
this.	Let’s	add	our	new	step	to	externalSystem.xml	from	src/main/resources/META-
INF/batch-jobs:
<job	id=“externalSystem”	xmlns=“http://xmlns.jcp.org/xml/ns/javaee”

				version=“1.0”>

				<properties>

www.it-ebooks.info

http://www.it-ebooks.info/

								<property	name=“logFile”	value=“log.txt”	/>

								<property	name=“bitcoinFile”	value=“bitcoins.txt”	/>	[1]

				</properties>

				<step	id=“processData”	next=“checkBitcoins”>	[2]

								<chunk	item-count=“2”>

												<reader	ref=“externalSystemReader”	/>

												<processor	ref=“seatProcessor”	/>

												<writer	ref=“seatWriter”	/>

								</chunk>

				</step>

				<step	id=“checkBitcoins”>	[3]

								<batchlet	ref=“bitcoinTask”	/>

				</step>

</job>

There	are	three	new	things	to	notice	in	the	XML	file.	First,	we	added	a	new	property,
which	we	referenced	earlier	in	our	batchlet	[1].	Next,	we	defined	that	after	our	chunk
processing	step,	we	would	like	to	invoke	another	one,	checkBitcoins	[2].	Finally,	we
created	a	new	step	in	which	we	referenced	our	batchlet	class.

You	can	once	again	start	your	job,	and	after	it	is	completed,	a	bitcoins.txt	file	should
appear	in	WildFly’s	bin	directory.

We’ve	covered	the	foundation	of	the	batching	framework,	which	allows	you	to	fulfill	most
of	the	frequent	requirements	defined	for	enterprise	applications.	However,	there	is	a	lot
more	inside	the	specification,	such	as	splits,	partitions,	and	workflow-related	elements
(statuses	and	decisions)	that	you	can	explore	if	a	more	sophisticated	mechanism	is
required	by	the	business	processes	that	you’re	implementing.

Our	next	step	is	to	provide	some	parallelism	inside	our	Java	EE	container	using	the	new
concurrency	utilities.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	concurrency	utilities	in	Java	EE
In	Java	EE	6	(specifically	in	the	EJB	container),	creation	of	new	threads	was	discouraged
because	the	application	server	would	not	be	able	to	control	the	stability	of	the	platform	nor
guarantee	any	transactional	features.	This	could	be	a	problem	for	applications	that	would
like	to	effectively	use	CPU	and	execute	multiple	tasks	in	parallel.	It	was	possible	to
overcome	this	using	JCA	adapters,	but	additional	effort	was	required	to	implement	them.

Fortunately,	the	JSR	236	introduces	the	ManagedExecutorService	(along	with	the
ManagedScheduledExecutorService),	a	container-aware	version	of	the	ExecutorService
used	in	Java	SE.	The	well-known	API	ported	to	Java	EE	was	merged	in	the	platform,
providing	a	smooth	workflow	for	concurrent	operations	in	the	EJB	container.	The	new
managed	executor	services	have	the	following	advantages	over	the	standard	ones:

	
They	rely	on	the	thread	pool	provided	by	the	container.	This	means	that	the	server
controls	have	many	threads	that	can	be	spawned	from	all	deployed	applications	and
you	can	tweak	the	configuration	in	order	to	ensure	the	desired	quality	of	service.
The	thread	configuration	is	totally	separated	from	the	code,	so	it	is	possible	to	change
it	without	changing	the	application	itself.
It	is	possible	to	propagate	the	caller	context	to	the	created	thread.	For	example,	it	is
possible	to	use	the	security	principal	of	the	user’s	request	that	initiated	the	new
thread.
The	application	server	allows	monitoring	of	the	current	thread	count.
Threads	started	by	the	managed	executors	can	create	new	transactions	for	business
components;	they	cannot,	however,	participate	in	transactions	from	other
components.

The	main	parts	of	the	concurrency	utilities	are	described	in	the	following	table:

Component Description

ManagedExecutorService

This	is	used	to	execute	submitted	tasks	in	an	asynchronous	manner.	The	developer	may	submit	a	Callable	or	Runnable	function	and	use	returned	Future	to	check	for
the	result	when	it	is	available.	The	container	context	will	be	propagated	by	the	container.

This	interface	extends	the	standard	ExecutorService	interface.

ManagedScheduledExecutorService

This	is	similar	to	ManagedExecutorService,	but	it	is	used	to	execute	tasks	at	specific	times	(cyclic,	scheduled,	or	delayed).

The	interface	extends	the	standard	ScheduleExecutorService,	but	it	additionally	provides	the	Trigger	feature;	the	possibility	to	create	a	dynamic	object,	which	can
decide	when	a	specific	event	should	be	fired	(see	javax.enterprise.concurrent.Trigger).

ContextService This	is	used	to	capture	the	context	of	the	container;	it	can	then	be	used	while	submitting	a	job	to	the	executor	service.

ManagedThreadFactory
This	is	used	to	create	threads	by	the	container.	The	developer	can	provide	its	own	thread	factory	in	order	to	fulfil	specific	use	cases	(for	instance,	setting	specific	properties	on
the	created	objects).

Instances	of	these	components	can	be	obtained	using	the	JNDI	lookup	or	the	@Resource
injection.	The	Java	EE	7	specification	requires	that	every	container	provides	a	set	of
default	resources	that	should	be	injectable	without	any	additional	configuration.	So,	in
WildFly,	the	easiest	way	to	get	your	hands	on	them	would	be	to	just	type	the	following
code:
@Resource

www.it-ebooks.info

http://www.it-ebooks.info/

private	ManagedExecutorService	executorService;

@Resource

private	ManagedScheduledExecutorService	scheduledExecutorService;

@Resource

private	ContextService	contextService;

The	aforementioned	code	snippet	is	shorthand	for	a	lookup	of	the	default	instances,	which
are	as	follows:
@Resource(lookup=“java:comp/DefaultManagedExecutorService”)

private	ManagedExecutorService	executorService;

You	can	also	find	any	additional	executor	services	and	the	configuration	of	the	default
ones	in	the	standalone.xml	file	(and	in	other	variants	of	the	configuration	file).	A	part	of
the	relevant	subsystem	is	presented	as	follows:
<subsystem	xmlns=“urn:jboss:domain:ee:2.0”>

				<spec-descriptor-property-replacement>false</spec-descriptor-property-

replacement>

				<concurrent>

								(…)

								<managed-executor-services>

												<managed-executor-service	name=“default”	jndi-

name=“java:jboss/ee/concurrency/executor/default”	context-service=“default”

hung-task-threshold=“60000”	core-threads=“5”	max-threads=“25”	keepalive-

time=“5000”/>

								</managed-executor-services>

								(…)

				</concurrent>

</subsystem>

As	you	can	see,	the	standalone.xml	file	contains	the	configuration	of	the	default
ManagedExecutorService.	You	can	add	a	new	custom	configuration	with	another	name
and	JNDI	path;	you	can	also	create	a	separate	one	for	every	deployed	application.

Note
Note	that	the	default	ManagedExecutorService	has	two	JNDI	names:	the	one	in	the
configuration	and	the	one	defined	in	the	Java	EE	specification
(java:comp/DefaultManagedExecutorService).	You	can	switch	to	the	default	executor
service	(and	other	components)	using	the	default-bindings	tag	in	the	standalone.xml	file.

Let’s	take	a	closer	look	at	some	of	the	properties	of	the	executor	service:

	
core-threads:	This	defines	how	many	threads	should	be	alive	in	the	thread	pool	all
the	time	(even	if	those	threads	are	idle	and	the	server	is	handling	no	user	requests).
max-threads:	This	states	how	many	threads	the	server	can	start	(including	the	core
threads)	if	necessary,	for	instance,	when	under	heavy	load.
keepalive-time:	This	defines	after	how	many	milliseconds	a	thread	can	be	idle	before
the	server	kills	it	(it	only	applies	if	there	are	more	threads	running	than	the	core-
threads	parameter	specified).	This	configuration	value	defines	how	long	the	server
will	keep	around	the	additional	threads	when	they	are	not	needed	anymore.

www.it-ebooks.info

http://www.it-ebooks.info/

hung-task-threshold:	This	defines	after	how	many	milliseconds	the	server	will	mark
a	thread	as	hung.	If	set	to	0,	a	thread	will	never	be	marked	as	hung	(the	thread	will
have	no	execution	time	limit).

By	using	these	configuration	properties	and	creating	additional	executor	services,	the
server	administrator	can	gain	a	fine	control	over	the	maximum	load	that	the	server	can
handle	at	a	given	time.	Be	sure	to	take	a	closer	look	at	them	during	an	application’s
performance	tuning.

As	for	development,	the	default	configuration	suits	us	well,	so	it’s	time	to	dive	into	the
code	with	an	example	usage	of	the	concurrency	utilities!

Introducing	threads	to	enterprise	beans
When	we	were	working	with	the	batching	framework,	we	contacted	a	REST	endpoint,
which	was	mocking	an	external	system	in	our	sample.	Now,	we	are	going	to	add	some
concurrency	to	it.

An	external	system	may	aggregate	booking	requests	from	several	sources.	If	every	request
takes	a	substantial	amount	of	time,	it	could	be	a	good	idea	to	make	all	the	requests
simultaneously.	Let’s	start	with	creating	Callable,	which	will	return	a	list	of	the	seat	IDs
that	should	be	booked.	This	is	shown	in	the	following	code	snippet:
package	com.packtpub.wflydevelopment.chapter12.external;

import	java.util.concurrent.Callable;

import	javax.enterprise.concurrent.ManagedTask;

import	javax.enterprise.concurrent.ManagedTaskListener;

import	javax.enterprise.inject.Instance;

public	class	GenerateSeatRequestFromArtificial	implements

Callable<List<Integer>>,	ManagedTask	[1]	{

				@Inject

				private	Logger	logger;

				@Inject

				private	Instance<TaskListener>	taskListener;	[2]

				@Override

				public	ManagedTaskListener	getManagedTaskListener()	{

								return	taskListener.get();	[3]

				}

				@Override	

				public	Map<String,	String>	getExecutionProperties()	{

								return	new	HashMap<>();	[4]

				}

				@Override

				public	List<Integer>	call()	throws	Exception	{

								logger.info(“Sleeping…”);

								Thread.sleep(5000);	[5]

								logger.info(“Finished	sleeping!”);

www.it-ebooks.info

http://www.it-ebooks.info/

								

								return	Arrays.asList(4,	5,	6);

				}

}

Our	task	implements	[1]	two	interfaces:	Callable	and	ManagedTask.	The
ManagedExecutorService	requires	an	object	that	fulfils	the	contract	of	a	Callable	or
Runnable	interface	known	from	Java	SE.

The	ManagedTask	interface	is	optional,	but	it	allows	us	to	register	a	ManagedTaskListener
along	with	the	task	itself	and	return	additional	properties	from	the	task.	The	task	listener
has	a	set	of	life	cycle	callbacks,	which	are	called	during	the	task’s	execution.	We	will	use
it	in	order	to	log	additional	information	about	our	task.	In	order	to	create	an	instance	of	the
task	listener,	we	used	the	Instance<T>	class	[2].	It	is	used	to	create	instances	of	CDI
beans	on	demand.	We	return	ManagedTaskListener	in	a	method	from	the	ManagedTask
interface	[3].	We	don’t	need	any	additional	properties;	therefore,	we	return	an	empty
object	in	the	second	method	from	the	ManagedTask	interface	[4].

Finally,	we	implement	the	call	method;	the	thread	will	be	suspended	for	5	seconds	(to
simulate	long	work)	and	return	a	list	of	predefined	IDs.

Our	task	listener	is	simply	a	bean	with	a	logger,	which	will	get	all	the	information	about
the	task’s	lifecycle.	This	is	shown	in	the	following	code	snippet:
public	class	TaskListener	implements	ManagedTaskListener	{

				@Inject

				private	Logger	logger;

				@Override

				public	void	taskSubmitted(Future<?>	future,	ManagedExecutorService

executor,	Object	task)	{

								logger.info(“Submitted	”	+	task);

				}

				@Override

				public	void	taskAborted(Future<?>	future,	ManagedExecutorService

executor,	Object	task,	Throwable	exception)	{

								logger.log(Level.WARNING,	“Aborted”,	exception);

				}

				@Override

				public	void	taskDone(Future<?>	future,	ManagedExecutorService	executor,

Object	task,	Throwable	exception)	{

								logger.info(“Finished	task	”	+	task);

				}

				@Override

				public	void	taskStarting(Future<?>	future,	ManagedExecutorService

executor,	Object	task)	{

								logger.info(“Starting	”	+	task);

				}

}

As	you	can	see,	most	of	the	implemented	methods	are	getting	the	executor	service,	future,

www.it-ebooks.info

http://www.it-ebooks.info/

and	the	task	itself	as	parameters.	We	simply	log	the	current	status	using	an	injected	logger.

So,	we’ve	created	one	task,	which	is	pretty	static.	Now,	let’s	try	to	create	another	one,
which	will	contact	a	database.	As	before,	we’ll	need	a	Callable	implementation,	which
returns	a	list	of	integers.	This	is	shown	in	the	following	code	snippet:
public	class	GenerateSeatRequestsFromDatabase	implements

Callable<List<Integer>>	{

				private	static	final	int	SEATS_TO_RETURN	=	3;

				@Inject

				private	SeatDao	dao;	//	[1]

				@Inject

				private	Logger	logger;

				@Override

				public	List<Integer>	call()	throws	Exception	{

								logger.info(“Sleeping…”);

								Thread.sleep(5000);	//	[4]

								logger.info(“Finished	sleeping!”);

								

								List<Seat>	databaseSeats	=	dao.findAll();	//	[2]

									List<Integer>	freeSeats	=	databaseSeats.stream()

									.filter(seat	->	!seat.getBooked())

									.limit(SEATS_TO_RETURN)

									.map(seat	->	seat.getId().intValue())

									.collect(Collectors.toList());	//	[3]

								if	(freeSeats.isEmpty())	{

												logger.info(“No	seats	to	book”);

								}	else	{

												logger.info(“Requesting	booking	for	”	+	freeSeats);

								}

								return	freeSeats;

				}

}

The	main	difference	between	this	task	and	the	previous	one	is	that	we	injected	an	EJB	[1],
which	will	start	an	underlying	transaction.	In	the	call	method,	a	database	request	is	issued
[2].	The	returned	list	of	seats	is	then	filtered	and	transformed	into	a	list	of	IDs	[3].

Additionally,	as	mentioned	earlier,	we	will	stop	the	thread	for	5	seconds	so	that	we	can
observe	the	execution	later	[4].

We’ve	got	our	building	blocks	in	place.	Now,	it	is	time	to	combine	them	into	a	working
example.	We	can	revisit	our	PendingSeats	class	from	the	beginning	of	this	chapter,	as
shown	in	the	following	code:
package	com.packtpub.wflydevelopment.chapter12.external;

@Singleton

@Startup

public	class	PendingSeats	{

www.it-ebooks.info

http://www.it-ebooks.info/

				private	final	Queue<Long>	seats	=	

																																new	ConcurrentLinkedQueue<	>();

				@Resource

				private	ManagedExecutorService	executorService;	//	[1]

				@Inject		//	[2]

				private	Instance<GenerateSeatRequestsFromDatabase>	databaseCollector;	

				@Inject

				private	Instance<GenerateSeatRequestFromArtificial>	artificalCollector;

				@Inject

				private	Logger	logger;

				@PostConstruct

				private	void	setUp()	{

								try	{

												List<Future<List<Integer>>>	futures	=

executorService.invokeAll(Arrays.asList(

									databaseCollector.get(),	artificalCollector.get()

));	//	[3]

												List<Integer>	requestedIds	=	futures.stream().flatMap(future	->

get(future).stream()).distinct()

																				.collect(Collectors.toList());	//	[4]

												logger.info(requestedIds.toString());

								}	catch	(InterruptedException	e)	{

												logger.log(Level.SEVERE,	e.getMessage(),	e);

								}

				}

				private	List<Integer>	get(Future<List<Integer>>	future)	{

								try	{

												return	future.get();

								}	catch	(InterruptedException	|	ExecutionException	e)	{

												logger.log(Level.SEVERE,	e.getMessage(),	e);

												return	new	ArrayList<>();

								}

				}

}

We	start	by	obtaining	an	instance	of	ManagedExecutorService	using	the	@Resource
annotation	[1].	Next,	the	previously	created	tasks	are	injected	using	the	CDI’s
Instance<T>	class	pattern	[2].	Thanks	to	this,	the	are	managed	beans	and	have	their
dependencies	injected.	With	the	dependencies	in	place,	we	use	the	invokeAll	method	[3]
of	executorService	in	order	to	start	all	our	tasks	at	once	(we	could	also	use	multiple	calls
of	the	submit	method).	The	return	values	represent	a	set	of	future	results,	which	can	be
used	to	retrieve	the	collected	data	when	it	is	ready.

At	this	point,	our	tasks	are	already	running	so	we	can	simply	make	a	blocking	get	call	on
the	future	results	and	wait	for	the	data	[4].	When	it	is	ready,	we	remove	any	duplicates,

www.it-ebooks.info

http://www.it-ebooks.info/

and	collect	the	results	in	a	single	list	using	the	flatMap	operation.	As	you	remember,	our
previous	two	tasks	were	waiting	5	seconds	each.	Thanks	to	the	fact	that	they	are	executed
simultaneously,	we	expect	that	they	will	both	finish	after	5	seconds.

Because	our	bean	is	a	singleton	with	a	startup	annotation,	the	whole	process	will	be
invoked	during	the	deployment	of	our	application.	Feel	free	to	try	it	out	now!

Of	course,	the	database	task	requires	some	data	in	the	seats	table	or	it	will	yield	empty
results	(that’s	not	a	big	issue	for	us).	If	you	want	the	application	to	automatically	seed
some	data	to	the	database,	you	can	create	another	singleton	bean,	for	instance:
@Startup

public	class	DatabaseInitializer	{

				@PersistenceContext

				private	EntityManager	em;

				@PostConstruct

				public	void	setup()	{

								SeatType	seatType	=	new	SeatType();

								seatType.setPosition(SeatPosition.BALCONY);

								seatType.setDescription(“Test	Data”);

								seatType.setQuantity(10);

								seatType.setPrice(10);

								em.persist(seatType);

								Seat	seat	=	new	Seat();

								seat.setSeatType(seatType);

								em.persist(seat);

				}

}

Be	sure	to	add	a	@DependsOn(“DatabaseInitializer”)	annotation	on	the	PendingSeats
bean,	so	that	the	initializer	runs	before	our	database	collector.

If	everything	goes	well,	you	should	see	something	like	this	on	your	console:

23:42:48,455	INFO		[TaskListener]	(ServerService	Thread	Pool	—	54)

Submitted	GenerateSeatRequestFromArtificial@4256cb0c

23:42:48,456	INFO		[GenerateSeatRequestsFromDatabase]	(EE-

ManagedExecutorService-default-Thread-1)	Sleeping…	(1)

23:42:48,456	INFO		[TaskListener]	(EE-ManagedExecutorService-default-

Thread-2)	Starting	GenerateSeatRequestFromArtificial@4256cb0c

23:42:48,456	INFO		[GenerateSeatRequestFromArtificial]	(EE-

ManagedExecutorService-default-Thread-2)	Sleeping…	(2)

23:42:53,457	INFO		[GenerateSeatRequestsFromDatabase]	(EE-

ManagedExecutorService-default-Thread-1)	Finished	sleeping!

23:42:53,461	INFO		[GenerateSeatRequestFromArtificial]	(EE-

ManagedExecutorService-default-Thread-2)	Finished	sleeping!

23:42:53,461	INFO		[TaskListener]	(EE-ManagedExecutorService-default-

Thread-2)	Finished	task	GenerateSeatRequestFromArtificial@4256cb0c

23:42:53,617	INFO		[GenerateSeatRequestsFromDatabase]	(EE-

ManagedExecutorService-default-Thread-1)	Requesting	booking	for	[1]

23:42:53,621	INFO		[PendingSeats]	(ServerService	Thread	Pool	—	54)	[1,	4,

www.it-ebooks.info

http://www.it-ebooks.info/

5,	6]	(3)

As	you	can	see,	both	tasks	started	at	the	same	time	(1	and	2)	in	two	separate	threads
(notice	the	EE-ManagedExecutorService-default-Thread-1	and	…-Thread-2	entries	in
the	log).	The	final	result	is	yielded	after	roughly	5	seconds,	and	it	contains	data	from	both
the	collectors,	and	additionally,	is	collected	in	the	thread	that	originally	submitted	the	tasks
(ServerService	Thread	Pool	—	54).

You	can	also	use	the	Java	VisualVM	tool	to	visualize	your	threads	in	the	application
server.	The	tool	is	available	in	your	JDK	installation	in	the	bin	directory	(the	jvisualvm
executable).	After	running	it,	you	should	see	JBoss	in	the	left	tree	and	the	Threads	tab
after	clicking	on	the	JBoss	node.	This	is	shown	in	the	following	screenshot:

If	you	switch	to	the	Threads	tab	during	your	application	deployment,	you	will	see	a
graph,	as	shown	in	the	following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

The	purple	color	denotes	a	sleeping	thread	and	the	two	highlighted	threads	with	a	purple
part	of	the	timeline	are	our	tasks	during	execution.	You	can	use	a	detailed	thread	view	to
additionally	examine	your	worker	threads.	This	is	shown	in	the	following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Java	VisualVM	offers	many	more	features	useful	for	every	developer,	such	as	resource
monitoring	of	the	virtual	machine,	profiler,	sampler,	and	others	that	are	implemented	as
dedicated	plugins.	Be	sure	to	check	them	out!

In	this	section,	we	implemented	a	use	case	that	was	a	lot	harder	to	cover	in	a	proper
manner	in	previous	versions	of	Java	EE.	We	were	able	to	do	this	with	less	code,	thanks	to
the	high-level	API	that	was	made	available	to	the	developers.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	you	learned	how	to	create	batching	applications	using	the	new	batching
framework	in	two	different	ways.	Next,	we	tried	some	of	the	mechanisms	provided	by	the
concurrency	utilities.	Our	exploration	went	away	from	the	user	interaction	and
concentrated	on	the	internals	of	the	middleware	layer.

In	the	next	chapter,	we	will	fill	the	last	gap	in	the	Java	EE	developer’s	toolbox,	which	is
integration	testing	with	Arquillian.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	13.	Testing	Your	Applications
In	previous	chapters,	we	covered	the	most	important	technologies	of	the	Java	EE	platform.
However,	every	professional	developer	knows	that	software	development	should	begin
from	writing	tests.	At	first,	it	does	not	sound	easy	to	be	able	to	verify	the	correctness	of
the	execution	of	EJBs,	database-related	code,	or,	for	example,	REST	services	but	it
appears	really	straightforward	when	using	the	right	tools!	In	this	chapter,	we	will	present
the	fundamental	testing	framework	used	for	Java	EE	applications	testing:	the	Arquillian.
Additionally,	we	will	take	a	look	at	its	extensions	and	related	libraries.

In	this	chapter,	we	will	focus	on	the	following	topics:

	
An	introduction	to	enterprise	testing,	from	mock	objects	to	the	Arquillian	framework
How	to	integrate	an	Arquillian	test	case	for	our	ticket	machine	application
How	to	use	the	Eclipse	IDE	and	Maven	shell	to	run	Arquillian	tests
The	most	important	Arquillian	extensions	and	how	to	use	them

www.it-ebooks.info

http://www.it-ebooks.info/

Test	types
The	word	tests	can	be	interpreted	in	multiple	ways.	Most	often,	tests	perform	the
validation	and	verification	of	the	application	requirements.	Tests	can	be	performed	on
multiple	levels,	covering	single	methods	to	whole	business	features.	Tests	can	also	cover
nonfunctional	aspects	such	as	security	or	performance.

First,	let’s	introduce	categories	of	tests	that	validate	the	functional	requirements.	Mike
Cohn	has	introduced	a	concept	of	the	test	pyramid,	which	is	shown	here:

As	you	can	see,	the	majority	of	tests	in	an	application	are	usually	tests	that	cover	units	of
code.	A	unit	can	be	a	single	method,	the	most	basic	feature.	Because	of	this	scope,	these
type	of	tests	are	called	unit	tests.	They	can	be	defined	as	tests	written	by	a	programmer	to
verify	that	a	relatively	small	piece	of	functionality	is	doing	what	it	is	intended	to	do.
Because	the	unit	is	rather	small,	the	number	of	these	tests	increases	rapidly,	so	they
become	the	fundament	of	application	testing	appearing	on	the	lowest	level	of	the	pyramid.

The	next	type	of	tests	concerns	bigger	areas	of	code.	They	cover	whole	services	or
business	features.	This	means	they	cover	multiple	units	of	code	and	concern	different
modules	and	libraries.	The	number	of	such	tests	would	be	lower	than	the	number	of	unit
tests.	This	type	of	test	is	often	called	an	integration	test.	Integration	tests	are	done	to
demonstrate	that	different	pieces	of	the	system	work	together;	since	they	cover	entire
applications,	they	require	much	more	effort	to	be	put	together.	For	example,	they	usually
require	resources	such	as	database	instances	and	hardware	to	be	allocated	for	them.
Integration	tests	do	a	more	convincing	job	of	demonstrating	how	the	system	works
(especially	to	nonprogrammers);	at	least	to	the	extent	that	the	integration	test	environment
resembles	the	production	environment.

The	last	type	of	tests	are	UI	tests,	which	can	also	be	called	acceptance	tests.	Their	number

www.it-ebooks.info

http://www.it-ebooks.info/

is	the	smallest	in	the	project;	they	are	usually	the	most	troublesome	to	write	to	simulate
the	user	interacting	with	the	application.	They	cover	whole	requirements	and	features.

Let’s	leave	the	topic	of	nonfunctional	tests.	For	now,	you	have	to	only	remember	that	they
can	cover	topics	related	to	performance,	security,	and	so	on.

www.it-ebooks.info

http://www.it-ebooks.info/

Instruments	used	for	testing
As	you	can	imagine,	each	kind	of	testing	uses	a	different	approach	and	often	requires
different	testing	libraries.

When	you’re	writing	unit	tests,	you	have	to	just	provide	some	method	input	parameters,
and	validate	if	their	outcome	covers	the	expectations.	To	do	this	in	Java,	you	probably
already	use	JUnit,	TestNG,	or	Spock.	When	you’re	moving	from	bigger	parts	of	code	to
testing	whole	services,	some	problems	may	appear.	It’s	often	hard	to	separate	the	code
you’d	like	to	test,	to	make	it	testable	without	running	all	the	other	services.	You	usually
create	some	mock	objects	that	simulate	behavior	of	modules	you	don’t	want	to	include	in
your	test.	If	you	have	an	object	whose	methods	you	want	to	test,	and	if	these	methods
depend	on	another	object,	you	can	create	a	mock	of	the	dependency	rather	than	an	actual
instance	of	that	dependency.	This	allows	you	to	test	your	object	in	isolation.

As	an	example,	one	common	use	case	might	be	in	database	applications,	where	you	would
like	to	test,	for	example,	the	user	registration	process	but	you	don’t	want	to	run	the	whole
database	(which	means	that	you	will	set	its	schema,	some	initial	data,	and	finally	clean	its
state	manually	after	the	test	is	complete).	You	can	mock	just	the	database	interaction	and
define	the	behavior	of	some	methods	execution,	for	example,	your	stub	will	always	return
four	users,	which	will	be	hardcoded	in	your	test	code.

This	kind	of	approach,	although	very	immediate	to	understand	and	put	into	practice,	has
several	limitations.	Firstly,	it	relegates	you	into	an	artificial	environment,	where	you	will
often	make	invalid	assumptions	about	the	behavior	and	stability	of	that	environment.

Secondly,	you	will	end	up	with	a	hard-to-maintain	mock	code,	which	will	allow	your	tests
to	pass	and	give	you	the	warm	feeling	of	having	done	a	great	job.

Thirdly,	sometimes	it’s	very	hard	to	isolate	a	service	you’d	like	to	test,	and	code	mocking
all	its	interactions	can	be	larger	than	the	code	of	the	meaningful	tests.

So,	even	if	mock	objects	may	still	provide	some	benefits	to	start	systems,	where	you	don’t
have	full	implementations	of	a	particular	subsystem,	it	might	be	good	to	stay	as	close	as
possible	to	the	target	environment	that	the	code	is	supposed	to	run	in.	At	some	point,	The
No	Mock	Movement	(Not	Only	Mocks	Movement)	was	launched	pointing	out	that
mocking	often	takes	too	much	time,	and	makes	you	focus	on	writing	mocks	instead	of
writing	tests.

Arquillian	tries	to	solve	these	problems.	It	is	a	platform	that	simplifies	integration	testing
for	Java	middleware.	It	deals	with	all	the	plumbing	of	container	management,	deployment,
and	framework	initialization	so	that	you	can	focus	on	the	task	of	writing	your	tests—real
tests.	Arquillian	minimizes	the	burden	on	you—for	the	developer—by	covering	aspects
surrounding	test	execution;	some	of	these	aspects	are	as	follows:

	
Managing	the	life	cycle	of	the	container	(start/stop)
Bundling	the	test	class	with	the	dependent	classes	and	resources	into	a	deployable
archive
Enhancing	the	test	class	(for	example,	resolving	the	@Inject,	@EJB,	and	@Resource

www.it-ebooks.info

http://www.it-ebooks.info/

injections)
Deploying	the	archive	to	test	applications	(deploy/undeploy),	and	capturing	results
and	failures

Arquillian	also	has	extensions	that	enhance	its	features,	for	example,	allowing	it	to
perform	UI	tests	or	some	nonfunctional	tests.

In	the	next	section,	we	will	discuss	which	instruments	are	required	to	run	your	integration
tests	using	Arquillian.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	started	with	Arquillian
Although	Arquillian	does	not	depend	on	a	specific	build	tool,	it	is	commonly	used	with
Maven;	it	offers	dependency	management	and	thus	simplifies	the	task	of	including	the
Arquillian	libraries	in	the	application	since	they	are	distributed	in	the	Central	Maven
repository.

Depending	on	the	type	of	archetype	you	used	for	generation,	you	might	have	a	different
folder	structure	in	your	project;	this	is	not	an	issue.	What	is	really	important	is	that	you
provide	the	following	structure	under	your	src	folder:

	
main/java/:	Place	all	application	Java	source	files	here	(under	the	Java	package)
main/resources/:	Place	all	application	configuration	files	here
test/java/:	Place	all	test	Java	source	files	here	(under	the	Java	package)
test/resources/:	Place	all	test	configuration	files	here	(for	example,
persistence.xml)

So	by	now,	we	will	be	working	under	test/java,	which	is	where	we	will	place	our	first
Arquillian	test	class.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing	an	Arquillian	test
If	you	have	been	working	with	JUnit	(http://www.junit.org),	you	will	find	a	similar
Arquillian	test,	with	some	extra	spice	in	it.

In	order	to	do	this,	we	will	use	Eclipse	and	Maven,	just	as	we	have	done	so	far.	If	you	are
about	to	add	test	classes	to	your	project,	there	is	obviously	no	need	to	create	a	new	project
for	this	purpose.	However,	for	learning	purposes,	we	delivered	this	example	in	a	separate
project	so	that	you	can	see	exactly	what	to	add	in	order	to	run	Arquillian	tests.

In	order	to	avoid	recreating	the	whole	project	from	scratch,	you	could	simply	clone	the
ticket-agency-jpa	project	and	name	it	ticket-agency-test,	moving	the	root	package
from	com.packtpub.wflydevelopment.chapter5	to
com.packtpub.wflydevelopment.chapter13.	If	this	still	seems	like	too	much	work,	you
could	simply	import	the	Chapter13	project	from	the	book	sample.

www.it-ebooks.info

http://www.junit.org
http://www.it-ebooks.info/

Configuring	the	pom.xml	file
The	first	thing	that	is	necessary	to	include	in	order	to	run	an	Arquillian	test	is	the	junit
dependency,	which	is	required	to	run	our	unit	tests:
<dependency>

				<groupId>junit</groupId>

				<artifactId>junit</artifactId>

				<scope>test</scope>

				<version>4.11</version>

</dependency>

In	earlier	chapters,	we	introduced	the	term	Bill	of	Materials	(BOM).	Now,	we	will	use
the	Arquillian	BOM	in	order	to	import	versions	of	all	Arquillian-related	dependencies:
<dependencyManagement>

				<dependencies>

								<dependency>

												<groupId>org.jboss.arquillian</groupId>

												<artifactId>arquillian-bom</artifactId>

												<version>1.1.5.Final</version>

												<scope>import</scope>

												<type>pom</type>

								</dependency>

				</dependencies>

</dependencyManagement>

We’re	using	Arquillian	with	JUnit	(like	mentioned	before	other	possibilities	are	TestNG,
Spock,	JBehave,	and	Cucumber)	so	we	need	to	include	the	appropriate	dependency:
<dependency>

				<groupId>org.jboss.arquillian.junit</groupId>

				<artifactId>arquillian-junit-container</artifactId>

				<scope>test</scope>

</dependency>

After	being	done	with	the	basic	dependencies,	we	now	have	to	specify	the	container
against	which	the	tests	will	be	run.	Container	adapters	are	available	for	the	more	important
Java	EE	Application	Servers	(WildFly,	Glassfish,	WebLogic,	and	WebSphere),	as	well	as
for	some	servlet	containers	such	as	Tomcat	or	Jetty.	Here,	we	want	to	use	WildFly	so	we
will	use	an	appropriate	container	adapter.	However,	we	have	a	few	possible	choices.
Container	adapters	can	be	divided	into	three	basic	groups:

	
Embedded:	This	is	the	mode	in	which	a	container	is	run	on	the	same	JVM	instance
the	tests	are	running.	Often,	a	container	run	in	this	mode	is	not	an	original	one,	but
packed	to	a	single	JAR	limited	version.
Managed:	In	this	mode,	the	real	application	server	is	run	on	a	separate	JVM.	As	the
name	implies,	it’s	possible	to	manage	the	state	of	the	container,	run	it,	stop	it,	and	so
on.	By	default,	when	you	run	the	test,	the	server	is	started,	tests	are	run	against	it,	and
then	it	is	stopped.	However,	it	is	possible	to	configure	Arquillian	to	run	tests	on	the
already	running	instance.
Remote:	In	this	mode,	we	just	connect	to	some	existing	server	instance	and	run	tests

www.it-ebooks.info

http://www.it-ebooks.info/

against	it.

The	most	universal	choice	to	run	tests	is	the	managed	container.	Tests	are	run	on	the	real
server,	same	as	on	the	production	environment,	and	additionally,	it	is	possible	to	manage
its	state,	allowing	for	some	more	advanced	tests	such	as	testing	features	related	to	high-
availability	or	communication	between	two	applications	that	run	on	different	instances.
Now,	we	need	to	add	the	appropriate	container	adapter	to	our	pom.xml	file.	To	do	this,	we
will	create	a	Maven	profile:
<profile>

				<id>arq-wildfly-managed</id>

				<dependencies>

								<dependency>

												<groupId>org.wildfly</groupId>

												<artifactId>wildfly-arquillian-container-managed</artifactId>

												<scope>test</scope>

								</dependency>

				</dependencies>

</profile>

There	might	be	situations	in	which	you’d	like	to	run	tests	against	different	application
servers.	It’s	possible	to	just	define	a	few	Maven	profiles	and	run	tests	a	few	times,	each
time	activating	other	profiles.	Keep	in	mind	that	some	application	servers	don’t	provide	all
types	of	the	adapters.

There	is	one	more	container-related	topic.	Our	Arquillian	tests	use	a	protocol	to
communicate	with	the	micro	deployment	on	the	application	server.	If	we	don’t	specify	the
protocol,	the	container	will	choose	the	default	one.	In	order	to	specify	it	manually,	we	will
need	to	add	the	org.jboss.arquillian.protocol	dependency	(named	so	as	it’s
compatible	with	Servlet	3.0	specifications):
<dependency>

				<groupId>org.jboss.arquillian.protocol</groupId>

				<artifactId>arquillian-protocol-servlet</artifactId>

				<scope>test</scope>

</dependency>

www.it-ebooks.info

http://www.it-ebooks.info/

Writing	your	first	Arquillian	test
Once	the	configuration	is	complete,	we	will	finally	code	our	test.	So,	create	a	Java	class
named	TicketTest	under	the	package
com.packtpub.wflydevelopment.chapter13.test.	The	first	thing	that	you	will	add	to
this	class	is	the	following	annotation	that	tells	JUnit	to	use	Arquillian	as	the	test	controller:

@RunWith(Arquillian.class)

public	class	TicketServiceTest	{

}

Arquillian	then	looks	for	a	static	method	with	the	@Deployment	annotation;	it	creates	a
micro	deployment	including	all	the	specified	classes	and	resources	(instead	of	deploying
the	whole	application),	allowing	to	test	only	part	of	the	system:
@Deployment

public	static	Archive<?>	createTestArchive()	{

				return	ShrinkWrap.create(WebArchive.class)

									addPackage(SeatType.class.getPackage())

								.addPackage(TicketService.class.getPackage())

								.addPackage(LoggerProducer.class.getPackage())

								.addAsResource(“META-INF/persistence.xml”)

								.addAsWebInfResource(EmptyAsset.INSTANCE,	“beans.xml”);

}

The	fluent	API	provided	by	the	ShrinkWrap	project	(http://www.jboss.org/shrinkwrap)
makes	this	technique	possible	using	the	create	method,	which	accepts	the	type	of
deployment	unit	(WebArchive)	as	the	argument	and	all	the	resources	are	included	in	this
archive.	In	our	case,	instead	of	including	all	the	single	classes,	we	use	the	addPackage
utility	method	that	adds	all	the	classes	that	are	contained	in	a	class	package	(for	example,
by	adding	the	SeatType.class.getPackage()	method,	we	will	include	all	the	classes	that
are	in	the	same	package	as	the	SeatType	class).	Our	project	uses	the	JPA,	so	we	also	add
persistence	configuration;	here,	we	specify	a	path	to	the	.xml	file,	so	we	can	point,	for
example,	to	some	other	test	configuration	using	some	other	non-production	database.	And,
of	course,	we	also	have	to	add	the	empty	beans.xml	file	in	order	to	enable	the	CDI.

Finally,	we	inject	the	service	we	would	like	to	test	(yes,	it’s	possible	to	inject	services	to
test	classes)	and	add	one	test	method:
@Inject

TicketService	ticketService;

@Test

public	void	shouldCreateSeatType()	throws	Exception	{

				//	given

				final	SeatType	seatType	=	new	SeatType();

				seatType.setDescription(“Balcony”);

				seatType.setPrice(11);

				seatType.setQuantity(5);

				//	when

				ticketService.createSeatType(seatType);

www.it-ebooks.info

http://www.jboss.org/shrinkwrap
http://www.it-ebooks.info/

				//	then

				assertNotNull(seatType.getId());

}

Here,	the	shouldCreateSeatType	method	will	create	a	new	SeatType	attribute	using	the
createSeatType	method	from	the	TicketService	class.	Note	how	we	inject
TicketService	just	as	we	would	if	we	were	running	this	code	on	the	server	side.

Our	first	test	case	is	now	ready.	We	will	just	need	to	add	an	Arquillian	configuration	file
named	arquillian.xml	in	our	project,	under	src/test/resources:
<?xml	version=“1.0”	encoding=“UTF-8”?>

<arquillian	xmlns=“http://jboss.org/schema/arquillian”

												xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”

												xsi:schemaLocation=“http://jboss.org/schema/arquillian

								http://jboss.org/schema/arquillian/arquillian_1_0.xsd”>

				<container	qualifier=“jboss-managed”	default=“true”>

								<!—	Additional	configuration	—>

				</container>

</arquillian>

You	have	to	configure	the	container	adapter.	In	this	example,	we	assume	that	you	have	set
the	JBOSS_HOME	environment	variable	to	the	WildFly	main	directory.	In	this	case,	no	more
configurations	are	required.	However,	if	you	want	to	run	something	non-standard,	for
example,	connect	to	a	remote	container	with	altered	management	ports,	then	this	file	is	the
appropriate	place	to	modify	this.	When	you	don’t	specify	JBOSS_HOME,	you	can	set	the
WildFly	location	using	property	as	follows:
<container	qualifier=“jboss-managed”	default=“true”>

				<configuration>

								<property	name=“jbossHome”>C:\wildfly</property>

				</configuration>

</container>

However,	this	method	may	be	hard	to	maintain	when	more	than	one	person	is	working	on
the	project.	In	order	to	avoid	problems,	you	can	use	the	system	property	resolution,	for
instance,	${jbossHome}.

If	you	configure	the	remote	container,	the	configuration	would	look	just	like	this:
<container	qualifier=“jboss-remote”	default=“true”>

				<configuration>

								<property	name=“managementAddress”>localhost</property>

								<property	name=“managementPort”>9999</property>

				</configuration>

</container>

www.it-ebooks.info

http://www.it-ebooks.info/

Running	Arquillian	TicketTest
It’s	possible	to	run	Arquillian	tests	both	from	Maven	and	your	IDE.	You	have	to	remember
that	we	declared	the	container	adapter	in	the	Maven	profile,	so	in	order	to	run	the	full
build,	you	have	to	run	the	following	command	line:

mvn	clean	package	–Parquillian-wildfly-managed

If	you	want	to	run	the	test	from	Eclipse,	you	have	to	navigate	to	the	project	properties	and
select	the	Maven	property.	In	the	Active	Maven	Profiles	field,	enter	arquillian-
wildfly-managed	(as	shown	in	the	following	screenshot),	which	we	declared	earlier	in	the
pom.xml	file:

Now	all	you	have	to	do	is	right-click	on	your	TicketServiceTest	class	and	select	Run	As
JUnit	Test.	The	Arquillian	engine	will	start,	producing	the	outcome	of	the	test	in	the	JUnit
view	(you	can	make	it	visible	by	navigating	to	Menu	|	Window	|	Show	View	|	JUnit).

Congratulations!	The	JUnit	console	accounts	for	the	first	test	that	was	run	successfully.

www.it-ebooks.info

http://www.it-ebooks.info/

If	you	want	to	use	only	one	container	in	your	test,	then	a	good	idea	would	be	to	set	the
default	Maven	profile,	by	adding	the	following	lines	to	it	in	the	pom.xml	file:
<activation>

				<activeByDefault>true</activeByDefault>

</activation>

www.it-ebooks.info

http://www.it-ebooks.info/

Running	Arquillian	tests	using	Spock
Arquillian	is	not	limited	to	only	JUnit.	As	we	mentioned	earlier,	there	are	already
containers,	for	example,	TestNG	and	Spock;	let’s	focus	on	the	second	one.

Spock	is	a	modern	testing	framework	written	in	Groovy	and	uses	some	of	the	Groovy
language	features	to	make	your	tests	more	readable	and	easier	to	write.	Spock’s	primary
goal	is	to	test	the	Groovy	code	but	it	is	perfect	to	write	all	kinds	of	tests	for	the	Java	code.
Spock	introduces	a	few	additional	semantics	with	its	Domain	Specific	Language	(DSL)
in	order	to	make	testing	even	more	easier	and	developer	friendly.

Let’s	rewrite	our	previous	test	example	using	Spock:
@RunWith(ArquillianSputnik.class)

class	TicketServiceTest	extends	Specification	{

				@Deployment

				def	static	WebArchive	createTestArchive()	{

								return	ShrinkWrap.create(WebArchive.class)

															.addPackage(SeatType.class.getPackage())

															.addPackage(TicketService.class.getPackage())

															.addPackage(LoggerProducer.class.getPackage())

															.addAsResource(‘META-INF/persistence.xml’)

															.addAsWebInfResource(EmptyAsset.INSTANCE,	‘beans.xml’);

				}

				@Inject

				TicketService	ticketService;

				def	“should	create	SeatType”()	{

								given:

								def	seatType	=	new	SeatType(description:	“Balcony”,	

																																				price:	11,	quantity:	6)

								when:

								ticketService.createSeatType(seatType);

								then:

								seatType.getId()	!=	null

				}

}

You	can	notice	a	few	differences.	First	of	all,	it’s	really	Groovy!	Secondly,	the	test	uses	a
different	runner,	ArquillianSputnik.	What’s	more,	you	can	already	notice	some	Spock
DSL	here,	such	as	the	given,	when,	and	then	constructions,	which	come	from	behavior-
driven	development	(BDD).	The	given	construction	is	expected	to	put	the	system	in	a
specific	state,	when	describes	an	action,	and	then	contains	assertions	that	verify	the
outcome	of	an	action	performed.

This	fully	working	Spock	example	with	the	complete	pom.xml	configuration	can	be	found
in	this	chapter’s	example	project	named	ticket-agency-spock.	More	information
concerning	the	Arquillian	Spock	test	runner,	its	features,	and	usage	instructions	can	be
found	on	GitHub	at	https://github.com/arquillian/arquillian-testrunner-spock.	More

www.it-ebooks.info

https://github.com/arquillian/arquillian-testrunner-spock
http://www.it-ebooks.info/

information	concerning	Spock	can	also	be	found	on	GitHub	at
https://github.com/spockframework/spock.

www.it-ebooks.info

https://github.com/spockframework/spock
http://www.it-ebooks.info/

ShrinkWrap	Resolver
In	almost	every	Arquillian	test,	you	will	probably	use	ShrinkWrap	to	create	micro
deployments.	After	working	with	it	for	a	bit,	you	will	probably	notice	some	shortcomings.
You	might	be	wondering	what	happens	when	you’ve	got	a	test	that	relies	on	some	external
library;	do	you	need	to	add	all	packages	from	that	library?	The	answer	is	no.	ShrinkWrap
Resolver	offers	integration	with	Maven	and	basic	Gradle	support	is	also	available.	You
can	just	write	in	your	test	what	dependency	you’d	like	to	include	in	the	archive	and	it	will
be	deployed	with	the	micro	deployment.

Let’s	look	at	the	basic	example	of	the	ShrinkWrap	Resolver	Maven	integration:
Maven.resolver().resolve(“G:A:V”).withTransitivity().asFile();

The	preceding	line	means	that	we	want	to	resolve	an	artifact	with	the	given	group	ID,
artifact	ID,	and	version	(Maven	coordinates	in	canonical	form)	from	Maven’s	central
repository	with	all	its	dependencies,	and	convert	it	to	a	list	of	files.

However,	with	this	example,	you	have	to	maintain	the	artifact	version	both	in	the	test	code
and	build	file.	You	can	improve	this!	Just	import	some	dependencies	data	from	your
pom.xml	file,	so	that	ShrinkWrap	Resolver	resolves	artifacts	of	the	same	versions	the	main
project	is	using:
Maven.resolver().loadPomFromFile(“/path/to/pom.xml”).

resolve(“G:A”).withTransitivity().asFile();

So	now,	first	of	all,	the	pom.xml	data	is	loaded,	including	all	depending	management
sections	and	artifacts	versions.	Also,	the	artifact	coordinates	do	not	have	to	include	the
version.

These	are	the	most	basic	features.	You	can	fully	configure	the	resolver	manually,	the
repositories	you	want	to	use,	Maven	profiles	to	be	applied,	and	much	more.	Let’s	now
grab	an	example.

Let’s	say	you’re	testing	your	project	using	JUnit	and	some	fancy	assertion	library.	AssertJ
(successor	of	FEST	assertions)	is	a	fluent	assertions	library	that	allows	you	to	write	your
project	in	a	more	human-readable	form:
assertThat(frodo.getName()).isEqualTo(“Frodo”);

Using	such	a	library	in	every	test	means	you	have	to	include	it	in	every	micro	deployment.
There	is	another	thing	you	will	always	need:	the	beans.xml	file.	So	let’s	create	some
utility	classes:
public	class	ArquillianWarUtils	{

				private	static	final	String	BEANS_XML	=	“beans.xml”;

				private	static	final	String	ASSERTJ_COORDINATE	=

																																		“org.assertj:assertj-core”;

				private	static	File[]	ASSERTJ_ARTIFACT	=	Maven.resolver()

					.loadPomFromFile(“pom.xml”).resolve(ASSERTJ_COORDINATE)

					.withTransitivity().asFile();

				public	static	WebArchive	getBasicWebArchive()	{

www.it-ebooks.info

http://www.it-ebooks.info/

								return	ShrinkWrap.create(WebArchive.class)

												.addAsLibraries(ASSERTJ_ARTIFACT)

												.addAsWebInfResource(EmptyAsset.INSTANCE,	BEANS_XML);

				}

}

Also,	now	in	each	test	case,	you’d	have	just	to	write	the	following	code:
				@Deployment

				public	static	WebArchive	createDeployment()	{

								return	ArquillianWarUtils.getBasicWebArchive()

																				.addPackage(SomePackage.class.getPackage();

				}

At	some	point,	you	might	want	to	do	one	more	thing;	instead	of	adding	all	your	libraries
manually,	you	can	import	them	on	runtime	dependencies:
Maven.resolver().loadPomFromFile(“pom.xml”)

															.importRuntimeDependencies().resolve()

															.withTransitivity().asFile();

There	are	some	unfortunate	cases	in	which	isolation	of	a	part	of	the	project	for	the	micro
deployment	is	not	possible.	You	just	add	more	and	more	classes	to	it	and	there	is	no	end.
This	means	that	your	project	might	have	a	poor	design,	but	let’s	say	you	want	to	introduce
Arquillian	in	some	existing	legacy	project	and	you	had	no	influence	on	its	structure.	In
that	case,	you	might	want	to	import	not	just	some	classes	or	packages,	but	the	whole
project	to	your	integration	test.	Some	people	do	tricks;	they	just	use	the	basic	ShrinkWrap
and	import	a	.jar	or	.war	file	using	the	ZipImporter	ShrinkWrap:
ShrinkWrap

				.create(ZipImporter.class)

				.importFrom(new	File(“/target/myPackage.war”))

				.as(WebArchive.class);

The	problem	is	what	is	really	in	this	archive?	You	probably	import	an	archive	created
during	the	previous	build	since	it	is	created	after	finishing	the	tests!	What’s	more,	it	cannot
even	exist	when	you’re	just	working	from	the	IDE	and	not	running	the	full	Maven	build!
It’s	the	place	where	you	can	use	the	MavenImporter	class.	Refer	to	the	following	code:
ShrinkWrap.create(MavenImporter.class)

				.loadPomFromFile(“/path/to/pom.xml”)

				.importBuildOutput()

				.as(WebArchive.class);

That’s	it!	Internally,	it	runs	the	simplified	build,	gathering	compiled	classes	and	resources
and	packing	it	to	the	archive.	It	does	not	run	inside	the	complete	Maven	build	using	some
embedded	instance,	since	that	would	be	much	too	slow.	You	might	want	to	add	such	a
method	to	your	test	utilities:
public	class	ArquillianWarUtils	{

				//	already	presented	code

				public	static	WebArchive	getBasicWebArchive()	{	…	}

				

				public	static	WebArchive	importBuildOutput()	{

								return	ShrinkWrap.create(MavenImporter.class)

www.it-ebooks.info

http://www.it-ebooks.info/

																		.loadPomFromFile(“pom.xml”)

																		.importBuildOutput()

																		.as(WebArchive.class);

				}

}

There	exists	a	similar	feature	for	the	Gradle	project	included	since	ShrinkWrap	Resolver
2.2.0-alpha-1.	However,	it	uses	the	Gradle	Tooling	API	internally:
ShrinkWrap.create(EmbeddedGradleImporter.class)

				.forProjectDirectory(“/path/to/dir”)

				.importBuildOutput()

				.as(WebArchive.class);

At	some	point,	you	might	be	surprised	that	this	last	example	did	not	work.	The	reason
might	be	that	arquillian-bom	does	not	include	this	ShrinkWrap	Resolver	version.
However,	it	is	possible	to	override	the	BOM	imported	versions	with	another	BOM.	It’s
pretty	easy;	just	insert	the	more	important	BOM	first:
<dependencyManagement>

					<!—	shrinkwrap	resolvers	import	must	be	before	arquillian	bom!	—>

				<dependency>

								<groupId>org.jboss.shrinkwrap.resolver</groupId>

								<artifactId>shrinkwrap-resolver-bom</artifactId>

								<version>${version.shrinkwrap-resolver}</version>

								<scope>import</scope>

								<type>pom</type>

				</dependency>

				<dependency>

								<groupId>org.jboss.shrinkwrap</groupId>

								<artifactId>shrinkwrap-bom</artifactId>

								<version>${version.shrinkwrap}</version>

								<scope>import</scope>

								<type>pom</type>

				</dependency>

</dependencyManagement>

More	info	about	ShinkWrap	Resolver	can	be	found	on	its	GitHub	repository	at
https://github.com/shrinkwrap/resolver.

www.it-ebooks.info

https://github.com/shrinkwrap/resolver
http://www.it-ebooks.info/

ShrinkWrap	Descriptors
There	is	one	more	ShrinkWrap	family	project.	A	little	less	popular	and	not	known	by
many	people,	it	is	called	ShrinkWrap	Descriptors.	Its	goal	is	to	provide	a	fluent	API	for
the	creation	of	descriptor	resources	you	usually	create	and	insert	inside	your	micro
deployments.

Let’s	start	with	an	example.	Let’s	say	you’re	writing	a	persistence	framework	extension.
While	doing	this,	you	use	an	incredible	amount	of	persistence.xml	files	such	as	the
following	code:
<persistence>

			<persistence-unit	name=“myapp”>

						<provider>org.hibernate.ejb.HibernatePersistence</provider>

						<jta-data-source>java:/DefaultDS</jta-data-source>

						<properties>

									<property	name=“hibernate.dialect”	

																		value=“org.hibernate.dialect.HSQLDialect”/>

									<property	name=“hibernate.hbm2ddl.auto”	value=“create-drop”/>

						</properties>

			</persistence-unit>

</persistence>

With	ShrinkWrap	Descriptors,	instead	of	putting	all	these	files	in	src/test/resources
and	then	referencing	them	from	particular	tests,	you	can	just	put	some	code	in	the	test
itself:
final	PersistenceDescriptor	persistence	=	Descriptors

		.create(PersistenceDescriptor.class)

												.createPersistenceUnit()

															.name(“myapp”)

															.provider(“org.hibernate.ejb.HibernatePersistence”)

															.jtaDataSource(“java:/DefaultDS”)

															.getOrCreateProperties()

																		.createProperty().name(“hibernate.dialect”)

																					.value(“org.hibernate.dialect.HSQLDialect”).up()

																		.createProperty().name(“hibernate.hbm2ddl.auto”)

																					.value(“create-drop”).up()

															.up().up()

Such	a	PersistenceDescriptor	class	can	be	exported	as	String	or	just	be	added	to	the
ShrinkWrap	archive.

By	default,	the	project	contains	descriptors	ready	for	all	the	most	important	.xml	of	Java
EE	platform.	However,	it	also	allows	for	code	generation	using	XSD	and	DTD	files.	Be
cautious,	it’s	still	in	alpha	stage.	It	is	stable,	but	the	API	might	already	be	changed.

www.it-ebooks.info

http://www.it-ebooks.info/

Persistence	testing
Real	challenges	start	when	you	have	to	include	other	systems	in	your	testing	process.
Troubles	might	be	caused	even	by	the	necessity	of	testing	interactions	with	a	relational
database.	In	Chapter	5,	Combining	Persistence	with	CDI,	we	introduced	the	JPA.	Now	it’s
time	to	describe	how	you	can	test	your	interactions	with	it.

There	are	a	few	issues	that	have	to	be	considered	when	testing	database-related	code:

	
How	to	verify	that	data	was	really	inserted	to	the	database?
How	to	maintain	the	database	state	between	tests	and	how	to	automatically	clean	it?

Arquillian	persistence	extension	allows	you	to	test	both	these	things.	Before	running	a	test,
you	can	seed	your	database	from	.xml,	.xls,	.yaml,	.json,	or	custom	SQL	scripts.	It’s
done	by	just	annotating	the	test	case	using	the	@UsingDataSet(“path-to-seeding-file”)
annotation.	After	the	test	execution,	you	can	compare	the	database	state	against	another
file,	this	time	using	the	@ShouldMatchDataSet(“path-to-dataset”)	annotation.	Let’s
look	at	an	example:
@Test

@UsingDataSet(“datasets/seats.yml”)

@ShouldMatchDataSet(“datasets/expected-seats.yml”)

public	void	shouldMakeACleanup()	throws	Exception	{

				//	given

				//	from	annotation

				//	when

				ticketService.doCleanUp();

				//	then

				//	from	annotation

}

The	seats.yml	and	expected-seats.xml	files	are	just	simple	YAMLs	placed	in
/src/test/resources/datasets.	The	first	file	contains	SeatType:
Seat_Type:

		-	description:	test

				position:	“box”

				price:	10

				quantity:	10

The	second	file	contains:
Seat_Type:

Since	we’re	executing	a	cleanup.	Note	that	the	names	and	values	used	here	are	the	SQL
names,	not	the	JPA	names.

JPA	allows	you	to	use	a	second-level	cache	in	order	to	improve	the	operations
performance.	With	this,	not	all	of	the	operations	are	instantly	reflected	on	the	database
state.	During	the	tests	running,	you	might	be	interested	in	the	@JpaCacheEviction
annotation,	which	makes	a	cache	to	evict	after	every	test	run.	Each	test	is	also	wrapped	in

www.it-ebooks.info

http://www.it-ebooks.info/

a	separate	transaction	so	that	it	won’t	influence	the	execution	of	other	tests

Of	course,	there	are	some	dependencies	you	need	to	make	this	extension	work.	There	are
exactly	three	of	them	as	follows:
<dependency>

				<groupId>org.jboss.arquillian.extension</groupId>

				<artifactId>arquillian-persistence-dbunit</artifactId>

				<version>1.0.0.Alpha7</version>

				<scope>test</scope>

</dependency>

Arquillian	in	1.1.4.Final	version	has	a	bug	that	passes	all	persistence	tests	even	when	they
should	not.	The	1.1.5.Final	version	works	correctly.

A	fully	configured	example	project	for	this	chapter	is	named	ticket-agency-test-ape.

The	Arquillian	Persistence	Extension	manual	is	available	on	GitHub	at
https://github.com/arquillian/arquillian-extension-persistence.

www.it-ebooks.info

https://github.com/arquillian/arquillian-extension-persistence
http://www.it-ebooks.info/

Arquillian	Warp
The	last	Arquillian	extension	that	we	will	discuss	here	is	Warp.	Authors	say	that	it	allows
you	to	write	client-side	tests	that	assert	server-side	logic.	To	be	more	descriptive,	it	allows
for	execution	of	client	side	requests,	and	then	to	execute	server	side	tests.	This	fills	the	gap
between	client-side	and	server-side	testing.

In	order	to	fully	understand	the	Warp,	we	have	to	introduce	the	@RunAsClient	annotation.
It	can	be	placed	on	a	test	class	or	test	method	and	it	mentions	that	tests	will	be	executed	on
the	client	side	and	not	on	the	server	side.	The	second	important	annotation	is
@Deployment,	which	you	have	already	met	on	method	creating	the	archives.	However,	it
can	take	some	parameters	that	are	Boolean	value	testable.	If	a	testable	is	false,	it	is	also
executes	on	the	client	side,	not	repacking	the	deployment	and	so	on.	However,	Warp
mixes	these	two	modes	and	requires	@Deployment(testable=true)	and	@RunAsClient
annotations.	The	test	class	has	to	be	annotated	additionally	with	@WarpTest:
@RunWith(Arquillian.class)

@WarpTest

@RunAsClient

public	class	BasicWarpTest	{

				@Deployment(testable	=	true)

				public	static	WebArchive	createDeployment()	{

							…

				}

				@Test

				public	void	test()	{

								//	Warp	test

				}

}

Every	Warp	test	uses	the	following	construction:
Warp

				.initiate(Activity)

				.inspect(Inspection);

An	activity	is	the	client	part	that	makes	the	requests.	Inspection	is	a	server-side	assertion.
It’s	also	possible	to	filter	some	requests	by	additional	specification	of	the	Observer:
Warp

				.initiate(Activity)

				.observer(Observer)

				.inspect(Inspection);

An	Observer	can,	for	example,	filter	HTTP	addresses.

Let’s	take	a	look	at	something	more	concrete.	Arquillian	Warp	also	has	some	extensions.
Currently,	all	of	them	are	HTTP	oriented;	however,	it	is	possible	to	extend	Warp	to	cover
non-HTTP	use	cases.	The	extensions	add	some	special	classes	for	testing:

	
JSF
JAX-RS

www.it-ebooks.info

http://www.it-ebooks.info/

Spring	MVC

Now	we’re	going	to	look	at	the	JAX-RS	part.	To	do	this,	we	will	use	the	code	from
Chapter	7,	Adding	Web	Services	to	Your	Applications.	We	want	to	test	our	REST	service.
First	of	all,	we	need	to	add	all	the	standard	Arquillian-related	dependencies	and	the
arquillian.xml	file.	For	the	Warp	itself,	we	will	need	the	following	dependency:
<dependency>

				<groupId>org.jboss.arquillian.extension</groupId>

				<artifactId>arquillian-warp</artifactId>

				<version>1.0.0.Alpha7</version>

				<type>pom</type>

				<scope>test</scope>

</dependency>

For	the	JAX-RS	extension,	we	will	need	the	following	dependency:
<dependency>

				<groupId>org.jboss.arquillian.extension</groupId>

				<artifactId>arquillian-rest-warp-impl-jaxrs-2.0</artifactId>

				<version>1.0.0.Alpha2</version>

				<scope>test</scope>

</dependency>

Additionally,	we	will	use	the	JAX-RS	client:
<dependency>

				<groupId>org.jboss.resteasy</groupId>

				<artifactId>resteasy-client</artifactId>

				<version>3.0.9.Final</version>

				<scope>test</scope>

</dependency>

Our	test	will	look	like	this:
@RunWith(Arquillian.class)

@WarpTest

@RunAsClient

public	class	SeatsResourceTest	{

				@Deployment(testable	=	true)

				public	static	WebArchive	deployment()	{

								return	ShrinkWrap.create(MavenImporter.class)

																									.loadPomFromFile(“pom.xml”)

																									.importBuildOutput()

																									.as(WebArchive.class);

				}

				@ArquillianResource

				private	URL	contextPath;												//	[1]

				private	ResteasyWebTarget	target;

				@Before

				public	void	setUp()	{

								final	ResteasyClient	client	=	

																			new	ResteasyClientBuilder().build();

www.it-ebooks.info

http://www.it-ebooks.info/

								this.target	=	client.target(contextPath	+	“rest/seat”);

				}

				@Test

				public	void	testasd()	{

								Warp.initiate(new	Activity()	{

												@Override

												public	void	perform()	{

																final	String	response	=	target

																	.request(MediaType.APPLICATION_JSON_TYPE)

																	.get(String.class);		//	[2]

																assertNotNull(response);														//	[3]

												}

								}).inspect(new	Inspection()	{

												private	static	final	long	serialVersionUID	=	1L;

												@ArquillianResource

												private	RestContext	restContext;

												@AfterServlet

												public	void	testGetSeats()	{

																assertEquals(200,

restContext.getHttpResponse().getStatusCode());

																assertEquals(MediaType.APPLICATION_JSON,

restContext.getHttpResponse().getContentType());

																assertNotNull(restContext.getHttpResponse().getEntity());	

//	[4]

												}

								});

				}

}

First	of	all,	you	can	see	all	the	annotations	mentioned	earlier.	We	use	the	ShrinkWrap
Resolver	MavenImporter	class	here	to	get	the	whole	project	in	the	deployment.	The	[1]
object	is	the	injection	of	the	application	URL.	In	[2],	we	execute	a	client	request	to	get	the
seats	and	in	[3],	we	do	some	basic	client-side	assertion.	In	[4],	we	test	the	server	side,	to
check	if	the	appropriate	HTTP	code	was	returned	and	so	on.	In	more	complex	scenarios,
we	can	execute	some	beans	logic	to	confirm	that	the	appropriate	state	change	was
performed	on	the	server	side.	This	last	thing	distinguishes	the	Arquillian	Warp	from
running	tests	in	the	client	mode	(a	@RunAsClient	annotation)	and	doing	assertions	with
ResteasyWebTarget.

Some	more	information	concerning	this	extension	can	be	found	at
https://github.com/arquillian/arquillian-extension-warp.

www.it-ebooks.info

https://github.com/arquillian/arquillian-extension-warp
http://www.it-ebooks.info/

WebSockets	testing
We	introduced	the	topic	of	WebSockets	in	the	earlier	chapters.	Now	let’s	see	how	we	can
test	them.	To	do	this	in	plain	Java,	we	will	need	a	WebSocket	client	implementation;	be
sure	to	add	Tyrus	to	your	pom.xml	file:
<dependency>

				<groupId>org.glassfish.tyrus.bundles</groupId>

				<artifactId>tyrus-standalone-client</artifactId>

				<scope>test</scope>

				<version>1.8.3</version>

</dependency>

For	this	example,	we	will	use	Tyrus	as	a	base	code	from	Chapter	8,	Adding	WebSockets.
Our	test	realizes	a	simple	scenario.	Using	the	REST	API,	we	reserve	a	seat,	and	as	a
WebSocket	client,	we	wait	for	a	message	broadcasting	information	concerning	new
reservations.	Let’s	look	at	the	code:
@RunAsClient

@RunWith(Arquillian.class)

public	class	TicketServiceTest	{

				private	static	final	String	WEBSOCKET_URL	=

“ws://localhost:8080/ticket-agency-test-websockets/tickets”;

				private	static	final	String	SEAT_RESOURCE_URL	=

“http://localhost:8080/ticket-agency-test-websockets/rest/seat”;

				@Deployment

				public	static	Archive<?>	createTestArchive()	{	//	[1]

								return

ShrinkWrap.create(MavenImporter.class).loadPomFromFile(“pom.xml”).importBuildOutput()

												.as(WebArchive.class);

				}

				@Test

				public	void	shouldReceiveMessageOnBooking()	throws	Exception	{

								//	given

								final	int	seatNumber	=	4;

								final	Deque<JsonObject>	messages	=	new	ConcurrentLinkedDeque<>();

//	[2]

								final	CountDownLatch	messageLatch	=new	CountDownLatch(1);	//	[3]

								final	MessageHandler.Whole<String>	handler	=	//	[4]

										new	MessageHandler.Whole<String>()	{

												@Override

												public	void	onMessage(String	message)	{

																messages.add(Json

																	.createReader(new	StringReader(message))

																	.readObject());

																messageLatch.countDown();

												}

								};

								ContainerProvider.getWebSocketContainer()		//	[5]

																									.connectToServer(new	Endpoint()	{

												@Override

www.it-ebooks.info

http://www.it-ebooks.info/

												public	void	onOpen(Session	session,	

																															EndpointConfig	endpointConfig)	{

																session.addMessageHandler(handler);

												}

								},	new	URI(WEBSOCKET_URL));

								//	when

								RestAssured.when()

																		.post(SEAT_RESOURCE_URL	+	“/”	+	seatNumber)

																		.then().statusCode(200);	//	[6]

								messageLatch.await(10,	TimeUnit.SECONDS);	//	[7]

								//	then	[8]

								assertThat(messages.size(),	equalTo(1));

								final	JsonObject	message	=	messages.poll();

								assertThat(message.getInt(“id”),	equalTo(seatNumber));

				}

}

The	test	is	run	as	described	in	this	chapter’s	client	mode	and	uses	Tyrus:	the	WebSocket
client	reference	implementation	under	the	hood.	The	perfect	deployment	for	this	test	is	our
whole	application,	so	we	are	going	to	use	MavenImporter	[1].	In	the	test,	we	declared	a
concurrent	deque	to	gather	a	received	messaged	[2]	and	a	latch	[3],	which	we	will	use	to
wait	in	[7].	In	order	to	handle	WebSockets	on	the	client	side,	we	have	to	declare	a	handler
[4],	which	specifies	the	behavior	on	receiving	the	message.	Here,	we	just	add	a	message
to	our	deque	and	perform	a	latch	countdown.	In	[5],	we	have	to	register	the	handler	so
that	it	will	be	used	for	an	open	session.	The	REST	call	is	executed	using	a	rest-assured
library,	which	provides	a	fluent	API	to	test	REST	APIs.	Finally,	in	[8],	we	perform	some
basic	assertions	concerning	the	received	messages.

The	fully	configured	pom.xml	file	and	a	whole	working	project	can	be	found	under
ticket-agency-test-websockets.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing	your	Arquillian	test
You	might	have	noticed	that	we,	on	purpose,	created	just	a	part	of	the	integration	tests	we
needed.	We	did	not	reach	the	last	mile,	that	is,	creating	seats	and	reserving	one.	As	a
matter	of	fact,	if	you	remember,	our	ticket	application	uses	ConversationScope	to	track
the	user’s	navigation.	Thus,	we	need	to	bind	ConversationScope	into	our	test	as	well.

Luckily,	the	Weld	container	provides	all	that	you	need	with
org.jboss.weld.context.bound.BoundConversationContext,	which	needs	to	be
injected	into	your	test	class:
@Inject	BoundConversationContext	conversationContext;

		

@Before

public	void	init()	{

						conversationContext.associate(

						new	MutableBoundRequest(new	HashMap<String,	Object>(),

																														new	HashMap<String,	Object>()));

						conversationContext.activate();

}

Note
Note	that	the	@Before	annotation	is	invoked	before	each	test	method	and	after	injections
have	occurred.	In	our	case,	it	is	used	to	associate	conversationContext	with
MutableBoundRequest	before	being	activated	by	conversationContext.activate.	This
is	needed	to	mimic	the	conversation	behavior	from	within	the	Arquillian	test	bed.

Just	for	completeness,	you	must	be	aware	that	BoundRequest	interfaces	are	defined	in	the
Weld	API	to	hold	a	conversation	that	spans	multiple	requests,	but	are	shorter	than	a
session.

So	here’s	the	full	TicketTest	class,	which	contains	a	theatre	creation	and	booking	seat
reservation	in	the	testTicketAgency	method:
@RunWith(Arquillian.class)

public	class	TicketTest	{

				@Inject	BoundConversationContext	conversationContext;

				@Before

				public	void	init()	{

								conversationContext.associate(

								new	MutableBoundRequest(new	HashMap<String,	Object>(),

												new	HashMap<String,	Object>()));

								conversationContext.activate();

				}

				@Deployment

				public	static	Archive<?>	createTestArchive()	{

								return	ShrinkWrap.create(WebArchive.class,	“ticket.war”)

											.addPackage(SeatProducer.class.getPackage())

											.addPackage(Seat.class.getPackage())

											.addPackage(TicketService.class.getPackage())

											.addPackage(DataManager.class.getPackage())

www.it-ebooks.info

http://www.it-ebooks.info/

											.addAsResource(“META-INF/persistence.xml”)

											.addAsWebInfResource(EmptyAsset.INSTANCE,	“beans.xml”);

				}

				@Inject

				TicketService	ticketService;

				@Inject

				BookerService	bookerService;

				@Inject

				Logger	log;

				@Test

				public	void	testTicketAgency	()	throws	Exception	{

								SeatType	seatType	=	new	SeatType();

								seatType.setDescription(“Balcony”);

								seatType.setPrice(20);

								seatType.setQuantity(5);

								ticketService.createSeatType(seatType);

								log.info(“Created	Seat	Type”);

								assertNotNull(seatType.getId());

								List<SeatType>	listSeats	=	new	ArrayList();

								listSeats.add(seatType);

								ticketService.createTheatre(listSeats);

								log.info(“Created	Theatre”);

								log.info(seatType.getDescription()	+	”	was	persisted	with	id	”	+

seatType.getId());

								bookerService.bookSeat(new	Long(seatType.getId()),

seatType.getPrice());

								log.info(“Created	Theatre”);

								log.info(“Money	left:	”	+bookerService.getMoney());

								assertTrue(bookerService.getMoney()	<100);	

				}

}

www.it-ebooks.info

http://www.it-ebooks.info/

Additional	information
The	Arquillian	project	is	an	evolving	framework	with	many	other	interesting	topics.
Describing	all	its	extensions,	however,	is	out	of	the	scope	of	this	book.	However,	the	other
interesting	areas	to	look	into	are	Drone	and	Graphene,	which	bring	the	WebDriver	and
Page	Object	patterns	to	Arquillian	testing.

At	some	point,	you	may	find	yourself	creating	separate	deployment	methods	in	each	test
case.	You	can	change	this	behavior	by	the	usage	of	Arquillian	Suite	Extension,	which
allows	specifying	a	deployment	for	a	set	of	test	cases.

Arquillian	is	fully	open	source,	so	you	can	learn	more	about	it	from	the	online
documentation	that	is	available	at	http://arquillian.org/.	When	you	need	some	help,	or	you
have	an	awesome	idea	for	a	new	feature,	you	can	contact	the	Arquillian	community	on
forums	or	IRC	(http://arquillian.org/community/).	Remember	that	if	you	find	a	bug,	don’t
complain;	just	file	an	issue	on	JBoss	JIRA	at	https://issues.jboss.org.

One	of	the	Arquillian	contributors	John	D.	Ament	has	already	published	a	book	on	this
topic	called	Arquillian	Testing	Guide,	Packt	Publishing.

www.it-ebooks.info

http://arquillian.org/
http://arquillian.org/community/
https://issues.jboss.org
http://www.it-ebooks.info/

Summary
In	this	chapter,	we	went	through	a	critical	part	of	enterprise	systems:	integration	testing.
Historically,	one	main	downside	of	Java	EE	is	its	testability,	but	Arquillian	has	really
solved	this	issue	to	a	great	extent.

Used	as	an	extension	to	the	JUnit	framework,	Arquillian	excels	in	checking	the	integration
layer	that	exposes	the	business	logic	in	an	enterprise	Java	application.

Arquillian	hooks	into	your	testing	framework	to	manage	the	container’s	life	cycle.	It	also
bundles	the	test	class	into	a	deployable	archive	with	dependent	classes	and	resources.

This	is	the	last	chapter	covering	basic	Java	EE	and	WildFly	features.	We	started	with	a
few	session	beans,	and	ended	up	with	web	sockets,	an	asynchronous	messaging	system,
RESTful	API,	and	even	a	little	bit	of	JavaScript.	During	the	course	of	this	book,	we	saw
how	the	newest	edition	of	Java	EE	provided	us	with	tools	to	create	modern	and	scalable
applications.	The	platform’s	goal	is	to	help	the	developer	to	focus	on	the	business	logic.
This	means	removing	the	boilerplate	code	through	the	whole	application	stack	from	the
backend	to	the	view	layer.	In	most	areas,	we	only	covered	the	most	important	features	of
the	multiple	technologies	provided	by	Java	EE.	There	is	still	plenty	to	explore!

In	the	appendix,	we	will	learn	a	few	things	about	the	JBoss	Forge	tool,	which	can	greatly
increase	the	productivity	when	working	with	Java	EE.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix	A.	Rapid	Development	Using	JBoss
Forge
In	the	appendix	of	this	book,	we	will	give	you	an	overview	of	JBoss	Forge,	which	is	a
powerful,	rapid	application	development	(aimed	at	Java	EE)	and	project	comprehension
tool.	With	Forge,	you	can	start	a	new	project	from	scratch	and	generate	the	skeleton	for
your	application	just	with	a	few	commands.	However,	it	can	also	be	used	for	incremental
enhancements	for	your	existing	projects	using	extra	plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing	Forge
In	order	to	install	Forge,	you	need	to	perform	the	following	steps:

	
1.	 Download	and	unzip	Forge	from	http://forge.jboss.org/	into	a	folder	on	your	hard

disk;	this	folder	will	be	your	FORGE_HOME.
2.	 Add	FORGE_HOME/bin	to	your	path	(Windows,	Linux,	and	Mac	OS	X).

In	Unix-based	operating	systems,	this	typically	means	editing	your	~/.bashrc	or
~/.profile;	you	will	need	to	enter	the	following	code	snippet:
export	FORGE_HOME=~/forge/

export	PATH=$PATH:$FORGE_HOME/bin

In	Windows	systems,	you	will	need	to	open	the	Control	Panel	window,	then	navigate	to
System	Properties	|	Advanced	|	Environment	Variables,	and	add	these	two	entries
visually.	It	is	recommended	to	set	user	variables	for	Forge,	unless	you	have	placed	the
unzipped	distribution	in	a	folder	where	all	users	can	access	it.

In	case	of	any	problem,	check	out	the	online	installation	guide	available	at
http://forge.jboss.org/document/installation.

www.it-ebooks.info

http://forge.jboss.org/
http://forge.jboss.org/document/installation
http://www.it-ebooks.info/

Starting	Forge
In	order	to	start	Forge,	there	is	a	script	named	forge.bat	(or	the	equivalent	Forge	for
Unix).	Run	the	following	script:
forge.bat

This	will	launch	the	Forge	console,	as	shown	in	the	following	screenshot:

The	console	accepts	a	large	set	of	commands,	such	as	commands	to	navigate	and
manipulate	the	filesystems,	to	create	new	projects,	to	operate	on	the	Forge	environment
and	UI	generation,	and	scaffolding	commands.	It	also	offers	the	autocomplete	feature.

In	order	to	learn	the	following	available	commands	in	current	context,	press	the	Tab	key
twice:

[bin]$

alias																																			echo

unalias																																	edit

export																																		exit

about																																			git-clone

addon-build-and-install																	grep

addon-install																											less

addon-install-from-git																		ls

addon-list																														man

addon-remove																												mkdir

archetype-add																											more

archetype-list																										open

archetype-remove																								pl-cmil-forge-ecore-ui

cat																																					project-new

cd																																						pwd

clear																																			rm

command-list																												run

config-clear																												system-property-get

config-list																													system-property-set

config-set																														touch

connection-create-profile															track-changes

connection-remove-profile															transaction-start

cp																																						version

date																																				wait

www.it-ebooks.info

http://www.it-ebooks.info/

Note
Besides	the	standard	commands,	it	is	possible	to	enrich	the	syntax	of	the	Forge	command
line	with	add-ons,	which	adds	superior	capabilities	to	your	project	creation.	On
http://forge.jboss.org/addons,	you	can	find	a	list	of	available	plugins.	For	example,	we	are
going	to	use	the	angular-js	plugin	in	order	to	create	a	GUI	for	our	application.

In	the	following	section,	we	will	demonstrate	how	to	use	some	of	the	available	commands
in	order	to	create	a	Java	EE	7	application.

www.it-ebooks.info

http://forge.jboss.org/addons
http://www.it-ebooks.info/

Creating	your	first	Java	EE	7	application
with	JBoss	Forge
So,	Forge	installation	is	quite	easy;	however,	creating	your	first	Java	EE	7	application	will
be	even	faster!	Although,	we	can	create	rather	advanced	applications	with	Forge,	for	the
purpose	of	learning,	we	will	just	use	a	simple	schema	that	contains	a	user	table,	which	can
be	built	using	the	following	command:
CREATE	TABLE	users	(

		id	serial	PRIMARY	KEY,

		name	varchar(50),

		surname	varchar(50),

		email	varchar(50)

);

The	first	thing	that	we	need	to	do	is	to	create	a	new	project	using	the	project-new
command.	Execute	the	following	commands	from	within	the	Forge	shell:
[bin]$	project-new	—named	forge-demo	—topLevelPackage

com.packtpub.wflydevelopment.appendix	–projectFolder	forge-demo

Now,	you	have	a	new	Forge	project,	which	is	based	on	a	Maven	project	structure.
Arguably,	generating	a	new	project	isn’t	Forge’s	greatest	value—the	same	can	be	achieved
with	Maven	archetypes.	The	sweet	part	of	Forge	is	that	now	you	have	the	luxury	of
defining	your	own	application	skeleton	interactively	after	it	has	already	been	generated.
This	means	that	you	can	create	the	project	using	the	Maven	archetype	first	and	then	extend
it	using	Forge’s	intuitive	suggestions.

When	the	project	is	created,	you	can	then	enter	command-list	from	the	shell,	as	shown	in
the	following	screenshot,	which	enlists	all	the	basic	commands	that	you	can	use	in	Forge
2.12.1	Final:

www.it-ebooks.info

http://www.it-ebooks.info/

If	you	want	to	learn	more	about	the	single	commands,	you	can	use	man	followed	by	the
command	name,	as	shown	in	the	following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

When	you	have	learned	how	to	get	help	using	Forge,	let’s	get	back	to	our	application.

In	the	first	step,	we	need	to	specify	what	Java	and	Java	EE	version	we	want	to	use:

[forge-demo]$	project-set-compiler-version	—sourceVersion	1.8	—

targetVersion	1.8

[forge-demo]$	javaee-setup	—javaEEVersion	7

SUCCESS	JavaEE	7	has	been	installed.

At	this	point,	our	project	already	contains	Java	EE	7	API	dependency.	Now,	since	we	will
need	to	reverse-engineer	our	database	table	into	Java	entities,	the	next	step	will	be	to
configure	the	Java	Persistence	API	(JPA)	layer	for	your	application.	This	application
will	be	based	on	WildFly	JPA	implementation,	which	is	based	on	the	Hibernate	provider,
referencing	a	database	named	Forge.	This	database	is	reachable	at	the	Java	Naming	and
Directory	Interface	(JNDI)	named	java:jboss/datasources/PostgreSqlDS.	This	is
shown	in	the	following	command	line:

www.it-ebooks.info

http://www.it-ebooks.info/

[forge-demo]$	jpa-setup	—jpaVersion	2.1	—provider	HIBERNATE	—container

WILDFLY	—dbType	POSTGRES		—dataSourceName

java:jboss/datasources/PostgreSqlDS

The	persistence.xml	file	was	generated,	and	currently	the	console	indicates	that	we	are
editing	it.	We	can	check	its	content	by	using	the	cat	command:

[persistence.xml]$	cat	.

<?xml	version=“1.0”	encoding=“UTF-8”	standalone=“yes”?>

<persistence	xmlns=“http://xmlns.jcp.org/xml/ns/persistence”

xmlns:xsi=“http://w

ww.w3.org/2001/XMLSchema-instance”	version=“2.1”

xsi:schemaLocation=“http://xmln

s.jcp.org/xml/ns/persistence

http://xmlns.jcp.org/xml/ns/persistence/persistence

_2_1.xsd”>

		<persistence-unit	name=“forge-demo-persistence-unit”	transaction-

type=“JTA”>

				<description>Forge	Persistence	Unit</description>

				<provider>org.hibernate.ejb.HibernatePersistence</provider>

				<jta-data-source>java:jboss/datasources/PostgreSqlDS</jta-data-source>

				<exclude-unlisted-classes>false</exclude-unlisted-classes>

				<properties>

						<property	name=“hibernate.hbm2ddl.auto”	value=“create-drop”/>

						<property	name=“hibernate.show_sql”	value=“true”/>

						<property	name=“hibernate.format_sql”	value=“true”/>

						<property	name=“hibernate.transaction.flush_before_completion”

value=“true

“/>

						<property	name=“hibernate.dialect”

value=“org.hibernate.dialect.PostgreSQL

Dialect”/>

				</properties>

		</persistence-unit>

</persistence>

Next,	we	will	use	the	jpa-generate-entities-from-tables	command	in	order	to
generate	your	Entity	class.	You	will	need	to	provide	the	following	Java	Database
Connectivity	(JDBC)	connection	information:

	
The	JDBC	URL
The	username	and	password
The	SQL	dialect
The	JDBC	driver	class	name
The	path	in	the	filesystem	where	the	JDBC	driver	is	located
The	package	where	the	entities	will	be	generated

You	can	specify	all	the	parameters	in	a	one-line	command	or	complete	it	interactively.	The
final	command	would	look	like	this	(line	breaks	added	for	readability):

[persistence.xml]$	jpa-generate-entities-from-tables		\

—jdbcUrl	jdbc:postgresql://localhost:5432/forge	\

www.it-ebooks.info

http://www.it-ebooks.info/

—hibernateDialect	org.hibernate.dialect.PostgreSQLDialect	\

—userName	jboss	\

—userPassword	jboss	\

—driverLocation	c:\forge\postgresql-9.3-1101.jdbc41.jar	\

—driverClass	org.postgresql.Driver	\

—databaseTables	users	

After	completing	the	persistence	layer,	we	will	now	create	the	GUI	application	using	the
scaffold	command,	which	can	be	associated	with	several	providers	such	as	the
AngularJS	one.	First,	let’s	install	the	add-on	using	the	following	shell	command	(note	that
it	should	be	executed	in	your	system’s	shell,	not	in	the	Forge	CLI):

forge	—install	org.jboss.forge.addon:angularjs

After	the	installation	is	complete,	we	need	to	issue	three	more	commands.	First,	we	will
prepare	the	scaffolding	framework:

[forge-demo]$	scaffold-setup	—provider	AngularJS

Our	application	now	is	a	web	app	with	AngularJS	libraries.	Next,	we	will	define	that	we
would	like	to	generate	a	UI	for	the	Users	entity:

[forge-demo]$	scaffold-generate	—provider	AngularJS	—targets

com.packtpub.wflydevelopment.appendix.model.Users

Finally,	we	create	an	JAX-RS	endpoint:

[forge-demo]$	rest-generate-endpoints-from-entities	—targets

com.packtpub.wflydevelopment.appendix.model.Users

And	we	are	done!	The	application	is	now	a	complete	Java	EE	application	with	REST
endpoints,	JPA,	and	an	AngularJS	UI.

Note
When	these	samples	were	written,	JBoss	Forge	did	not	fully	support	all	Java	EE	7
dependencies.	This	can	be	fixed	by	manually	modifying	the	pom.xml	file	of	the	generated
project.	You	should	just	remove	all	the	dependencies	besides	the	one	shown	in	the
following	code	snippet:
<dependency>

				<groupId>javax</groupId>

				<artifactId>javaee-api</artifactId>

				<version>7.0</version>

				<scope>provided</scope>

</dependency>

Additionally,	if	your	Users	entity	doesn’t	have	an	@javax.persistence.GeneratedValue
annotation	in	its	ID	field,	make	sure	you	add	it	manually	(there	is	currently	a	bug	in	the
JPA	add-on):
			@Id

			@Column(name	=	“id”,	unique	=	true,	nullable	=	false)

			@GeneratedValue(strategy=GenerationType.IDENTITY)

www.it-ebooks.info

http://www.it-ebooks.info/

			public	int	getId()	{

						return	this.id;

			}

www.it-ebooks.info

http://www.it-ebooks.info/

Building	and	deploying	the	application
Now,	it	is	time	to	build	your	application	using	the	build	command,	which	will	compile
and	package	your	application	in	a	web	application	archive	(forge-demo.war):
[forge-demo]$	build

SUCCESS	Build	Success

The	Maven	build	command	has	created	an	artifact	forge-demo-1.0.0-SNAPSHOT.war	in
the	target	folder	of	your	project.	You	can	now	either	manually	copy	the	archive	into	the
deployments	folder	of	your	application	server	or	use	the	management	interfaces.

Remember	that	the	server	should	have	the	java:jboss/datasources/PostgreSqlDS	data
source	defined!

www.it-ebooks.info

http://www.it-ebooks.info/

Your	Forge-demo	application	in	action
You	can	access	your	application	at	the	default	URL,	http://localhost:8080/	forge-
demo-1.0.0-SNAPSHOT/.

The	main	application	screen	will	contain	the	list	of	entities	on	the	left	menu.	If	you	choose
the	Users	position,	then	you	should	see	a	list	of	users	that	have	been	added,	a	Search
button	which	can	be	used	to	filter	across	the	users,	and	a	Create	button,	which	obviously
will	insert	some	data.	This	is	shown	in	the	following	screenshot:

By	clicking	on	the	Create	button,	you	will	be	taken	to	the	screen	that	allows	the	insertion
of	a	new	user	to	the	database	(remember	that	we	have	configured	this	application	to	run
against	a	PostgreSQL	database).	This	is	shown	in	the	following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

In	this	way,	we	have	created	a	basic	AngularJS	app	based	on	Java	EE.	It	can	be	used	as	a
foundation	for	your	project	or	just	a	sandbox	in	which	you	can	try	out	new	ideas.	Be	sure
to	check	out	other	available	add-ons,	and	remember	that	you	will	always	have	the
possibility	to	create	your	own	ones!

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A
	

—all-server-groups	flag	/	Deploying	to	all	server	groups
@ApplicationScoped	scope	/	CDI	scopes
a4j$poll	/	Making	your	application	rich
acknowledgment	mode	/	Transaction	and	acknowledgment	modes
ActiveMQ

and	HornetQ	integration	/	A	real-world	example	–	HornetQ	and	ActiveMQ
integration

ActiveMQ	broker
URL	/	A	real-world	example	–	HornetQ	and	ActiveMQ	integration

ActiveMQ	messages
consuming	/	Consuming	ActiveMQ	messages

ActiveMQ	plugin
URL	/	Consuming	ActiveMQ	messages

ActiveMQ	resource	adapter
installing	/	Installing	the	ActiveMQ	resource	adapter

Administration	tab	/	Launching	the	web	console
administrative	operations

auditing	/	Auditing	administrative	operations
advanced	languages

used,	for	creating	powerful	CLI	scripts	/	Using	advanced	languages	to	create
powerful	CLI	scripts

angular-js	plugin	/	Starting	Forge
Angular	JS

URL	/	Adding	AngularJS
AngularJS

adding	/	Adding	AngularJS
Angular	UI	BootStrap	package

URL	/	Adding	AngularJS
Apache	CXF,	features

URL	/	JBoss	SOAP-based	web	services	stack
app-name	element	/	Creating	a	remote	EJB	client
application

running	/	Getting	ready	to	run	the	application,	Running	the	application
scheduler,	combining	into	/	Combining	the	scheduler	into	our	application
persistence,	adding	to	/	Adding	persistence	to	our	application
queries,	coding	for	/	Coding	queries	for	your	application
services,	adding	to	/	Adding	services	to	your	application
message-driven	beans,	adding	to	/	Adding	message-driven	beans	to	your
application
compiling	/	Compiling	and	deploying	the	application

www.it-ebooks.info

http://www.it-ebooks.info/

deploying	/	Compiling	and	deploying	the	application
deploying,	to	several	WildFly	nodes	/	Deploying	an	application	to	several
WildFly	nodes
Database	login	module,	using	/	Using	the	Database	login	module	in	your
application

applications
deploying,	command-line	interface	used	/	Deploying	applications	using	the
command-line	interface
deploying,	to	domain	/	Deploying	applications	to	a	domain
deploying,	CLI	used	/	Deploying	applications	using	the	CLI
deploying,	to	WildFly	domain	/	Deploying	applications	to	a	WildFly	domain
deploying,	to	all	server	groups	/	Deploying	to	all	server	groups
deploying,	to	single	server	group	/	Deploying	to	a	single	server	group

application	server
managing	/	Managing	the	application	server
WildFly	8,	managing	with	web	interface	/	Managing	WildFly	8	with	the	web
interface

application	server	nodes	/	WildFly	8	core	concepts
Arquillian

about	/	Instruments	used	for	testing,	Getting	started	with	Arquillian
test,	writing	/	Writing	an	Arquillian	test
pom.xml	file,	configuring	/	Configuring	the	pom.xml	file
first	Arquillian	test,	writing	/	Writing	your	first	Arquillian	test
TicketTest,	running	/	Running	Arquillian	TicketTest
tests	running,	Spock	used	/	Running	Arquillian	tests	using	Spock
ShrinkWrap	Resolver	/	ShrinkWrap	Resolver
ShrinkWrap	Descriptors	/	ShrinkWrap	Descriptors
persistence,	testing	/	Persistence	testing
WebSockets,	testing	/	WebSockets	testing
test,	enhancing	/	Enhancing	your	Arquillian	test
URL	/	Additional	information

Arquillian	Persistence	Extension	manual
URL	/	Persistence	testing

Arquillian	Spock	test	runner
URL	/	Running	Arquillian	tests	using	Spock

Arquillian	Suite	Extension
about	/	Additional	information

Arquillian	test
writing	/	Writing	an	Arquillian	test
enhancing	/	Enhancing	your	Arquillian	test

Arquillian	tests
running,	Spock	used	/	Running	Arquillian	tests	using	Spock

Arquillian	TicketTest
running	/	Running	Arquillian	TicketTest

Arquillian	Warp	/	Arquillian	Warp
URL	/	Arquillian	Warp

www.it-ebooks.info

http://www.it-ebooks.info/

AssertJ	/	ShrinkWrap	Resolver
asymmetric	encryption	/	Securing	the	transport	layer
asynchronously	/	A	short	introduction	to	JMS
asynchronous	methods

adding,	to	EJBs	/	Adding	asynchronous	methods	to	our	EJBs
fire-and-forget	asynchronous	calls,	using	/	Using	fire-and-forget	asynchronous
calls
Future	object,	returning	to	client	/	Returning	a	Future	object	to	the	client

audit-log	configuration
about	/	Auditing	administrative	operations
Formatter	/	Auditing	administrative	operations
Handler	/	Auditing	administrative	operations
Logger	/	Auditing	administrative	operations

authentication	/	Approaching	the	Java	security	API
versus	authorization	/	Approaching	the	Java	security	API

authorization	/	Approaching	the	Java	security	API
versus	authentication	/	Approaching	the	Java	security	API

Auto-deploy	Exploded	attribute	/	Changing	the	deployment	scanner	properties
Auto-deploy	Zipped	attribute	/	Changing	the	deployment	scanner	properties
autoApply	attribute	/	Adding	Bean	Validation
automatic	timers	/	Using	the	EJB	timer	service
AUTO_ACKNOWLEDGE	/	Transaction	and	acknowledgment	modes

www.it-ebooks.info

http://www.it-ebooks.info/

B
	

Batch	applications	the	Java	Platform	1.0	(JSR	352)	/	Batch	applications	for	the	Java
Platform	1.0	–	JSR	352
batching	framework

about	/	The	overview	of	the	batching	framework
Chunk	steps	/	The	overview	of	the	batching	framework
Task	steps	/	The	overview	of	the	batching	framework
first	batch	job	/	Our	first	batch	job
concurrency	utilities,	using	in	Java	EE	/	Using	concurrency	utilities	in	Java	EE

bean-discovery-mode	attribute	/	WildFly	CDI	implementation
bean-managed	concurrency

using	/	Using	bean-managed	concurrency
bean-name	element	/	Creating	a	remote	EJB	client
bean	concurrency

controlling	/	Controlling	bean	concurrency
bean-managed	concurrency,	using	/	Using	bean-managed	concurrency

beans
creating	/	Creating	the	beans
view,	building	/	Building	the	view
application,	running	/	Getting	ready	to	run	the	application
scheduler,	combining	into	application	/	Combining	the	scheduler	into	our
application

Bean	Validation
adding	/	Adding	Bean	Validation

Bean	Validation	(JSR-303)	/	Adding	Bean	Validation
Bean	validation	1.1	(JSR	349)	/	Bean	Validation	1.1	–	JSR	349
Behavior-driven	development	(BDD)	/	Running	Arquillian	tests	using	Spock
Bill	of	Materials	(BOM)	/	Installing	RichFaces
bookSeat	method	/	Adding	services	to	your	application
bookTicket	method	/	Adding	AngularJS
Bootstrap

about	/	Coding	the	JSF	view
URL	/	Coding	the	JSF	view

bottom-up	approach	/	Strategies	to	build	SOAP-based	web	services
browser	support,	WebSockets

URL	/	How	do	WebSockets	work
building	blocks,	JMS

connection	factory	/	The	building	blocks	of	JMS
connection	/	The	building	blocks	of	JMS
session	/	The	building	blocks	of	JMS
message	producer	/	The	building	blocks	of	JMS
message	consumer	/	The	building	blocks	of	JMS

built-in	roles
about	/	Role-based	security

www.it-ebooks.info

http://www.it-ebooks.info/

Monitor	/	Role-based	security
Operator	/	Role-based	security
Maintainer	/	Role-based	security
Deployer	/	Role-based	security
Administrator	/	Role-based	security
Auditor	/	Role-based	security
Super	User	/	Role-based	security

buyTicket	method	/	Coding	our	EJB	application

www.it-ebooks.info

http://www.it-ebooks.info/

C
	

@ConversationScoped	scope	/	CDI	scopes
CDI

about	/	An	overview	of	Java	EE	and	WildFly,	Contexts	and	Dependency
Injection	for	Java	EE	1.1	–	JSR	346,	Introducing	Contexts	and	Dependency
Injection
named	beans	/	Named	beans
scopes	/	CDI	scopes
WildFly	CDI	implementation	/	WildFly	CDI	implementation
ticketing	system,	rethinking	/	Rethinking	your	ticketing	system
beans,	creating	/	Creating	the	beans

CDI	for	Java	EE	1.1	(JSR	346)	/	Contexts	and	Dependency	Injection	for	Java	EE	1.1
–	JSR	346
CDI	Reference	Implementation

URL	/	CDI	scopes
certificate-signing	request	(CSR)	/	Securing	HTTP	communication	with	a	certificate
signed	by	a	CA
certificate	management	tools	/	Certificate	management	tools
Certification	Authority	(CA)	/	Securing	the	transport	layer
Chef

URL	/	Launching	the	CLI
chunk-based	batch	step

creating	/	Creating	a	chunk-based	batch	step
Chunk	steps	/	The	overview	of	the	batching	framework
CLI	commands

constructing	/	Constructing	CLI	commands
CLI	commands,	constructing

resource	address,	determining	/	Determining	the	resource	address
operations,	performing	on	resources	/	Performing	operations	on	resources

client
Future	object,	returning	to	/	Returning	a	Future	object	to	the	client

client	application
running	/	Running	the	client	application
user	authentication,	adding	/	Adding	user	authentication
expanding	/	Expanding	our	client	application
POJOs,	transforming	to	JSON	/	Transforming	POJOs	to	JSON

client	certificate
generating	/	Generating	the	server	and	client	certificates

client	components
installing	/	Installing	the	server	and	client	components

CLIENT_ACKNOWLEDGES	/	Transaction	and	acknowledgment	modes
CLI	execution

wrapping,	scripting	languages	used	/	Using	scripting	languages	to	wrap	CLI
execution

www.it-ebooks.info

http://www.it-ebooks.info/

CLI	scripts
creating	/	Creating	CLI	scripts
application,	deploying	to	several	WildFly	nodes	/	Deploying	an	application	to
several	WildFly	nodes
servers,	restarting	in	domain	/	Restarting	servers	in	a	domain
datasource,	installing	as	module	/	Installing	a	data	source	as	a	module
JMS	resources,	adding	/	Adding	JMS	resources
creating,	advanced	languages	used	/	Using	advanced	languages	to	create
powerful	CLI	scripts
scripting	languages,	used	for	wrapping	CLI	execution	/	Using	scripting
languages	to	wrap	CLI	execution

cluster-aware	remote	client
coding	/	Coding	the	cluster-aware	remote	client

clustered	applications
deploying	/	Deploying	clustered	applications
HA	Stateful	Session	Bean	(SFSB),	creating	/	Creating	HA	Stateful	Session
Beans

clustering
about	/	Clustering	basics
benefits	/	Clustering	basics

clustering,	benefits
horizontal	scalability	(scaling	out)	/	Clustering	basics
load	balancing	/	Clustering	basics
high	availability	/	Clustering	basics

command-line	interface
used,	for	deploying	applications	/	Deploying	applications	using	the	command-
line	interface
used,	for	creating	new	data	source	/	Using	the	command-line	interface	to	create
a	new	data	source

command-line	interface	(CLI)
used,	for	connecting	to	server	/	Connecting	to	the	server	with	the	command-line
interface
about	/	Connecting	to	the	server	with	the	command-line	interface

concurrency	utilities
used,	in	Java	EE	/	Using	concurrency	utilities	in	Java	EE

concurrency	utilities	(JSR	236)	/	Concurrency	utilities	for	Java	EE	1.0	–	JSR	236
concurrency	utilities,	components

ManagedExecutorService	/	Using	concurrency	utilities	in	Java	EE
ManagedScheduledExecutorService	/	Using	concurrency	utilities	in	Java	EE
ContextService	/	Using	concurrency	utilities	in	Java	EE
ManagedThreadFactory	/	Using	concurrency	utilities	in	Java	EE

connect	command	/	Launching	the	CLI,	Using	scripting	languages	to	wrap	CLI
execution
connection	/	The	building	blocks	of	JMS
connection	factories

creating	/	Creating	and	using	connection	factories

www.it-ebooks.info

http://www.it-ebooks.info/

using	/	Creating	and	using	connection	factories
connection	factory	/	The	building	blocks	of	JMS
console

web	service,	inspecting	from	/	Inspecting	the	web	service	from	the	console
constraints

URL	/	Adding	Bean	Validation
container,	Java	security	API

declarative	security	/	Approaching	the	Java	security	API
about	/	Approaching	the	Java	security	API

container	adapters
Embedded	/	Configuring	the	pom.xml	file
Managed	/	Configuring	the	pom.xml	file
Remote	/	Configuring	the	pom.xml	file

contextual	/	Introducing	Contexts	and	Dependency	Injection
Continuous	Integration	(CI)	/	Launching	the	CLI
controller

adding,	for	driving	user	requests	/	Adding	a	controller	to	drive	user	requests
core-threads,	executor	service	/	Using	concurrency	utilities	in	Java	EE
createSeatType	method	/	Adding	services	to	your	application
Criteria	API	/	Coding	queries	for	your	application

www.it-ebooks.info

http://www.it-ebooks.info/

D
	

@Dependent	scope	/	CDI	scopes
database

setting	up	/	Setting	up	the	database
Database	login	module

about	/	The	WildFly	security	subsystem
creating	/	Creating	a	Database	login	module
passwords,	encrypting	/	Encrypting	passwords
using,	in	application	/	Using	the	Database	login	module	in	your	application

data	persistence
about	/	Data	persistence	meets	the	standard
JPA,	working	with	/	Working	with	JPA

datasource
installing,	as	module	/	Installing	a	data	source	as	a	module

data	source
creating,	command-line	interface	used	/	Using	the	command-line	interface	to
create	a	new	data	source

declarative	security	/	Approaching	the	Java	security	API
demo	application,	Forge	/	Your	Forge-demo	application	in	action
deploy	command	/	Deploying	applications	using	the	CLI
deployment	scanner	properties

changing	/	Changing	the	deployment	scanner	properties
Deployment	timeout	attribute	/	Changing	the	deployment	scanner	properties
deploy	shell	command	/	Deploying	applications	using	the	command-line	interface
detyped	API

used,	for	creating	resource	watches	/	Creating	your	resource	watches	using	the
detyped	API

development	environments
IntelliJ	IDEA	/	Alternative	development	environments
NetBeans	/	Alternative	development	environments

digital	certificate	/	Securing	the	transport	layer
disallowed	activities

URL	/	EJB	3.2	–	an	overview
Dispatcher	module	/	A	brief	look	at	the	JAX	WS	architecture
distinct-name	element	/	Creating	a	remote	EJB	client
doCleanUp	method	/	Adding	services	to	your	application
domain

controller	/	WildFly	8	core	concepts
Host	Controller	/	WildFly	8	core	concepts
application	server	nodes	/	WildFly	8	core	concepts
applications,	deploying	to	/	Deploying	applications	to	a	domain
servers,	restarting	in	/	Restarting	servers	in	a	domain

domain	cluster	/	WildFly	clustering
domain	configuration

www.it-ebooks.info

http://www.it-ebooks.info/

URL	/	Managing	WildFly	8	with	the	web	interface
domain	controller	/	WildFly	8	core	concepts
domain	directory	structure

about	/	The	WildFly	8	directory	layout
configuration	/	The	WildFly	8	directory	layout
data/content	/	The	WildFly	8	directory	layout
Log	/	The	WildFly	8	directory	layout
servers	/	The	WildFly	8	directory	layout
tmp	/	The	WildFly	8	directory	layout

domain	nodes	cluster
initiating	/	Starting	a	cluster	of	domain	nodes
domain	controller	configuration	/	The	domain	controller	configuration
host	configurations	/	Host	configurations

Domain	Specific	Language	(DSL)	/	Running	Arquillian	tests	using	Spock
Drone

about	/	Additional	information
drop-and-create	value	/	Configuring	persistence
DUPS_OK_ACKNOWLEDGE	/	Transaction	and	acknowledgment	modes
durable	subscription	/	A	short	introduction	to	JMS

www.it-ebooks.info

http://www.it-ebooks.info/

E
	

EAP
using,	with	WildFly	/	WildFly	and	Enterprise	Application	Platform
about	/	WildFly	and	Enterprise	Application	Platform
Alpha	/	WildFly	and	Enterprise	Application	Platform
Beta	/	WildFly	and	Enterprise	Application	Platform
Final	/	WildFly	and	Enterprise	Application	Platform

Eclipse
URL	/	Installing	the	Eclipse	environment

Eclipse,	with	PyDev	extension
URL	/	Using	scripting	languages	to	wrap	CLI	execution

Eclipse	deployment	options
about	/	Advanced	Eclipse	deployment	options
managing,	with	web	console	/	Managing	deployments	with	the	web	console

Eclipse	environment
installing	/	Installing	the	Eclipse	environment

Eclipse	environment	installation
about	/	Installing	the	Eclipse	environment
JBoss	Tools,	installing	/	Installing	JBoss	Tools

EJB
about	/	EJB	3.2	–	an	overview

EJB3	Stateless	Session	Bean	(SLSB)	web	services	/	EJB3	Stateless	Session	Bean
(SLSB)	web	services
EJB	application

coding	/	Coding	our	EJB	application
deploying	/	Deploying	the	EJB	application

EJB	client
coding	/	Coding	the	EJB	client
configuration,	adding	/	Adding	the	EJB	client	configuration

EJB	communication
securing	/	Securing	EJB	communication

EJB	module	/	Developing	singleton	EJBs
EJB	project	object	module	(pom.xml)

configuring	/	Configuring	the	EJB	project	object	module	(pom.xml)
EJBs

asynchronous	methods,	adding	to	/	Adding	asynchronous	methods	to	our	EJBs
about	/	Are	EJBs	and	JSF	Managed	Beans	obsolete?
securing	/	Securing	EJBs
web	services,	securing	/	Securing	web	services

EJB	timers
programmatic	timers	/	Using	the	EJB	timer	service
automatic	timers	/	Using	the	EJB	timer	service

EJB	timer	service
using	/	Using	the	EJB	timer	service

www.it-ebooks.info

http://www.it-ebooks.info/

timer,	creating	/	Programmatic	timer	creation
timer	events,	scheduling	/	Scheduling	timer	events

EJB	types
session	beans	/	EJB	3.2	–	an	overview
Message-driven	beans	(MDB)	/	EJB	3.2	–	an	overview
entity	objects	/	EJB	3.2	–	an	overview

Enabled	attribute	/	Changing	the	deployment	scanner	properties
encryption

symmetric	encryption	/	Securing	the	transport	layer
asymmetric	encryption	/	Securing	the	transport	layer

endpoint
URL	/	Creating	our	first	endpoint

EndpointConfig	parameter	/	Creating	our	first	endpoint
Enterprise	Application	Integration	(EAI)	/	Using	JMS	to	integrate	with	external
systems
Enterprise	archive	/	Developing	singleton	EJBs
enterprise	beans

threads,	introducing	to	/	Introducing	threads	to	enterprise	beans
Enterprise	JavaBeans	(EJB)	/	An	overview	of	Java	EE	and	WildFly,	The	domain
controller	configuration
Enterprise	JavaBeans	3.2	(JSR	345)	/	Enterprise	JavaBeans	3.2	–	JSR	345
entities

adding	/	Cooking	entities
EntityManage	/	Adding	producer	classes
entity	objects	/	EJB	3.2	–	an	overview
example

running	/	Running	the	example
executor	service,	properties

core-threads	/	Using	concurrency	utilities	in	Java	EE
max-threads	/	Using	concurrency	utilities	in	Java	EE
keepalive-time	/	Using	concurrency	utilities	in	Java	EE
hung-task-threshold	/	Using	concurrency	utilities	in	Java	EE

Expression	Language	(EL)	/	Creating	the	beans
Expression	Language	(UEL)	/	Named	beans
external	systems

JMS	used,	for	integrating	with	/	Using	JMS	to	integrate	with	external	systems

www.it-ebooks.info

http://www.it-ebooks.info/

F
	

FacesContext	/	Adding	producer	classes
FacesFlow

about	/	Getting	ready	to	run	the	application
features,	WildFly	/	New	features	in	WildFly
fetch	attribute	/	Cooking	entities
filters

adding	/	Adding	filters
fire-and-forget	asynchronous	calls

using	/	Using	fire-and-forget	asynchronous	calls
first	application

deploying,	to	WildFly	8	/	Deploying	your	first	application	to	WildFly	8
first	Arquillian	test

writing	/	Writing	your	first	Arquillian	test
first	batch	job

about	/	Our	first	batch	job
chunk-based	batch	step,	creating	/	Creating	a	chunk-based	batch	step
job-based	batch	step,	creating	/	Creating	a	job-based	batch	step

first	endpoint
creating	/	Creating	our	first	endpoint

first	login	module
setting	up	/	Setting	up	your	first	login	module

Forge
installing	/	Installing	Forge
URL	/	Installing	Forge,	Starting	Forge
initiating	/	Starting	Forge
used,	for	creating	Java	EE	7	application	/	Creating	your	first	Java	EE	7
application	with	JBoss	Forge
demo	application	/	Your	Forge-demo	application	in	action

FORM-based	security
switching	to	/	Switching	to	FORM-based	security

fully-qualified-classname-of-the-remote-interface	element	/	Creating	a	remote	EJB
client
Future	object

returning,	to	client	/	Returning	a	Future	object	to	the	client

www.it-ebooks.info

http://www.it-ebooks.info/

G
	

@GeneratedValue	annotation	/	Cooking	entities
@GET	annotation	/	Accessing	REST	resources
getPort	method	/	Developing	a	web	service	consumer
getSeat	method	/	Coding	our	EJB	application
getSeatPrice	method	/	Coding	our	EJB	application
getSeats	method	/	EJB3	Stateless	Session	Bean	(SLSB)	web	services
given	construction	/	Running	Arquillian	tests	using	Spock
Google	Guice

URL	/	Introducing	Contexts	and	Dependency	Injection
Google	Web	Toolkit	(GWT)	/	Managing	WildFly	8	with	the	web	interface
Graphene

about	/	Additional	information
graphical	mode

CLI,	used	in	/	Using	a	CLI	in	the	graphical	mode

www.it-ebooks.info

http://www.it-ebooks.info/

H
	

HA
achieving,	programming	considerations	/	Programming	considerations	to
achieve	HA
achieving,	in	JSF	applications	/	Achieving	HA	in	JSF	applications

hashing	algorithms
URL	/	Encrypting	passwords

HA	Stateful	Session	Bean	(SFSB),	creating
about	/	Creating	HA	Stateful	Session	Beans
Ticket	example,	clustering	/	Clustering	the	Ticket	example
cache,	converting	to	distributed	cache	/	Turning	your	cache	into	a	distributed
cache
cluster-aware	remote	client,	coding	/	Coding	the	cluster-aware	remote	client
high	availability,	deploying	/	Deploying	and	testing	high	availability
high	availability,	testing	/	Deploying	and	testing	high	availability

hawt.io	console
URL	/	Consuming	ActiveMQ	messages

HornetQ
URL	/	The	JBoss	messaging	subsystem
and	ActiveMQ	integration	/	A	real-world	example	–	HornetQ	and	ActiveMQ
integration

HornetQ	documentation
URL	/	Specifying	which	message	to	receive	using	selectors

Host	Controller	/	WildFly	8	core	concepts
HTTP	communication

securing,	with	self-signed	certificate	/	Securing	the	HTTP	communication	with	a
self-signed	certificate
securing,	with	certificate	signed	by	CA	/	Securing	HTTP	communication	with	a
certificate	signed	by	a	CA

hung-task-threshold,	executor	service	/	Using	concurrency	utilities	in	Java	EE

www.it-ebooks.info

http://www.it-ebooks.info/

I
	

Infinispan	/	WildFly	clustering
instruments

used,	for	testing	/	Instruments	used	for	testing
integration	test	/	Test	types
IntelliJ	IDEA

URL	/	Alternative	development	environments
about	/	Alternative	development	environments

interceptors
creating	/	Creating	interceptors

InVmConnectionFactory	/	Creating	and	using	connection	factories
IRC

URL	/	Additional	information
IronJacamar

URL	/	Installing	the	ActiveMQ	resource	adapter
item-count	attribute	/	Creating	a	chunk-based	batch	step
ItemWriter	class	/	Creating	a	chunk-based	batch	step

www.it-ebooks.info

http://www.it-ebooks.info/

J
	

@javax.annotation.security.DenyAll	annotation	/	Securing	EJBs
@javax.annotation.security.PermitAll	annotation	/	Securing	EJBs
@javax.annotation.security.RolesAllowed	annotation	/	Securing	EJBs
@javax.annotation.security.RunAs	annotation	/	Securing	EJBs
java.util.Logger	/	Adding	producer	classes
Java	API	for	JSON	processing	1.0	(JSR	353)	/	Java	API	for	JSON	Processing	1.0	–
JSR	353
Java	API	for	RESTful	Web	Services	(JAX-RS)	/	An	overview	of	Java	EE	and
WildFly
Java	API	for	WebSocket	1.0	(JSR	356)	/	Java	API	for	WebSocket	1.0	–	JSR	356
Java	API	for	XML	Web	Services	(JAX-WS)	/	An	overview	of	Java	EE	and	WildFly
Java	Connector	Architecture	(JCA)	/	Using	JMS	to	integrate	with	external	systems
Java	database	connectivity	(JDBC)	/	Creating	your	first	Java	EE	7	application	with
JBoss	Forge
Java	EE

overview	/	An	overview	of	Java	EE	and	WildFly
CDI	for	Java	EE	1.1	(JSR	346)	/	Contexts	and	Dependency	Injection	for	Java
EE	1.1	–	JSR	346
Java	Servlet	API	3.1	(JSR	340)	/	Java	Servlet	API	3.1	–	JSR	340
concurrency	utilities,	using	in	/	Using	concurrency	utilities	in	Java	EE
threads,	introducing	to	enterprise	beans	/	Introducing	threads	to	enterprise	beans

Java	EE	7
about	/	Welcome	to	Java	EE	7
JavaServer	Faces	2.2	(JSR	344)	/	JavaServer	Faces	2.2	–	JSR	344
Enterprise	JavaBeans	3.2	(JSR	345)	/	Enterprise	JavaBeans	3.2	–	JSR	345
Java	Persistence	API	2	(JSR	338)	/	Java	Persistence	API	2.1	–	JSR	338
JAX-RS	2.0(JSR	339)	/	JAX-RS,	the	Java	API	for	RESTful	Web	Services	2.0	–
JSR	339
Java	Message	Service	2.0	(JSR	343)	/	Java	Message	Service	2.0	–	JSR	343
Bean	validation	1.1	(JSR	349)	/	Bean	Validation	1.1	–	JSR	349
concurrency	utilities	(JSR	236)	/	Concurrency	utilities	for	Java	EE	1.0	–	JSR
236
Batch	applications	the	Java	Platform	1.0	(JSR	352)	/	Batch	applications	for	the
Java	Platform	1.0	–	JSR	352
Java	API	for	JSON	processing	1.0	(JSR	353)	/	Java	API	for	JSON	Processing
1.0	–	JSR	353
Java	API	for	WebSocket	1.0	(JSR	356)	/	Java	API	for	WebSocket	1.0	–	JSR	356

Java	EE	7	application
creating,	with	Forge	/	Creating	your	first	Java	EE	7	application	with	JBoss	Forge
building	/	Building	and	deploying	the	application
deploying	/	Building	and	deploying	the	application

Java	Message	Service	1.1	(JMS)	/	A	real-world	example	–	HornetQ	and	ActiveMQ
integration

www.it-ebooks.info

http://www.it-ebooks.info/

Java	Message	Service	2.0	(JSR	343)	/	Java	Message	Service	2.0	–	JSR	343
Java	Messaging	Service	(JMS)	/	An	overview	of	Java	EE	and	WildFly
Java	Naming	and	Directory	Interface	(JNDI)	/	Creating	HA	Stateful	Session	Beans,
Creating	your	first	Java	EE	7	application	with	JBoss	Forge
Java	Naming	Directory	Index	(JNDI)	/	Creating	and	using	connection	factories
Java	Persistence	API	(JPA)	/	An	overview	of	Java	EE	and	WildFly,	Data	persistence
meets	the	standard,	Creating	your	first	Java	EE	7	application	with	JBoss	Forge
Java	Persistence	API	2.1	(JSR	338)	/	Java	Persistence	API	2.1	–	JSR	338
Java	Persistence	Query	Language	(JPQL)	/	Data	persistence	meets	the	standard
Java	SE

installing	/	Installing	Java	SE
Java	Secure	Socket	Extension	(JSSE)	/	Enabling	the	Secure	Socket	Layer	on	WildFly
Java	security	API

about	/	Approaching	the	Java	security	API
authentication	/	Approaching	the	Java	security	API
authorization	/	Approaching	the	Java	security	API
programmatic	security	/	Approaching	the	Java	security	API
WildFly	security	subsystem	/	The	WildFly	security	subsystem
first	login	module,	setting	up	/	Setting	up	your	first	login	module
login	module,	using	in	Ticket	web	application	/	Using	the	login	module	in	the
Ticket	web	application
FORM-based	security,	switching	to	/	Switching	to	FORM-based	security
Database	login	module,	creating	/	Creating	a	Database	login	module
EJBs,	securing	/	Securing	EJBs

Java	SE	installation
URL	/	Installing	Java	SE
testing	/	Testing	the	installation
WildFly,	installing	/	Installing	WildFly
WildFly,	initializing	/	Starting	WildFly
server,	connecting	with	command-line	interface	/	Connecting	to	the	server	with
the	command-line	interface
WildFly,	terminating	/	Stopping	WildFly
WildFly,	restarting	/	Restarting	WildFly

Java	Server	Faces	(JSFs)	/	An	overview	of	Java	EE	and	WildFly
JavaServer	Faces	2.2	-	JSR	344	/	JavaServer	Faces	2.2	–	JSR	344
JavaServer	Pages	(JSP)

about	/	Building	the	view
Java	Server	Pages	(JSPs)	/	An	overview	of	Java	EE	and	WildFly
Java	Servlet	API	3.1	(JSR	340)	/	Java	Servlet	API	3.1	–	JSR	340
JAX-RS

activating	/	Activating	JAX-RS
JAX-RS	2.0

about	/	Developing	REST-based	web	services
JAX-RS	2.0(JSR	339)	/	JAX-RS,	the	Java	API	for	RESTful	Web	Services	2.0	–	JSR
339
JAX-RS	Client	Framework	/	JBoss	REST	web	services

www.it-ebooks.info

http://www.it-ebooks.info/

JAX	WS	architecture	/	A	brief	look	at	the	JAX	WS	architecture
JBeret

URL	/	Our	first	batch	job
JBoss	EJB	Client	/	Creating	HA	Stateful	Session	Beans
JBoss	JIRA

URL	/	Additional	information
JBoss	messaging	subsystem	/	The	JBoss	messaging	subsystem
JBoss	REST	web	services

about	/	JBoss	REST	web	services
JAX-RS,	activating	/	Activating	JAX-RS
REST,	adding	to	ticket	example	/	Adding	REST	to	our	ticket	example
filters,	adding	/	Adding	filters
REST	service,	consuming	/	Consuming	our	REST	service
ticket	example,	compiling	/	Compiling	our	ticket	example
AngularJS,	adding	/	Adding	AngularJS

JBoss	SOAP-based	web	services	stack	/	JBoss	SOAP-based	web	services	stack
JBoss	Tools

installing	/	Installing	JBoss	Tools
URL	/	Installing	JBoss	Tools

JDBC	driver
installing,	in	WildFly	/	Installing	the	JDBC	driver	in	WildFly
command-line	interface	used,	for	creating	new	data	source	/	Using	the
command-line	interface	to	create	a	new	data	source

JEE
URL	/	EJB	3.2	–	an	overview

JGroups	library	/	WildFly	clustering
JMS

about	/	A	short	introduction	to	JMS
building	blocks	/	The	building	blocks	of	JMS
JBoss	messaging	subsystem	/	The	JBoss	messaging	subsystem
connection	factories,	creating	/	Creating	and	using	connection	factories
connection	factories,	using	/	Creating	and	using	connection	factories
destinations,	using	/	Using	JMS	destinations
message-driven	beans,	adding	to	application	/	Adding	message-driven	beans	to
your	application
transaction	mode	/	Transaction	and	acknowledgment	modes
acknowledgment	mode	/	Transaction	and	acknowledgment	modes
used,	for	integrating	with	external	systems	/	Using	JMS	to	integrate	with
external	systems
HornetQ	and	ActiveMQ,	integration	/	A	real-world	example	–	HornetQ	and
ActiveMQ	integration

JMS	API
about	/	A	short	introduction	to	JMS
persistent	delivery	mode	/	A	short	introduction	to	JMS
nonpersistent	delivery	mode	/	A	short	introduction	to	JMS

JMS	destination

www.it-ebooks.info

http://www.it-ebooks.info/

Durable	option	/	Using	JMS	destinations
Selector	option	/	Using	JMS	destinations

JMS	destinations
using	/	Using	JMS	destinations

JMS	producer
adding	/	Adding	the	JMS	producer

JMS	resources
adding	/	Adding	JMS	resources

JMS	specification,	messages
synchronously	/	A	short	introduction	to	JMS
asynchronously	/	A	short	introduction	to	JMS

job-based	batch	step
creating	/	Creating	a	job-based	batch	step

JobOperator	start	method	/	Creating	a	chunk-based	batch	step
Jolokia

URL	/	Creating	your	resource	watches	using	the	detyped	API
JPA

working	with	/	Working	with	JPA
Native	SQL	/	Coding	queries	for	your	application
Java	Persistence	Query	Language	(JPQL)	/	Coding	queries	for	your	application
Criteria	API	/	Coding	queries	for	your	application

JPA	Query	Language	(JPQL)	/	Java	Persistence	API	2.1	–	JSR	338
JSF	2	facet	suggestions	/	JSF	2	facet	suggestions
JSF	Managed	Beans

about	/	Are	EJBs	and	JSF	Managed	Beans	obsolete?
JSF	view

coding	/	Coding	the	JSF	view
JSON

URL	/	Adding	REST	to	our	ticket	example
POJOs,	transforming	to	/	Transforming	POJOs	to	JSON

JSR-107	/	WildFly	clustering
JSR-339

URL	/	Developing	REST-based	web	services
JUnit

URL	/	Writing	an	Arquillian	test
Jython	installer

URL	/	Using	scripting	languages	to	wrap	CLI	execution

www.it-ebooks.info

http://www.it-ebooks.info/

K
	

keepalive-time,	executor	service	/	Using	concurrency	utilities	in	Java	EE
keytool	/	Certificate	management	tools
Kryo

URL	/	Transforming	POJOs	to	JSON

www.it-ebooks.info

http://www.it-ebooks.info/

L
	

local	business	interface	/	EJB	3.2	–	an	overview
login	module

used,	in	Ticket	web	application	/	Using	the	login	module	in	the	Ticket	web
application

www.it-ebooks.info

http://www.it-ebooks.info/

M
	

@Model	stereotype	/	Making	your	application	rich
managed	executor	services

advantages,	over	standard	ones	/	Using	concurrency	utilities	in	Java	EE
ManagedTask	interface	/	Introducing	threads	to	enterprise	beans
management	model	descriptions

reading,	via	raw	management	API	/	Reading	management	model	descriptions
via	the	raw	management	API

mappedBy	attribute	/	Cooking	entities
Maven

installing	/	Installing	Maven
Maven	build	command	/	Building	and	deploying	the	application
Maven	configuration

adding	/	Adding	the	Maven	configuration
Maven	installation

about	/	Installing	Maven
URL	/	Installing	Maven
references	/	Installing	Maven
testing	/	Testing	the	installation

Maven	project
creating	/	Rethinking	your	ticketing	system,	Creating	the	Maven	project
Maven	configuration,	adding	/	Adding	the	Maven	configuration
entities,	adding	/	Cooking	entities
Bean	Validation,	adding	/	Adding	Bean	Validation

Maven	projects
benefits	/	Developing	singleton	EJBs

Maven	repository
URL	/	A	real-world	example	–	HornetQ	and	ActiveMQ	integration

max-threads,	executor	service	/	Using	concurrency	utilities	in	Java	EE
MDB	instance	life	cycle,	states

Does	not	Exist	/	Adding	message-driven	beans	to	your	application
Method	ready	Pool	/	Adding	message-driven	beans	to	your	application

message-driven	beans
adding,	to	application	/	Adding	message-driven	beans	to	your	application
advantages	/	Adding	message-driven	beans	to	your	application
implementing	/	Cooking	message-driven	beans
JMS	producer,	adding	/	Adding	the	JMS	producer
application,	deploying	/	Compiling	and	deploying	the	application
application,	compiling	/	Compiling	and	deploying	the	application
message	selectors,	specifying	/	Specifying	which	message	to	receive	using
selectors

Message-driven	beans	(MDB)	/	EJB	3.2	–	an	overview
Message-driven	beans	(MDBs)

about	/	Adding	message-driven	beans	to	your	application

www.it-ebooks.info

http://www.it-ebooks.info/

message	consumer	/	The	building	blocks	of	JMS
message	producer	/	The	building	blocks	of	JMS
message	selectors

specifying	/	Specifying	which	message	to	receive	using	selectors
module-name	element	/	Creating	a	remote	EJB	client
multicast	/	WildFly	clustering

www.it-ebooks.info

http://www.it-ebooks.info/

N
	

name	attribute	/	Changing	the	deployment	scanner	properties,	Configuring
persistence
named	beans	/	Named	beans
Native	SQL	/	Coding	queries	for	your	application
NetBeans

URL	/	Alternative	development	environments
New	Input-Output	(NIO)	/	The	JBoss	messaging	subsystem
new	user

creating,	details	/	Managing	WildFly	8	with	the	web	interface
No-interface	view	/	EJB	3.2	–	an	overview
nondurable	subscription	/	A	short	introduction	to	JMS
nonpersistent	delivery	mode	/	A	short	introduction	to	JMS
notations,	resource	address

node-type	/	Determining	the	resource	address
node-name	/	Determining	the	resource	address

www.it-ebooks.info

http://www.it-ebooks.info/

O
	

@OnClose	annotation	/	Creating	our	first	endpoint
@OnError	annotation	/	Creating	our	first	endpoint
@OneToMany	annotation	/	Cooking	entities
@OnMessage	annotation	/	Creating	our	first	endpoint
@OnOpen	annotation	/	Creating	our	first	endpoint
@org.jboss.ejb3.annotation.SecurityDomain	annotation	/	Securing	EJBs
observer

about	/	Creating	the	beans
operations

performing,	on	resources	/	Performing	operations	on	resources
overriding	pools,	beans

URL	/	Adding	message-driven	beans	to	your	application

www.it-ebooks.info

http://www.it-ebooks.info/

P
	

@Producer	annotation
advantages	/	Creating	the	beans

Page	Object
about	/	Additional	information

passwords
encrypting	/	Encrypting	passwords

path	attribute	/	Changing	the	deployment	scanner	properties
Path	Relative	to	attribute	/	Changing	the	deployment	scanner	properties
persistence

adding,	to	application	/	Adding	persistence	to	our	application
database,	setting	up	/	Setting	up	the	database
JDBC	driver,	installing	in	WildFly	/	Installing	the	JDBC	driver	in	WildFly
configuring	/	Configuring	persistence
producer	classes,	adding	/	Adding	producer	classes
queries,	coding	for	application	/	Coding	queries	for	your	application
services,	adding	to	application	/	Adding	services	to	your	application
controller,	adding	to	drive	user	requests	/	Adding	a	controller	to	drive	user
requests
JSF	view,	coding	/	Coding	the	JSF	view
example,	running	/	Running	the	example
testing	/	Persistence	testing

persistent	delivery	mode	/	A	short	introduction	to	JMS
Plain	Old	Java	Object	(POJO)	/	Data	persistence	meets	the	standard,	Creating	our
first	endpoint
Plain	Old	Java	Objects	(POJOs)	/	The	JBoss	messaging	subsystem
plugin,	for	JBoss

URL	/	Creating	your	resource	watches	using	the	detyped	API
point-to-point	(PTP)	/	The	building	blocks	of	JMS
POJOs

transforming,	to	JSON	/	Transforming	POJOs	to	JSON
POJO	web	service

developing	/	Developing	a	POJO	web	service
pom.xml	file

configuring	/	Configuring	the	pom.xml	file
PostgreSQL	database

URL	/	Adding	persistence	to	our	application
PostgreSQL	JDBC	driver

URL	/	Installing	the	JDBC	driver	in	WildFly
producer	classes

adding	/	Adding	producer	classes
profiles,	WildFly	domain

default	/	The	domain	controller	configuration
full	/	The	domain	controller	configuration

www.it-ebooks.info

http://www.it-ebooks.info/

ha	/	The	domain	controller	configuration
full-ha	/	The	domain	controller	configuration

programmatic	security	/	Approaching	the	Java	security	API
programmatic	timers	/	Using	the	EJB	timer	service
project	object	module,	client

configuring	/	Configuring	the	client’s	project	object	module
public-key	cryptography	/	Securing	the	transport	layer
publish/subscribe	(pub/sub)	/	The	building	blocks	of	JMS
Puppet

URL	/	Launching	the	CLI

www.it-ebooks.info

http://www.it-ebooks.info/

Q
	

queries
coding,	for	application	/	Coding	queries	for	your	application

queues
about	/	The	building	blocks	of	JMS

www.it-ebooks.info

http://www.it-ebooks.info/

R
	

@RequestScoped	scope	/	CDI	scopes
ra.xml	file	/	Installing	the	ActiveMQ	resource	adapter
rar-info	command	shell	/	Installing	the	ActiveMQ	resource	adapter
raw	management	API

used,	for	managing	application	server	/	Using	the	raw	management	API	to
manage	the	application	server
management	model	descriptions,	reading	via	/	Reading	management	model
descriptions	via	the	raw	management	API
resource	watches	creating,	detyped	API	used	/	Creating	your	resource	watches
using	the	detyped	API

read-resource	command	/	Performing	operations	on	resources
readItem	method	/	Creating	a	chunk-based	batch	step
RealmDirect	login	module	/	The	WildFly	security	subsystem
receive()	method	/	A	short	introduction	to	JMS
remote.connections	property	/	Adding	the	EJB	client	configuration
remote	business	interface	/	EJB	3.2	–	an	overview
RemoteConnectionFactory	/	Creating	and	using	connection	factories
remote	EJB	client

creating	/	Creating	a	remote	EJB	client
project	object	module,	configuring	/	Configuring	the	client’s	project	object
module
EJB	client,	coding	/	Coding	the	EJB	client
client	application,	running	/	Running	the	client	application
EJB	timer	service,	using	/	Using	the	EJB	timer	service
asynchronous	methods,	adding	to	EJBs	/	Adding	asynchronous	methods	to	our
EJBs

remote	hosts
connecting	from	/	Connecting	from	remote	hosts

Remote	Procedure	Call	/	Developing	a	POJO	web	service
required	dependencies

adding	/	Adding	the	required	dependencies
resource	adapter	module	/	Developing	singleton	EJBs
resource	address

determining	/	Determining	the	resource	address
resources

operations,	performing	on	/	Performing	operations	on	resources
tab	completion	helper,	using	/	Using	the	tab	completion	helper

resource	watches
creating,	detyped	API	used	/	Creating	your	resource	watches	using	the	detyped
API

REST
adding,	to	ticket	example	/	Adding	REST	to	our	ticket	example

REST-based	web	services

www.it-ebooks.info

http://www.it-ebooks.info/

developing	/	Developing	REST-based	web	services
REST	resources,	accessing	/	Accessing	REST	resources
JBoss	REST	web	services	/	JBoss	REST	web	services

REST	resources
accessing	/	Accessing	REST	resources

REST	service
consuming	/	Consuming	our	REST	service
and	SOAP	service,	selecting	between	/	Choosing	between	SOAP	and	REST
services

retrieveAllSeatTypes	method	/	Adding	producer	classes
RFC	6455

URL	/	An	overview	of	WebSockets
RichFaces

URL	/	Combining	the	scheduler	into	our	application
installing	/	Installing	RichFaces
implementing	/	Making	your	application	rich

Role-based	security
about	/	Role-based	security
administrative	operations,	auditing	/	Auditing	administrative	operations

Role	Based	Access	Control	(RBAC)	/	New	features	in	WildFly
root	folder,	JBOSS_HOME

bin	/	The	WildFly	8	directory	layout
bin/client	/	The	WildFly	8	directory	layout
bin/init.d	/	The	WildFly	8	directory	layout
bin/service	/	The	WildFly	8	directory	layout
docs/examples	/	The	WildFly	8	directory	layout
docs/schema	/	The	WildFly	8	directory	layout
domain	/	The	WildFly	8	directory	layout
modules	/	The	WildFly	8	directory	layout
standalone	/	The	WildFly	8	directory	layout
appclient	/	The	WildFly	8	directory	layout
welcome-content	/	The	WildFly	8	directory	layout

run()	method	/	Coding	the	EJB	client
running	instance

patching	/	Patching	a	running	instance
Runtime	tab	/	Launching	the	web	console

www.it-ebooks.info

http://www.it-ebooks.info/

S
	

@Schedule	annotation	/	Scheduling	timer	events
@SessionScoped	scope	/	CDI	scopes
sample	content,	of	XML	file

URL	/	WildFly	CDI	implementation
SASL_POLICY_NOANONYMOUS	option	/	Connecting	to	an	SSL-aware	security
realm
Scan	Interval	attribute	/	Changing	the	deployment	scanner	properties
scheduler

combining,	into	application	/	Combining	the	scheduler	into	our	application
scheduler,	into	application

RichFaces,	installing	/	Installing	RichFaces
RichFaces,	implementing	/	Making	your	application	rich
application,	running	/	Running	the	application
interceptors,	creating	/	Creating	interceptors

scopes,	CDI
@RequestScoped	/	CDI	scopes
@ConversationScoped	/	CDI	scopes
@SessionScoped	/	CDI	scopes
@ApplicationScoped	/	CDI	scopes
@Dependent	/	CDI	scopes

scripting	languages
used,	for	wrapping	CLI	execution	/	Using	scripting	languages	to	wrap	CLI
execution

Seam	3	project
URL	/	WildFly	CDI	implementation

SeatType	object	/	Adding	a	controller	to	drive	user	requests
Secure	Socket	Layer

enabling,	on	WildFly	/	Enabling	the	Secure	Socket	Layer	on	WildFly
Secure	Socket	Layer,	on	WildFly

certificate	management	tools	/	Certificate	management	tools
HTTP	communication,	securing	with	self-signed	certificate	/	Securing	the	HTTP
communication	with	a	self-signed	certificate
server	certificate,	generating	/	Generating	the	server	and	client	certificates
client	certificate,	generating	/	Generating	the	server	and	client	certificates
SSL-aware	security	realm,	creating	/	Creating	an	SSL-aware	security	realm
HTTP	communication,	securing	with	certificate	signed	by	CA	/	Securing	HTTP
communication	with	a	certificate	signed	by	a	CA
EJB	communication,	securing	/	Securing	EJB	communication
SSL-aware	security	realm,	connecting	to	/	Connecting	to	an	SSL-aware	security
realm

self-signed	certificate
HTTP	communication,	securing	with	/	Securing	the	HTTP	communication	with
a	self-signed	certificate

www.it-ebooks.info

http://www.it-ebooks.info/

send	method	/	Expanding	our	client	application
sendText	method	/	Transforming	POJOs	to	JSON
serialization	/	Programming	considerations	to	achieve	HA
Server-Sent	Events	(SSE)

about	/	An	alternative	to	WebSockets
server	certificate

generating	/	Generating	the	server	and	client	certificates
server	components

installing	/	Installing	the	server	and	client	components
Java	SE,	installing	/	Installing	Java	SE
Eclipse	environment,	installing	/	Installing	the	Eclipse	environment
development	environments	/	Alternative	development	environments
Maven,	installing	/	Installing	Maven

server	endpoint	listener	/	A	brief	look	at	the	JAX	WS	architecture
server	groups

deploying	to	/	Deploying	to	all	server	groups
servers

data	/	The	WildFly	8	directory	layout
log	/	The	WildFly	8	directory	layout
tmp	/	The	WildFly	8	directory	layout
restarting,	in	domain	/	Restarting	servers	in	a	domain

Service	Endpoint	Interface	(SEI)	/	EJB3	Stateless	Session	Bean	(SLSB)	web	services
services

adding,	to	application	/	Adding	services	to	your	application
session	/	The	building	blocks	of	JMS
session	beans

about	/	EJB	3.2	–	an	overview
Stateless	session	beans	(SLSB)	/	EJB	3.2	–	an	overview
Stateful	session	beans	(SFSB)	/	EJB	3.2	–	an	overview
singleton	EJB	/	EJB	3.2	–	an	overview
local	business	interface	/	EJB	3.2	–	an	overview
remote	business	interface	/	EJB	3.2	–	an	overview
No-interface	view	/	EJB	3.2	–	an	overview
cooking	/	Cooking	session	beans

Session	parameter	/	Creating	our	first	endpoint
shell	command	/	Launching	the	CLI
ShinkWrap	Resolver

URL	/	ShrinkWrap	Resolver
ShrinkWrap

URL	/	Writing	your	first	Arquillian	test
ShrinkWrap	Descriptors	/	ShrinkWrap	Descriptors
ShrinkWrap	Resolver	/	ShrinkWrap	Resolver
Simple	Authentication	and	Security	Layer	(SASL)	/	Connecting	to	an	SSL-aware
security	realm
single	server	group

deploying	to	/	Deploying	to	a	single	server	group

www.it-ebooks.info

http://www.it-ebooks.info/

singleton	EJB	/	EJB	3.2	–	an	overview
singleton	EJBs

developing	/	Developing	singleton	EJBs
EJB	module	/	Developing	singleton	EJBs
web	module	/	Developing	singleton	EJBs
resource	adapter	module	/	Developing	singleton	EJBs
Enterprise	archive	/	Developing	singleton	EJBs
EJB	project	object	module	(pom.xml),	configuring	/	Configuring	the	EJB
project	object	module	(pom.xml)
EJB	application,	coding	/	Coding	our	EJB	application
bean	concurrency,	controlling	/	Controlling	bean	concurrency
session	beans,	cooking	/	Cooking	session	beans
stateless	bean,	adding	/	Adding	a	stateless	bean
stateful	bean,	adding	/	Adding	a	stateful	bean

SOAP-based	web	services
developing	/	Developing	SOAP-based	web	services
building,	strategies	/	Strategies	to	build	SOAP-based	web	services
JBoss	SOAP-based	web	services	stack	/	JBoss	SOAP-based	web	services	stack
JAX	WS	architecture	/	A	brief	look	at	the	JAX	WS	architecture
coding,	with	WildFly	/	Coding	SOAP	web	services	with	WildFly

SOAP	service
and	REST	service,	selecting	between	/	Choosing	between	SOAP	and	REST
services

SoapUI
about	/	Testing	our	simple	web	service

SOAP	web	services,	approaches
top-down	approach	/	Strategies	to	build	SOAP-based	web	services
bottom-up	approach	/	Strategies	to	build	SOAP-based	web	services

SOAP	web	services,	with	WildFly
POJO	web	service,	developing	/	Developing	a	POJO	web	service
inspecting,	from	console	/	Inspecting	the	web	service	from	the	console
testing	/	Testing	our	simple	web	service
EJB3	Stateless	Session	Bean	(SLSB)	web	services	/	EJB3	Stateless	Session
Bean	(SLSB)	web	services
web	service	consumer,	developing	/	Developing	a	web	service	consumer

Spock
used,	for	running	Arquillian	tests	/	Running	Arquillian	tests	using	Spock
about	/	Running	Arquillian	tests	using	Spock
URL	/	Running	Arquillian	tests	using	Spock

src	folder,	Arquillian
main/java/	/	Getting	started	with	Arquillian
main/resources/	/	Getting	started	with	Arquillian
test/java/	/	Getting	started	with	Arquillian
test/resources/	/	Getting	started	with	Arquillian

SSL-aware	security	realm
creating	/	Creating	an	SSL-aware	security	realm

www.it-ebooks.info

http://www.it-ebooks.info/

connecting	to	/	Connecting	to	an	SSL-aware	security	realm
SSL_ENABLED	option	/	Connecting	to	an	SSL-aware	security	realm
standalone	cluster	/	WildFly	clustering
standalone	mode	tree

configuration	/	The	WildFly	8	directory	layout
data	/	The	WildFly	8	directory	layout
deployments	/	The	WildFly	8	directory	layout
lib/ext	/	The	WildFly	8	directory	layout
log	/	The	WildFly	8	directory	layout
tmp	/	The	WildFly	8	directory	layout

STARTTLS	option	/	Connecting	to	an	SSL-aware	security	realm
stateful	bean

adding	/	Adding	a	stateful	bean
Stateful	Session	Bean	(SFSB)	/	Creating	HA	Stateful	Session	Beans
Stateful	session	beans	(SFSB)	/	EJB	3.2	–	an	overview
stateless	bean

adding	/	Adding	a	stateless	bean
Stateless	Session	Bean	(SLSB)	/	Deploying	clustered	applications
Stateless	session	beans	(SLSB)	/	EJB	3.2	–	an	overview
stereotypes	/	Creating	the	beans
sticky	web	sessions	/	Achieving	HA	in	JSF	applications
String	parameter	/	Creating	our	first	endpoint
subscription

durable	/	A	short	introduction	to	JMS
nondurable	/	A	short	introduction	to	JMS

symmetric	encryption	/	Securing	the	transport	layer
synchronously	/	A	short	introduction	to	JMS

www.it-ebooks.info

http://www.it-ebooks.info/

T
	

@Transactional	annotation	/	Are	EJBs	and	JSF	Managed	Beans	obsolete?
tab	completion	helper

using	/	Using	the	tab	completion	helper
Task	steps	/	The	overview	of	the	batching	framework
testing

instruments,	used	for	/	Instruments	used	for	testing
test	types

about	/	Test	types
instruments,	used	for	testing	/	Instruments	used	for	testing

then	construction	/	Running	Arquillian	tests	using	Spock
threads

introducing,	to	enterprise	beans	/	Introducing	threads	to	enterprise	beans
ticket	example

REST,	adding	to	/	Adding	REST	to	our	ticket	example
compiling	/	Compiling	our	ticket	example

ticketing	system
rethinking	/	Rethinking	your	ticketing	system
required	dependencies,	adding	/	Adding	the	required	dependencies

Ticket	web	application
login	module,	using	/	Using	the	login	module	in	the	Ticket	web	application

timeout	method	/	Programmatic	timer	creation
timer

creating	/	Programmatic	timer	creation
timer	events

scheduling	/	Scheduling	timer	events
top-down	approach	/	Strategies	to	build	SOAP-based	web	services
transaction	mode	/	Transaction	and	acknowledgment	modes
transport	layer

securing	/	Securing	the	transport	layer
Secure	Socket	Layer,	enabling	on	WildFly	/	Enabling	the	Secure	Socket	Layer
on	WildFly

transport	layer	security
URL	/	Securing	the	transport	layer

Tunneled	Transport	Layer	Security	(TTLS)	/	Connecting	to	an	SSL-aware	security
realm
Tyrus

URL	/	Transforming	POJOs	to	JSON
about	/	WebSockets	testing

www.it-ebooks.info

http://www.it-ebooks.info/

U
	

ui$composition	element
about	/	Building	the	view

undeploy	command	/	Deploying	applications	using	the	command-line	interface,
Deploying	to	all	server	groups
unit	tests	/	Test	types
user	authentication

adding	/	Adding	user	authentication
user	requests

driving,	via	controller	addition	/	Adding	a	controller	to	drive	user	requests

www.it-ebooks.info

http://www.it-ebooks.info/

V
	

view
building	/	Building	the	view
JSF	2	facet	suggestions	/	JSF	2	facet	suggestions

view	scope
about	/	Are	EJBs	and	JSF	Managed	Beans	obsolete?

Vim,	with	python-mode
URL	/	Using	scripting	languages	to	wrap	CLI	execution

www.it-ebooks.info

http://www.it-ebooks.info/

W
	

@WebMethod	attribute	/	Developing	a	POJO	web	service
@WebParam	annotation	/	Developing	a	POJO	web	service
@WebResult	annotation	/	Developing	a	POJO	web	service
web	application

load	balancing	/	Load	balancing	your	web	applications
web	application,	clustering

about	/	Web	application	clustering,	Clustering	your	web	applications
programming	considerations,	for	achieving	HA	/	Programming	considerations	to
achieve	HA
HA,	achieving	in	JSF	applications	/	Achieving	HA	in	JSF	applications

web	application,	load	balancing
about	/	Load	balancing	your	web	applications
mod_cluster,	installing	/	Installing	mod_cluster

web	console
launching	/	Launching	the	web	console
Configuration	tab	/	Launching	the	web	console
Runtime	tab	/	Launching	the	web	console
Administration	tab	/	Launching	the	web	console
deployments,	managing	with	/	Managing	deployments	with	the	web	console
deployment	scanner	properties,	changing	/	Changing	the	deployment	scanner
properties

WebDriver
about	/	Additional	information

web	interface
WildFly	8,	managing	with	/	Managing	WildFly	8	with	the	web	interface

WebJars
URL	/	Coding	the	JSF	view

web	module	/	Developing	singleton	EJBs
web	service	consumer

developing	/	Developing	a	web	service	consumer
web	services

securing	/	Securing	web	services
WebSockets

overview	/	An	overview	of	WebSockets
advantages	/	An	overview	of	WebSockets
working	/	How	do	WebSockets	work
alternative	to	/	An	alternative	to	WebSockets
testing	/	WebSockets	testing

when	construction	/	Running	Arquillian	tests	using	Spock
WildFly

overview	/	An	overview	of	Java	EE	and	WildFly
using,	with	EAP	/	WildFly	and	Enterprise	Application	Platform
features	/	New	features	in	WildFly

www.it-ebooks.info

http://www.it-ebooks.info/

URL	/	Installing	WildFly,	Clustering	the	Ticket	example
installing	/	Installing	WildFly
initializing	/	Starting	WildFly
terminating	/	Stopping	WildFly
shutdown	script,	locating	/	Locating	the	shutdown	script
terminating,	on	remote	machine	/	Stopping	WildFly	on	a	remote	machine
restarting	/	Restarting	WildFly
JDBC	driver,	installing	in	/	Installing	the	JDBC	driver	in	WildFly
SOAP	web	services,	coding	with	/	Coding	SOAP	web	services	with	WildFly
access	control	strategies	/	Role-based	security
Secure	Socket	Layer,	enabling	on	/	Enabling	the	Secure	Socket	Layer	on
WildFly

WildFly	8
core	concepts	/	WildFly	8	core	concepts
advantages	/	WildFly	8	core	concepts
directory	layout	/	The	WildFly	8	directory	layout
managing,	with	web	interface	/	Managing	WildFly	8	with	the	web	interface
first	application,	deploying	to	/	Deploying	your	first	application	to	WildFly	8
advanced	Eclipse	deployment,	options	/	Advanced	Eclipse	deployment	options
applications	deploying,	command-line	interface	used	/	Deploying	applications
using	the	command-line	interface

WildFly	built-in	memory	H2	database
URL	/	Configuring	persistence

WildFly	CDI	implementation	/	WildFly	CDI	implementation
WildFly	CLI

about	/	Entering	the	WildFly	CLI
launching	/	Launching	the	CLI
remote	hosts,	connecting	from	/	Connecting	from	remote	hosts
used,	in	graphical	mode	/	Using	a	CLI	in	the	graphical	mode
CLI	commands,	constructing	/	Constructing	CLI	commands
used,	for	deploying	applications	/	Deploying	applications	using	the	CLI
CLI	scripts,	creating	/	Creating	CLI	scripts

WildFly	clustering
about	/	WildFly	clustering
standalone	nodes	cluster,	initiating	/	Starting	a	cluster	of	standalone	nodes
domain	nodes	cluster,	initiating	/	Starting	a	cluster	of	domain	nodes

WildFly	documentation
URL	/	Auditing	administrative	operations,	The	WildFly	security	subsystem

WildFly	domain
applications,	deploying	to	/	Deploying	applications	to	a	WildFly	domain

WildFly	modules
categories	/	WildFly	CDI	implementation

WildFly	nodes
application,	deploying	to	/	Deploying	an	application	to	several	WildFly	nodes

WildFly	security	subsystem	/	The	WildFly	security	subsystem
WSDL

www.it-ebooks.info

http://www.it-ebooks.info/

URL	/	Developing	SOAP-based	web	services

www.it-ebooks.info

http://www.it-ebooks.info/

Table	of	Contents
Java	EE	7	Development	with	WildFly

Credits

About	the	Authors

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Instant	updates	on	new	Packt	books

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Getting	Started	with	WildFly

An	overview	of	Java	EE	and	WildFly

WildFly	and	Enterprise	Application	Platform

Welcome	to	Java	EE	7

JavaServer	Faces	2.2	–	JSR	344

Enterprise	JavaBeans	3.2	–	JSR	345

Java	Persistence	API	2.1	–	JSR	338

Contexts	and	Dependency	Injection	for	Java	EE	1.1	–	JSR	346

Java	Servlet	API	3.1	–	JSR	340

JAX-RS,	the	Java	API	for	RESTful	Web	Services	2.0	–	JSR	339

Java	Message	Service	2.0	–	JSR	343

www.it-ebooks.info

http://www.it-ebooks.info/

Bean	Validation	1.1	–	JSR	349

Concurrency	utilities	for	Java	EE	1.0	–	JSR	236

Batch	applications	for	the	Java	Platform	1.0	–	JSR	352

Java	API	for	JSON	Processing	1.0	–	JSR	353

Java	API	for	WebSocket	1.0	–	JSR	356

New	features	in	WildFly

Installing	the	server	and	client	components

Installing	Java	SE

Testing	the	installation

Installing	WildFly

Starting	WildFly

Connecting	to	the	server	with	the	command-line	interface

Stopping	WildFly

Locating	the	shutdown	script

Stopping	WildFly	on	a	remote	machine

Restarting	WildFly

Installing	the	Eclipse	environment

Installing	JBoss	Tools

Alternative	development	environments

Installing	Maven

Testing	the	installation

Summary

2.	Your	First	Java	EE	Application	on	WildFly

WildFly	8	core	concepts

The	WildFly	8	directory	layout

Managing	the	application	server

Managing	WildFly	8	with	the	web	interface

Launching	the	web	console

Deploying	your	first	application	to	WildFly	8

Advanced	Eclipse	deployment	options

Managing	deployments	with	the	web	console

Changing	the	deployment	scanner	properties

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying	applications	using	the	command-line	interface

Deploying	applications	to	a	domain

Summary

3.	Introducing	Java	EE	7	–	EJBs

EJB	3.2	–	an	overview

Developing	singleton	EJBs

Configuring	the	EJB	project	object	module	(pom.xml)

Coding	our	EJB	application

Controlling	bean	concurrency

Using	bean-managed	concurrency

Cooking	session	beans

Adding	a	stateless	bean

Adding	a	stateful	bean

Deploying	the	EJB	application

Creating	a	remote	EJB	client

Configuring	the	client’s	project	object	module

Coding	the	EJB	client

Adding	the	EJB	client	configuration

Running	the	client	application

Adding	user	authentication

Using	the	EJB	timer	service

Programmatic	timer	creation

Scheduling	timer	events

Adding	asynchronous	methods	to	our	EJBs

Using	fire-and-forget	asynchronous	calls

Returning	a	Future	object	to	the	client

Summary

4.	Learning	Context	and	Dependency	Injection

Introducing	Contexts	and	Dependency	Injection

Named	beans

CDI	scopes

WildFly	CDI	implementation

www.it-ebooks.info

http://www.it-ebooks.info/

Rethinking	your	ticketing	system

Adding	the	required	dependencies

Creating	the	beans

Building	the	view

JSF	2	facet	suggestions

Getting	ready	to	run	the	application

Combining	the	scheduler	into	our	application

Installing	RichFaces

Making	your	application	rich

Running	the	application

Creating	interceptors

Are	EJBs	and	JSF	Managed	Beans	obsolete?

Summary

5.	Combining	Persistence	with	CDI

Data	persistence	meets	the	standard

Working	with	JPA

Adding	persistence	to	our	application

Setting	up	the	database

Installing	the	JDBC	driver	in	WildFly

Using	the	command-line	interface	to	create	a	new	data	source

Creating	the	Maven	project

Adding	the	Maven	configuration

Cooking	entities

Adding	Bean	Validation

Configuring	persistence

Adding	producer	classes

Coding	queries	for	your	application

Adding	services	to	your	application

Adding	a	controller	to	drive	user	requests

Coding	the	JSF	view

Running	the	example

Summary

www.it-ebooks.info

http://www.it-ebooks.info/

6.	Developing	Applications	with	JBoss	JMS	Provider

A	short	introduction	to	JMS

The	building	blocks	of	JMS

The	JBoss	messaging	subsystem

Creating	and	using	connection	factories

Using	JMS	destinations

Adding	message-driven	beans	to	your	application

Cooking	message-driven	beans

Adding	the	JMS	producer

Compiling	and	deploying	the	application

Specifying	which	message	to	receive	using	selectors

Transaction	and	acknowledgment	modes

Using	JMS	to	integrate	with	external	systems

A	real-world	example	–	HornetQ	and	ActiveMQ	integration

Installing	the	ActiveMQ	resource	adapter

Consuming	ActiveMQ	messages

Summary

7.	Adding	Web	Services	to	Your	Applications

Developing	SOAP-based	web	services

Strategies	to	build	SOAP-based	web	services

JBoss	SOAP-based	web	services	stack

A	brief	look	at	the	JAX	WS	architecture

Coding	SOAP	web	services	with	WildFly

Developing	a	POJO	web	service

Inspecting	the	web	service	from	the	console

Testing	our	simple	web	service

EJB3	Stateless	Session	Bean	(SLSB)	web	services

Developing	a	web	service	consumer

Developing	REST-based	web	services

Accessing	REST	resources

JBoss	REST	web	services

Activating	JAX-RS

www.it-ebooks.info

http://www.it-ebooks.info/

Adding	REST	to	our	ticket	example

Adding	filters

Consuming	our	REST	service

Compiling	our	ticket	example

Adding	AngularJS

Choosing	between	SOAP	and	REST	services

Summary

8.	Adding	WebSockets

An	overview	of	WebSockets

How	do	WebSockets	work

Creating	our	first	endpoint

Expanding	our	client	application

Transforming	POJOs	to	JSON

An	alternative	to	WebSockets

Summary

9.	Managing	the	Application	Server

Entering	the	WildFly	CLI

Launching	the	CLI

Connecting	from	remote	hosts

Using	a	CLI	in	the	graphical	mode

Constructing	CLI	commands

Determining	the	resource	address

Performing	operations	on	resources

Using	the	tab	completion	helper

Deploying	applications	using	the	CLI

Deploying	applications	to	a	WildFly	domain

Deploying	to	all	server	groups

Deploying	to	a	single	server	group

Creating	CLI	scripts

Deploying	an	application	to	several	WildFly	nodes

Restarting	servers	in	a	domain

Installing	a	data	source	as	a	module

www.it-ebooks.info

http://www.it-ebooks.info/

Adding	JMS	resources

Using	advanced	languages	to	create	powerful	CLI	scripts

Using	scripting	languages	to	wrap	CLI	execution

Using	the	raw	management	API	to	manage	the	application	server

Reading	management	model	descriptions	via	the	raw	management	API

Creating	your	resource	watches	using	the	detyped	API

Role-based	security

Auditing	administrative	operations

Patching	a	running	instance

Summary

10.	Securing	WildFly	Applications

Approaching	the	Java	security	API

The	WildFly	security	subsystem

Setting	up	your	first	login	module

Using	the	login	module	in	the	Ticket	web	application

Switching	to	FORM-based	security

Creating	a	Database	login	module

Encrypting	passwords

Using	the	Database	login	module	in	your	application

Securing	EJBs

Securing	web	services

Securing	the	transport	layer

Enabling	the	Secure	Socket	Layer	on	WildFly

Certificate	management	tools

Securing	the	HTTP	communication	with	a	self-signed	certificate

Generating	the	server	and	client	certificates

Creating	an	SSL-aware	security	realm

Securing	HTTP	communication	with	a	certificate	signed	by	a	CA

Securing	EJB	communication

Connecting	to	an	SSL-aware	security	realm

Summary

11.	Clustering	WildFly	Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Clustering	basics

WildFly	clustering

Starting	a	cluster	of	standalone	nodes

Starting	a	cluster	of	domain	nodes

The	domain	controller	configuration

Host	configurations

Deploying	clustered	applications

Creating	HA	Stateful	Session	Beans

Clustering	the	Ticket	example

Turning	your	cache	into	a	distributed	cache

Coding	the	cluster-aware	remote	client

Deploying	and	testing	high	availability

Web	application	clustering

Load	balancing	your	web	applications

Installing	mod_cluster

Clustering	your	web	applications

Programming	considerations	to	achieve	HA

Achieving	HA	in	JSF	applications

Summary

12.	Long-term	Tasks’	Execution

The	overview	of	the	batching	framework

Our	first	batch	job

Creating	a	chunk-based	batch	step

Creating	a	job-based	batch	step

Using	concurrency	utilities	in	Java	EE

Introducing	threads	to	enterprise	beans

Summary

13.	Testing	Your	Applications

Test	types

Instruments	used	for	testing

Getting	started	with	Arquillian

Writing	an	Arquillian	test

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring	the	pom.xml	file

Writing	your	first	Arquillian	test

Running	Arquillian	TicketTest

Running	Arquillian	tests	using	Spock

ShrinkWrap	Resolver

ShrinkWrap	Descriptors

Persistence	testing

Arquillian	Warp

WebSockets	testing

Enhancing	your	Arquillian	test

Additional	information

Summary

A.	Rapid	Development	Using	JBoss	Forge

Installing	Forge

Starting	Forge

Creating	your	first	Java	EE	7	application	with	JBoss	Forge

Building	and	deploying	the	application

Your	Forge-demo	application	in	action

Index

www.it-ebooks.info

http://www.it-ebooks.info/

	Java EE 7 Development with WildFly
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Instant updates on new Packt books
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Getting Started with WildFly
	An overview of Java EE and WildFly
	WildFly and Enterprise Application Platform
	Welcome to Java EE 7
	JavaServer Faces 2.2 – JSR 344
	Enterprise JavaBeans 3.2 – JSR 345
	Java Persistence API 2.1 – JSR 338
	Contexts and Dependency Injection for Java EE 1.1 – JSR 346
	Java Servlet API 3.1 – JSR 340
	JAX-RS, the Java API for RESTful Web Services 2.0 – JSR 339
	Java Message Service 2.0 – JSR 343
	Bean Validation 1.1 – JSR 349
	Concurrency utilities for Java EE 1.0 – JSR 236
	Batch applications for the Java Platform 1.0 – JSR 352
	Java API for JSON Processing 1.0 – JSR 353
	Java API for WebSocket 1.0 – JSR 356
	New features in WildFly
	Installing the server and client components
	Installing Java SE
	Testing the installation
	Installing WildFly
	Starting WildFly
	Connecting to the server with the command-line interface
	Stopping WildFly
	Locating the shutdown script
	Stopping WildFly on a remote machine
	Restarting WildFly
	Installing the Eclipse environment
	Installing JBoss Tools
	Alternative development environments
	Installing Maven
	Testing the installation
	Summary
	2. Your First Java EE Application on WildFly
	WildFly 8 core concepts
	The WildFly 8 directory layout
	Managing the application server
	Managing WildFly 8 with the web interface
	Launching the web console
	Deploying your first application to WildFly 8
	Advanced Eclipse deployment options
	Managing deployments with the web console
	Changing the deployment scanner properties
	Deploying applications using the command-line interface
	Deploying applications to a domain
	Summary
	3. Introducing Java EE 7 – EJBs
	EJB 3.2 – an overview
	Developing singleton EJBs
	Configuring the EJB project object module (pom.xml)
	Coding our EJB application
	Controlling bean concurrency
	Using bean-managed concurrency
	Cooking session beans
	Adding a stateless bean
	Adding a stateful bean
	Deploying the EJB application
	Creating a remote EJB client
	Configuring the client's project object module
	Coding the EJB client
	Adding the EJB client configuration
	Running the client application
	Adding user authentication
	Using the EJB timer service
	Programmatic timer creation
	Scheduling timer events
	Adding asynchronous methods to our EJBs
	Using fire-and-forget asynchronous calls
	Returning a Future object to the client
	Summary
	4. Learning Context and Dependency Injection
	Introducing Contexts and Dependency Injection
	Named beans
	CDI scopes
	WildFly CDI implementation
	Rethinking your ticketing system
	Adding the required dependencies
	Creating the beans
	Building the view
	JSF 2 facet suggestions
	Getting ready to run the application
	Combining the scheduler into our application
	Installing RichFaces
	Making your application rich
	Running the application
	Creating interceptors
	Are EJBs and JSF Managed Beans obsolete?
	Summary
	5. Combining Persistence with CDI
	Data persistence meets the standard
	Working with JPA
	Adding persistence to our application
	Setting up the database
	Installing the JDBC driver in WildFly
	Using the command-line interface to create a new data source
	Creating the Maven project
	Adding the Maven configuration
	Cooking entities
	Adding Bean Validation
	Configuring persistence
	Adding producer classes
	Coding queries for your application
	Adding services to your application
	Adding a controller to drive user requests
	Coding the JSF view
	Running the example
	Summary
	6. Developing Applications with JBoss JMS Provider
	A short introduction to JMS
	The building blocks of JMS
	The JBoss messaging subsystem
	Creating and using connection factories
	Using JMS destinations
	Adding message-driven beans to your application
	Cooking message-driven beans
	Adding the JMS producer
	Compiling and deploying the application
	Specifying which message to receive using selectors
	Transaction and acknowledgment modes
	Using JMS to integrate with external systems
	A real-world example – HornetQ and ActiveMQ integration
	Installing the ActiveMQ resource adapter
	Consuming ActiveMQ messages
	Summary
	7. Adding Web Services to Your Applications
	Developing SOAP-based web services
	Strategies to build SOAP-based web services
	JBoss SOAP-based web services stack
	A brief look at the JAX WS architecture
	Coding SOAP web services with WildFly
	Developing a POJO web service
	Inspecting the web service from the console
	Testing our simple web service
	EJB3 Stateless Session Bean (SLSB) web services
	Developing a web service consumer
	Developing REST-based web services
	Accessing REST resources
	JBoss REST web services
	Activating JAX-RS
	Adding REST to our ticket example
	Adding filters
	Consuming our REST service
	Compiling our ticket example
	Adding AngularJS
	Choosing between SOAP and REST services
	Summary
	8. Adding WebSockets
	An overview of WebSockets
	How do WebSockets work
	Creating our first endpoint
	Expanding our client application
	Transforming POJOs to JSON
	An alternative to WebSockets
	Summary
	9. Managing the Application Server
	Entering the WildFly CLI
	Launching the CLI
	Connecting from remote hosts
	Using a CLI in the graphical mode
	Constructing CLI commands
	Determining the resource address
	Performing operations on resources
	Using the tab completion helper
	Deploying applications using the CLI
	Deploying applications to a WildFly domain
	Deploying to all server groups
	Deploying to a single server group
	Creating CLI scripts
	Deploying an application to several WildFly nodes
	Restarting servers in a domain
	Installing a data source as a module
	Adding JMS resources
	Using advanced languages to create powerful CLI scripts
	Using scripting languages to wrap CLI execution
	Using the raw management API to manage the application server
	Reading management model descriptions via the raw management API
	Creating your resource watches using the detyped API
	Role-based security
	Auditing administrative operations
	Patching a running instance
	Summary
	10. Securing WildFly Applications
	Approaching the Java security API
	The WildFly security subsystem
	Setting up your first login module
	Using the login module in the Ticket web application
	Switching to FORM-based security
	Creating a Database login module
	Encrypting passwords
	Using the Database login module in your application
	Securing EJBs
	Securing web services
	Securing the transport layer
	Enabling the Secure Socket Layer on WildFly
	Certificate management tools
	Securing the HTTP communication with a self-signed certificate
	Generating the server and client certificates
	Creating an SSL-aware security realm
	Securing HTTP communication with a certificate signed by a CA
	Securing EJB communication
	Connecting to an SSL-aware security realm
	Summary
	11. Clustering WildFly Applications
	Clustering basics
	WildFly clustering
	Starting a cluster of standalone nodes
	Starting a cluster of domain nodes
	The domain controller configuration
	Host configurations
	Deploying clustered applications
	Creating HA Stateful Session Beans
	Clustering the Ticket example
	Turning your cache into a distributed cache
	Coding the cluster-aware remote client
	Deploying and testing high availability
	Web application clustering
	Load balancing your web applications
	Installing mod_cluster
	Clustering your web applications
	Programming considerations to achieve HA
	Achieving HA in JSF applications
	Summary
	12. Long-term Tasks' Execution
	The overview of the batching framework
	Our first batch job
	Creating a chunk-based batch step
	Creating a job-based batch step
	Using concurrency utilities in Java EE
	Introducing threads to enterprise beans
	Summary
	13. Testing Your Applications
	Test types
	Instruments used for testing
	Getting started with Arquillian
	Writing an Arquillian test
	Configuring the pom.xml file
	Writing your first Arquillian test
	Running Arquillian TicketTest
	Running Arquillian tests using Spock
	ShrinkWrap Resolver
	ShrinkWrap Descriptors
	Persistence testing
	Arquillian Warp
	WebSockets testing
	Enhancing your Arquillian test
	Additional information
	Summary
	A. Rapid Development Using JBoss Forge
	Installing Forge
	Starting Forge
	Creating your first Java EE 7 application with JBoss Forge
	Building and deploying the application
	Your Forge-demo application in action
	Index

