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Chapter 1

Why do we need a statistical
experiment design?

Animal research is crucial for biomedical advances because animal models often show
higher discrimination than many other experimental alternatives and have the neces-
sary fidelity which may be required (Russell WMS, Burch RL. 1959. The principles of
humane experimental technique. Wheathampstead (UK): Universities Federation for
Animal Welfare.). Although, results with animals cannot be directly extrapolated to hu-
mans (Leist and Hartung, 2013), they provide key insight and clues about the possible
behaviour of drugs and treatments in other species like ours. The European directive
2010/63/EU proposes the 3Rs (Replacement, Reduction, and Refinement) as an ethical
approach to animal research, being conscious of benefits of animal experiments and
the harm infringed to them.

Replacement addresses the substitution of animals by other non-sentient experi-
mental entities (cell cultures, invertebrates, or mathematical models). For instance, it
has been shown that lethal doses are better extrapolated from human cell cultures to
human subjects than from animals to human subjects (Ekwall et al, 1998). Refinement
refers to the way in which the experiment is conducted so that it is performed in as
humane a manner as possible (distress, pain and harm are reduced; social and intel-
ligent animals enjoy an enriched environment). The second R, reduction, is the topic
of these chapters. We should aim at performing experiments with as few animals as
possible consistent with achieving the aims of the experiment, which is typically to
produce reproducible, publishable, statistically significant results. This reduction goal
is best achieved by a thorough and detailed statistical design of the experiment, in-
cluding consideration of spatial/time/treatment organization, and a calculation of the
appropriate number of animals required for the experiment based on power calculation
and credibility for publication. Before carrying out the experiment we should carefully
design the analysis methodology so that we plan in advance the way the data will be
analyzed thus preventing avoidable surprises.
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8 CHAPTER 1. WHY DO WE NEED A STATISTICAL EXPERIMENT DESIGN?

How to read these chapters
The four statistical chapters of this book cover: 1) an overview of the problem and the
main statistical concepts involved; 2) a calculation of the sample size; 3) a statistical
plan to analyze the data that has a direct impact on the layout of the experiment; 4) some
of the most common statistical pitfalls. Chapters 1 and 4 provide a very useful insight
into the problem of animal experimentation and its careful design from a statistical
point of view. We recommend their full reading. Chapters 2 and 3 are more reference
chapters. They cover many different experimental situations and they do not need to
be sequentially read. In a first pass, the reader may directly go to the examples and
the important remarks. In this way, he/she will have a wide overview of the kind
of problems she can encounter and solve with the tools provided by this book. All
examples (more than 100 of them) have been laid in an animal research setting trying to
reflect the everyday life of many researchers. The book is focused on the design of the
experiment, and this aspect has been covered in depth. There would be a whole branch
of statistical data analysis that has been left out of the scope of the book. Chapter 4
partially includes part of the data analysis, but only those aspects more connected to
the design of the experiment and those concepts so important that failing to consider
them would spoil the experiment from the very beginning.

Statistical experiment design
A careful statistical experiment design involves three steps:

1. Objective design: we should clearly set from the very beginning the objective
of our experiment (e.g., measure the effect on sugar concentration in blood of a
new drug treatment for type II diabetes animals). With this objective in mind,
we should choose:

• the species, stocks and strain(s) of animals that will better allow extrapola-
tion to other species, like humans.

• the variable to measure, in this example, the concentration of glucose in
blood plasma measured 4h after food intake when the treatment, at different
doses, has been given for 2 weeks every 8 hours.

• the experimental groups we will compare, e.g., a control diabetic group
with an experimental diabetic, treated group. Sometimes, positive and neg-
ative control groups are included along with the treatment group. That is,
a group in which there should not be any response (negative control) and
a group in which all animals should respond (positive control). This can
be easily accomplished in experiments involving a dose: zero dose would
be the negative control and a large dose would be the positive control. We
may also include groups that receive surgery without the therapeutic step
(these are called sham controls), groups that receive a competitive treat-
ment (like the reference drug in an experiment in which we are developing
a new drug), or naı̈ve controls that do not receive any treatment or opera-
tion (they give information about the the effect of time, weather or other
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experimental conditions apart from the treatment). Multiple comparisons
can be performed within a single experiment as long as all of them were
planned in advance.

• the test we will use to verify whether the treatment has an effect, e.g., a
t-test for the difference in the mean assuming unequal variance in both
groups.

• a target difference so that we can determine when the treatment is success-
ful or not, e.g., if the expected glucose level in diabetic mice is about 300
mg/dL with a standard deviation around 40 mg/dL, we want to be able to
detect reductions of at least 100 mg/dL in the glucose blood concentration
(we will assume that the standard deviation in the treated group is similar,
although not equal, to the standard deviation in the untreated group).

2. Sample size design: To be able to detect a difference of 100 mg/dL when the
standard deviation is 40, with a statistical power of 90% and a confidence level
of 95%, we need 5 mice per group (Mathews, 2010)[Chap. 2]. The confidence
level of 95% implies that if we repeat this experiment many times with 5 mice
in each group, just by chance, we will erroneously find in 5% of them that our
treatment is useful to cause such a reduction in the blood glucose level, when
actually it does not have any effect. The statistical power of 90% means that in
these many repetitions of our experiment we will erroneously find useless 10%
of the treatments that actually have such a large effect, but simply because we
had “bad luck” with our samples, the observed difference is not significant. The
number 5 mice per group is a statistical constraint derived from the way we will
analyze our data once the experiment is performed (t-test). However, we may
add other experimental constraints, e.g., we may add an extra mouse per group to
account for the fact that sometimes, for whichever experimental reason (incorrect
blood extraction, environmental contamination, etc.), our measurements are not
valid. We do not expect these accidents to occur very frequently and we do not
foresee that they may happen more than once per experiment. Since we do not
know in which group it will happen, we may add 1 mouse to each one of the
groups as a safeguard that, in case such accidents occur, we still have the 5 mice
per group we need for the statistical comparisons. In this way, we will perform
our experiment with 6 individuals per group.

Too many animals in an experiment is a waste of economical, laboratory and
human resources. Too few animals will spoil the experiment because even if the
effect we seek for is present, we will not have enough samples to show that it
is statistically significant. Both cases (too many and too few) call for our ethi-
cal responsibility because the treatments and conditions applied to the research
animals are harsh.

3. Experimental layout design: We know that the mean glucose level in blood de-
pends on the sex of the animal and the time of the day. If we put all male animals
in the control group and all the female animals in the treated group, we can-
not know if the difference observed between the two groups is caused by the
treatment or by the different sex of the subjects. The same would happen if
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Table 1.1: Experiment design: number of animals in each one of the groups.

Female treated Female control Male treated Male control

Morning 2 1 1 2
Afternoon 1 2 2 1

we measure all the treated animals in the morning, and all the control animals
in the afternoon. The observed difference might be caused by the time of the
day (morning or afternoon) that we take our samples, and not by our treatment.
Statistically, this uncertainty is called confounding (we are confounding sex or
daytime with the treatment), and the way to avoid it is by designing balanced,
blocking experiments (we block the two variables that are not of our interest at
the moment, we are interested in the effect of the treatment and not in the effect
of sex or daytime). The trick is to assign the same number of treated and control
animals to each one of the levels of the variables to block (3 control males and 3
treated males, 3 control females and 3 treated females, 3 control measurements
in the morning and 3 treatment measurements in the morning, ...). We may orga-
nize our experiment as shown in Table 1.1. There might be other variables to
block as the technician carrying out the extraction, the cage from which the ani-
mals come from, the preparation of the drug which is used along the treatment,
... We can block as many variables as we suspect that may cause a difference
in the measurements. Obviously, the more variables we want to block, the more
animals we will need to keep the design balanced. However, there might be un-
suspected variables making a difference but we did not foresee (position of the
cage in the shelf, time the blood sample is waiting for analysis, ...). For this
reason, it is not advised to perform the experiment following a fixed pattern.
For instance, all females first, then all males, treatments always before controls
(as shown in Table 1.1). A statistical mantra we should keep in mind is control
what you can, block what you cannot, and randomize the rest. Consequently,
inside each block, we should randomize the order in which measurements are
performed and establish a measurement plan (see, for instance, Table 1.2). It is
important that the randomization is performed by a computer and not by a per-
son because humans tend to create regular patterns when we randomize (Schulz
et al, 2012). An advantage of animal research as opposed to clinical trials is
that the researcher can plan and control many more variables in the experiment
than when humans are involved. This is also a responsibility because the success
or failure of our experiment depend more on our ability to carefully design the
experiment.

Nowadays, there are multiple software that allow us to calculate the sample size and
the experiment design. However, they should be used with care. To quote Russ Lenth:
“I’m not much of a stats person, but I tried [details ...] - am I doing it right?” Please
compare this with: “I don’t know much about brain surgery, but my wife is suffering
from [details ...] and I plan to operate; can you advise me?”. Software can be enor-



11

Table 1.2: Experimental measurement plan

Morning
(a) Male control
(b) Female treatment
(c) Female treatment
(d) Female control
(e) Male treatment
(f) Male control

Afternoon
(a) Male treatment
(b) Male treatment
(c) Female control
(d) Female control
(e) Male control
(f) Female treatment

mously helpful in taking the tedium out of power calculations, but is only effective
if we understand the principles behind what we are doing. Table 1.3 lists a range of
power calculation software, applets and online resources. This is not a comprehensive
list, but lists a useful range of power calculators. The licensed power calculators tend
to be comprehensive, relatively easy to use, have good help files, and help available but
cost money. The free calculators tend to be less comprehensive with less help available.
There are also power calculators aimed at specific purposes.

Compare the difference between this careful experimental design before carrying
out the experiment, and the experiments performed “to see what happens” or without
taking the necessary precautions (blocking and randomization). In the long term, care-
ful statistical designs save animal lives, reduce the harm infringed on animals, reduce
research time and costs, increase research quality and reproducibility, allow publica-
tion and promote ethics in science. Gore and Stanley (2005) shows the problems that
incorrectly designed experiments may face. The ARRIVE guidelines (Kilkenny et al,
2010) aim at improving the design and reporting of biomedical experiments once they
are performed, including the communication of their statistical aspects (particularly
important is reporting the variance, sample size and its calculation before performing
the experiment, and commenting on the randomization and blinding applied; see Ta-
ble 1.4). The experiment design, before the experiment is carried out, must be given
primary importance (Festing and Altman, 2002; Festing, 2003). The Experimental De-
sign Assistant has been designed to enforce application of the ARRIVE guidelines and
contains useful tools to help with the design and implementation of experiments, and,
if followed, should lead to more reproducible and better designed experiments. Unfor-
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Software Cost Platform Uses
GWA Power Free R Genome Wide Analysis

Optimal Design Free Windows CRT
Power V3.0 Free Windows Logistic-like regression

Russ Lenth’s Power Calculator Free Windows Range
G*Power Free Windows Range

PS Sample size and Power Free Windows Range
Power and sample size.com Free Online Range
Sorzano Pilot sample size Free Online Pilot studies

PASS License Windows Comprehensive
Nquery License Windows Comprehensive

StatMate License Windows Comprehensive
Power and Precision License Windows Range

Table 1.3: List of software tools that can be used to design an experiment. They cover
sample size calculation, experimental design or both.

tunately, good statistical experimental design and reporting is not always the rule:

• McCance (1995) surveyed 133 papers commissioned by the editors of the Aus-
tralian Veterinary Journal. In the opinion of the statistician: 61% would have
required statistical revision before publication, 5% had such serious errors that
the conclusions were not supported by the data, 30% had deficiencies in design of
the studies including failure to randomize, inappropriate group size, heterogene-
ity of subjects and possible bias, 45% had deficiencies in the statistical analysis
including the use of sub-optimal methods and errors in calculation, 33% had de-
ficiencies in presentation of the results including unexplained omission of data
and inappropriate statistical methods.

• Kilkenny et al (2009) surveyed a random sample of 271 papers involving live
mice, rats or non-human primates. They found that of the papers studied: 87%
did not report random allocation of subjects to treatments, 86% did not report
“blinding” where it seemed to be appropriate, 100% failed to justify the sample
sizes used, 5% did not clearly state the purpose of the study, 6% did not indicate
how many separate experiments were done, 13% did not identify the experimen-
tal unit, 26% failed to state the sex of the animals, 24% reported neither age
not weight of animals, 4% did not mention the number of animals used, 35%
reported the numbers used, but these differed in the materials and methods and
the results sections.

In this chapter we review the principles of statistical experiment design. It is aimed
at biomedical researchers undertaking experiments with animals at any level, but espe-
cially those having to design the experiment; this is normally PIs, senior researchers
and postdocs. Statistics is a branch of Mathematics and, as such, it is difficult to get
away without any mathematical formula. However, our aim is to keep these to a min-
imum, showing only those that are key to understand the basic statistical concepts.
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Table 1.4: Items in the ARRIVE guidelines related to the statistical design, analysis
and report.

Item 6. Study
design.

For each experiment, give brief details of the study design, including:
a. The number of experimental and control groups.
b. Any steps taken to minimize the effects of subjective bias when allocating
animals to treatment (e.g., randomization procedure) and when assessing re-
sults (e.g., if done, describe who was blinded and when). (See Sec. 1.3.)
c. The experimental unit (e.g. a single animal, group, or cage of animals). (See
Sec. 1.2.)
A time-line diagram or flow chart can be useful to illustrate how complex study
designs were carried out.

Item 10. Sample
size.

a. Specify the total number of animals used in each experiment and the number
of animals in each experimental group.
b. Explain how the number of animals was decided. Provide details of any
sample size calculation used. (See Sec. 1.6 and Chap. 2.)
c. Indicate the number of independent replications of each experiment, if rele-
vant. (See Sec. 1.5.2.)

Item 11. Allocating
animals to
experimental groups.

a. Give full details of how animals were allocated to experimental groups,
including randomization or matching if done. (See Secs. 1.3 and 1.4.7, and
Chap. 3.)
b. Describe the order in which the animals in the different experimental groups
were treated and assessed.

Item 13. Statistical
methods.

a. Provide details of the statistical methods used for each analysis.
b. Specify the unit of analysis for each dataset (e.g. single animal, group of
animals, single neuron). (See Sec. 1.2.)
c. Describe any methods used to assess whether the data met the assumptions
of the statistical approach. (See Sec. 4.2.)

Item 14. Baseline
data.

For each experimental group, report relevant characteristics and health status
of animals (e.g., weight, microbiological status, and drug- or test-naı̈ve)
before treatment or testing (this information can often be tabulated). (See Sec.
1.4.7.)

Item 15. Numbers
analyzed.

a. Report the number of animals in each group included in each analysis. Re-
port absolute numbers (e.g. 10/20, not 50%).
b. If any animals or data were not included in the analysis, explain why. (See
Secs. 1.4.4 and 4.2.)

Item 16. Outcomes
and estimation.

Report the results for each analysis carried out, with a measure of precision
(e.g., standard error or confidence interval). (See Secs. 1.5.2 and 4.2.)
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We try to present the intuition behind them and its practical consequences. Most of
us use our mobile phones without understanding how they work, and that does not
prevent us from finding them very useful. Unfortunately, using Statistics is not like
using a mobile phone: 1) it is considerably more complex; 2) we must plan costly ex-
periments that have an important component of statistical planning; and 3) we draw
conclusions from the statistical analysis with very important scientific, economical and
ethical consequences. For these reasons, we cannot blindly use Statistics without a
minimal understanding of its mechanisms. Normally nobody dies if we do not use
our mobile phone correctly, but poor experimental design can lead to unnecessary suf-
fering and death of many animals. We understand that not every researcher needs to
be a deep expert in Statistics, and our presentation provides, we think, the minimum
requirements for understanding the standard use of Statistics in a research laboratory.
We strongly encourage experimental researchers to team with other researchers with a
sufficient understanding of the statistical concepts they need for their work, so that we
use research grants and animal lives in the most efficient and ethical manner.

1.1 Pilot, exploratory and confirmatory experiments
A possible classification of experiments may distinguish between pilot, exploratory,
and confirmatory experiments.

Pilot experiments are small studies (with 1-20 experimental subjects) aiming to
determine the scale of a variable (e.g., if extraterrestrial aliens just arrive to Earth and
they want to measure the order of magnitude of human height they just need one sample
to know that humans typically measure between 1 and 3 meters, we are not in the order
of the millimeter nor in the order of the kilometer). Pilot experiments are designed to
allow researchers: to gain familiarity with the experimental material, make sure that
the instructions are understandable and can be followed, ensure that all steps in the
procedure can be performed, check that the staff is sufficiently trained in the necessary
procedures, check the correct operation of the equipment, detect a floor or ceiling effect
(e.g., a task is too difficult or too easy resulting in skewed results), assessing that the
level of intervention is appropriate (e.g., the dose of a drug), identify adverse effects
(pain, suffering, distress, or lasting harm) and the effectiveness of the actions to reduce
them (e.g., analgesia dose and schedule), verify that the procedures are not too mild or
severe, define early humane end-points, and gain some information on the variability
(although with so few individuals this information is not sufficient to allow a robust
calculation of the sample size and can only give us a “ball park” estimate, Sorzano et al
(2017)). Given that the control in planned experiment most likely has also been the
control in other experiments, it is possible and desirable to base estimates of variability
on related prior data from the researcher’s own laboratory since this is typically more
robust than that from a small sample. Alternatively data from similar experiments in the
scientific literature may be used if existing data is not available within the researcher’s
own laboratory. Typically, there will be a range of values available and one may choose
an appropriate value. We may assume similar variability for the treatment group or even
increase it a bit (10%-20%) as a safeguard for possible larger variance.

Exploratory experiments can be used to generate hypothesis for further testing.
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They may not have a clear objective from the beginning and they respond to “let’s see
what happens if ...”. Often they measure many characteristics of the individuals and
identify interesting differences between groups that may even be statistically signifi-
cant. This is, for example, the case of many gene expression experiments measured
with microarrays that determine the expression level of thousands of genes. How-
ever, the identified differences should be further tested in a confirmatory experiment,
in which the research hypothesis is set from the very beginning. The problem with
exploratory experiments is that they determine the hypothesis after seeing the data, this
is called data snooping, data fishing, data dredging or p-hacking and it may lead to
severe bias simply because the observed differences are not due to any underlying sci-
entific reason, but just by chance and the specific random response of the animals at
hand. That is why the new hypotheses need to be confirmed in a confirmatory experi-
ment. Exploratory experiments are similar to an experiment in which we give an exam
to a number of students, we then score the exams, and sort students according to their
performance. We measure many characteristics of the students and realize that the first
five students they are all Aquarius (or girls, or wear blue jeans). We cannot immedi-
ately conclude that being Aquarius (or girl, or wearing blue jeans) gives an additional
advantage in this kind of exam. These observations may be produced just by chance
and the fact that we have measured many characteristics, and a few of them, randomly
resulted in statistically significant differences between the top of the list and the rest of
it. Remember that the 95% level of confidence of hypothesis tests implies that in 5% of
the tests, the test will result in a statistically significant difference when actually there
is none. This problem is called multiple testing and there are ways to minimize its im-
pact that we will cover in subsequent sections. But if we measure the expression level
of 20,000 genes and we do not take special precautions, we should expect that we find,
on average, 1,000 genes reporting erroneous significant differences between groups.
There might be a true reason behind these results (the gene A is really differently ex-
pressed in the two groups, or Aquarius people are born at the beginning of the year and
this small difference gives them an advantage) or they may be simply analysis artifacts.
In any case, the results from an exploratory experiment should be confirmed by a con-
firmatory experiment. Finding significant differences in exploratory experiments is not
the end of the analysis, but should rather be seen as the start of the analysis procedure
where differences seen should inform a coherent hypothesis which can be examined in
the data set using a variety of different measures. This “triangulation” of results should
reduce blind acceptance of false positives.

Confirmatory experiments involve comparisons between two or more groups.
They are normally set to test a null hypothesis (normally the absence of difference
among the groups). If the null hypothesis is rejected with a level of confidence, say
95%, it means that if the null hypothesis is true, observing differences as large as the
ones observed in our experiment would only occur in 5% of the cases, meaning that
very likely the difference is caused by the treatment. Still, there is a 5% of probability
that the result is an artifact (called Type I error or false positives) coming from the
sampling variability (this statement can be refined, and we will do it later, looking at
the observed p-value). If we fail to reject the null hypothesis, it does not mean that the
treatment has no effect, it means that this experiment cannot show that it has an effect
(we will discuss more about this issue in Sec. 4). The experimental subjects in a con-
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firmatory experiment must be independent from each other (technically, they must be
experimental units, which will be defined below). To minimize bias, the experimental
subjects should be assigned to the experiment groups at random and the experimenter
should be blind with respect to the treatment being applied.

One of the assumptions of confirmatory experiments is that there are no system-
atic differences between the groups being compared apart from the treatment applied
to each one of them. Results of these experiments are biased if the effect of some ex-
ternal, uncontrolled variable is confounded with the treatment. For instance, there is a
significant negative correlation between the purchase of warm clothes and the purchase
of ice creams. The reason is not that as people spend less money in warm clothes, they
have more spare money that they can spend in purchasing ice creams. There is a com-
mon reason, weather, such that cold or hot weather is causing the purchase of warm
clothes and ice creams. In general, if we find a relationship A→ B, there might be a
common cause C that is causing both, A←C→ B, and once we account for C, A and
B are unrelated. We may carry out an experiment to measure the relationship between
drinking coffee and cardiovascular disease in humans. In our experiment it seems that
heavier coffee drinkers have higher risk of cardiovascular disease. However, in this
result smoking is an external variable we are not controlling, and it may be that heavy
smokers are also heavy coffee drinkers, and the higher cardiovascular risk is caused by
smoking and not by coffee. In animal experiments, we may encounter the same situa-
tion, but in a much less obvious way. We may find relationships between the expression
levels of genes A and B, but they may be causally unrelated, existing a gene C that is
related to both A and B. We therefore need to be careful in assuming cause and effect.

Confirmatory experiments should be designed to be powerful: if there is a rele-
vant difference, we should be able to detect it. There are three ways of making an
experiment more powerful:

• Increasing the number of animals. Using enough individuals so that, if there
is a difference, the p-value can be shown to be below the significance limit.
Statistical power should be one of the parameters in the calculation of the sample
size. Typical statistical powers are 90% or 80%, meaning that if the treatment
makes a difference of a specified size (the 100 mg/dL in the example of Sec.
1) we will be able to detect it in 90% of the experiments (and we will miss it
with probability 10%, these are called Type II errors or false negatives). More
statistical power will require more independent samples in the experiment.

• Decreasing the variance of measurements. The statistical power depends on the
effect size we look for (the larger the effect size, the smaller the number of ani-
mals) and the variability of the measurements. In this way, another way to reduce
the number of animals and/or increase the statistical power is by decreasing the
variability of the observations by using more precise laboratory analytic tools,
measuring variables with less variance that are also related to our objective, de-
creasing the genetic variability of the individuals used in the experiment, etc.

• Increasing treatment effect. Where drug treatments are used, pilot experiments
with varying doses may yield an optimal dose that maximizes treatment effect.



1.2. INDEPENDENCE BETWEEN INDIVIDUALS: EXPERIMENTAL UNITS 17

Confirmatory experiments should be designed with wide applicability in mind: the
results should hold true independently of relevant variables like sex, strain, different
diets and environments (a potent antihypertensive drug that is only useful for male,
C57BL/6 mice under a very restrictive diet is not very useful for the general popula-
tion). This applicability condition implies that the experiment should consider varia-
tions at least in a few relevant variables (factorial or randomized block designs help in
this regard with a very little extra cost, see Secs. 3.1.3 and 3.1.6). When the results of
an experiment can be extrapolated to a wider population, it is said to have external va-
lidity. Internal validity refers to the possibility of repeating the experiment and getting
the same result. Unbiased and statistically powerful experiments have internal valid-
ity, meaning that there is a low probability of obtaining false positive or false negative
results. Many biomedical experiments are performed in very controlled environments
and with a limited number of animal strains (sometimes only one). This provides inter-
nal validity, but it does not provide external validity. There is nothing wrong with this
as long as the scope of the experiment results are clearly stated, and no overstatements
are done.

Before starting the analysis we should have set from the very beginning a plan for
its statistical analysis (this is an absolute requirement for experiments performed under
Good Laboratory Practices, Macleod et al (2009); Kilkenny et al (2010)). We will see
that the calculation of the sample size directly depends on the way we will analyze the
resulting data. This analysis plan should not be so complex that it is relatively easy to
make a mistake along the process. The most powerful statistical techniques applicable
to our problem should be employed, and the next experiment should be performed once
we know the results from the previous one, so that we can refine the next experiment
with the newly acquired knowledge.

1.2 Independence between individuals: experimental units

Experimental units are the smallest division of the experimental material such that any
two experimental units can receive different treatments. If the sample size in each group
required to detect a given difference is N = 6, it means that we need 6 experimental
units to perform our experiment. The concept of experimental unit is better exemplified
by specific cases:

• Example 1: We are studying the effect of additional supplements of a growth
hormone on the body weight of mice. After regularly giving the hormone for
two weeks, we will measure the weight of the treated animals and compare it to
the weight of a control group.

– Example 1.a: We have 6 animals in a cage and we give the hormone to each
animal through an injection. Since each animal can receive the hormone
or not independently of the others, each animal is an experimental unit and
its weight provides an independent measurement for the statistical analysis.
However, all 6 animals are in the same cage and there might be cage effects
(subclinical infection, animal fighting, ...) that would affect all the animals
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in the same cage. The cage acts as a block, and its effects can be identified
as shown in Sec. 1.3.

– Example 1.b: We have 6 animals in a cage and we give the hormone through
the food. Since all animals eat from the same feeder, each animal cannot
receive the treatment or not independently of the others in the same cage. In
this case, the weight of each animal does not provide an independent mea-
surement. We have a single experimental unit, the cage. If we need N = 6
experimental units per group, we need N = 6 cages. The independent mea-
surement provided by the experimental unit, the cage, is the average of the
weights of the animals inside that cage. On one side, we need more animals
with respect to the case of independent treatments (Example 1.a). On the
other side, this increase is compensated by the fact that the variability of the
mean of the animals in the cage is smaller than the variability of each an-
imal (because the average divides the variance by the number of averaged
elements).

• Example 2: We are studying the effect of additional supplements of a growth
hormone on the body weight of mice. After regularly giving the hormone for
two weeks to pregnant female mice, we will measure the birth weight of the
offspring of the treated animals and compare it to the birth weight of a control
group. This example is similar to Example 1.b because each of the newborns
cannot be independently given the treatment. The average of all newborns from
the same mother is giving a single independent measurement. The experimental
unit is the mother, not each of the little mice. Lazic (2010) and Lazic et al (2018)
extensively discuss this kind of designs in which the different measures are called
pseudoreplications.

• Example 3: We are interested in the effect of some ophthalmic drops on the re-
covery of conjunctivitis. We will compare the difference between our new drops
and some reference drops in the market (control). The same animal can be given
the new drop in the left eye and the control drop in the right eye (or vice versa).
In this way, each animal serves as its own control and the intersubject variability
is strongly reduced. The experimental unit is each animal and its correspond-
ing measurement is the difference between the treated and control measurements
for each eye. Consequently, we have only one (independent) measurement per
animal, not two. This kind of data is called paired data.

• Example 4: We are interested in the effect of four different analgesics (A,B,C,D).
After a sufficiently long washout period, it is assumed that the effect of each anal-
gesic is completely cleared from the animal body. We will measure the effect
of the analgesic through a standard pain test. Each animal can be sequentially
given the analgesics, with the corresponding washout periods, and measured its
sensitivity to pain under each one of them. These designs are called cross-over
designs, and again each animal serves as its own control, thus reducing the in-
tersubject variability. Because of the randomization principle referred above, the
sequences normally vary from animal to animal (ABCD, DCBA, DACB, ...).
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The experimental unit in this case is the combination of animal and time pe-
riod because for each animal and time period a different treatment can be given,
independently of the rest.

• Example 5: We are interested in the relationship between depression and pain
sensitivity. For testing this association we will study the pain sensitivity through
a standard pain test of two rat outbred stocks: WKY rats that are a model of
depressive rats and Wistar rats that are not depressive and will serve as control.
In this case, the experimental unit is the stock, because for any animal within
a stock we cannot change its treatment (the treatment is actually the stock it
belongs to). Consequently, in this experiment we only have N = 2 experimental
units.

• Example 6: Many electronic devices regularly record physiological parameters
(for instance, blood glucose level every 5 minutes). Each one of the measure-
ments is not an experimental unit. This kind of data is better analyzed with re-
peated measures ANOVA or time series techniques. In this case, the experimen-
tal unit is each one of the animals carrying the measurement device. Technically,
each one of the measurements is called an observational unit.

• Example 7: Giving twice a new drug to the same animal does not bring two inde-
pendent experimental units, because the individual is the same and the measure-
ments are not completely independent (for instance, within the expected vari-
ability between animals of a class, this particular animal may have a particularly
high response, making us think that the drug is very effective).

Important remarks

1. An experimental unit is the smallest division of the experimental material
such that any two experimental units can receive different treatments.

2. When an animal is given the treatment once, and measured multiple times,
each one of the measurements is called an observational unit. This kind
of designs are called nested designs or repeated measures and should be
analyzed as described in Sec. 3.2.6.

3. If the independence between samples is compromised, data appears to be
less variable than it is in reality. This artificial reduction of variance can
be compensated if we measure the Intra-Class Correlation (ICC). The in-
terested reader is referred to Sec. 2.6.5 for details on how to use it.

Being extremely important for the statistical analysis, unfortunately the concept of
independence is relative to our research objective. To explain this assessment let us
briefly introduce DNA microarray experiments. Animals are given a treatment. We
assume that different treatments will have different effects on the mRNA expression
in different tissues. Then, we extract samples from the tissues of interest, isolate the
mRNA, reverse transcribe it to cDNA, dye the cDNA and hybridize the cDNA with
DNA probes. We may analyze several animals (biological replicates), we may repeat
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the process of reverse transcription and dying (technical replicates of the first exper-
imental stage), and we may repeat the hybridization with the DNA probes (technical
replicates of the second experimental stage). If our goal is to characterize the effect of
the animal treatments, our experimental units are the animals. However, if our goal is
to characterize a particular sample, then the technical replicates of the two experimen-
tal stages (mRNA reverse transcription, dying and probe hybridization) can be viewed
as independent samples (Churchill, 2002).

1.3 Avoiding bias: blocking, randomization and blind-
ing

Technically, a statistic is biased if it is estimated in such a way that the expected value
of our calculation is different from its true value. The calculations of statistics is at
the core of all hypothesis testing and we may find significant differences due to other
reasons other than our treatment. In this sense, the presence of statistical bias totally
invalidate the conclusions from our study. We have already seen the bias induced by
the confounding of other variables (see Sec. 1). However, bias can be caused by many
other factors. Some of them are less important in animal experiments, but all of them
are important in general biomedical research:

• Omitted-variable bias is caused by not including a variable in a regression when
it has a significant influence on the measurements. For instance, not including
the animal age in the level of some hormone in blood. The confounding bias
we saw in Sec. 1 is a bias of this type since we are not accounting for the sys-
tematic differences induced by the different levels of an important variable (like
performing the experiment in the morning or in the afternoon in our example).

• Selection bias is caused by some individuals being more likely to be selected than
others. For instance, if the experimenter has to take an animal at random from
a cage, those animals more quiet, docile or less aggressive may be chosen more
often biasing the sample. We also have a selection bias if we take individuals
out of the population of interest (for instance, we aim at young animals, but we
also include in the study animals that cannot be considered young anymore; this
situation is called overcoverage) or we systematically miss part of the population
of interest (we do not have any young animal with a particular phenotype that
might be relevant for the results of our study; undercoverage). Another example
of selection bias occurs if we try to avoid assigning less healthy animals to the
high dose group.

• Performance bias is involuntarily caused by the vested interest of researchers. If
they are developing a new drug and comparing it to the vehicle alone, they in-
advertently may take more care in administering and measuring those animals
receiving the new drug than those animals receiving the vehicle. Another ex-
ample would be if sick animals in the control group are given the benefit of the
doubt and kept longer than animals in the high dose group.
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• Observer bias is caused unconsciously by the prejudices of the experimenter, es-
pecially when the experiment requires some kind of subjective grading of animal
behaviour or scoring histological section, for instance. Objective measures, like
the glucose level in blood, are less prone to this kind of bias.

• Exclusion bias is caused by a systematic exclusion of a certain type of individuals
from the study, for instance outlying measurements not coming from measure-
ment errors but from the underlying biological variability.

• Attrition bias is caused by a systematic loss of individuals from the study for a
reason related to the treatment. For instance, the treatment may induce in some
animals some form of severe harm that forces their sacrifice. The measurements
at the end of the study will not include the measurements from the sacrificed
animals. This may be highly problematical given that any study should include
humane end-points and animals may be lost from many studies. In a time course
this will tend to produce a ’ceiling effect’ which will tend to reduce variability
and treatment effect. A derived measure such as specific growth rate or survival
analysis on time to endpoint may be useful here.

There are other types of less technical biases like publication bias (negative results are
seldom reported (ter Riet et al, 2012; Macleod et al, 2015)), but they would actually
be very useful to reduce the number of false positives (Simonsohn et al (2014), if our
experiment is similar to many other experiments that failed to show a given effect, we
would rethink more often whether our results show a true effect or it is just the result of
chance; the problem that the failing experiments are never published and we think that
we are the first ones that have ever performed an experiment of the sort and, luckily or
smartly enough, found a positive effect, this is called the file drawer problem as many
experiments with negative results end buried in the file drawer despite the fact that all
this negative evidence is very useful). Experimental bias is one of the main sources
of incorrect conclusions and it has been extensively studied in Random Clinical Trials
(Higgins and Green, 2011), case-control studies (Sackett et al, 1979) and experiments
with animals (Sullivan et al, 2016). Hooijmans et al (2014) and Zeng et al (2015)
provide useful guidelines to try to avoid, or at least identify, bias in biomedical research
with laboratory animals.

The main tools to fight bias are blocking, randomization, blinding and good report-
ing:

1. Blocking: We saw in Sec. 1 how to block a couple of variables (sex and time
of the day at which the experiment is performed). The systematic differences
induced by discrete variables is by measuring the same number of treatment and
control samples at each of level of the discrete variable, in this way the design is
balanced and the omitted-variable bias is zero. We may think of each one of the
blocks as a mini-experiment, in which all treatments (control and treatment, for
instance) are applied. The data analysis tools will be able to effectively deter-
mine the contribution of the block to the variability of the observations. In this
way, this variability is explained and removed from the variability of the unex-
plained part (residuals). If the variable to block is continuous, instead of discrete
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(e.g., the time of the day of the experiment recorded as any real number between
0.0000h and 23.9999h; or the room temperature at the time of the experiment),
then it is called a covariate and it should participate in the regression explaining
the observed measurements. Blocking variables or measuring covariates has the
additional advantage that it reduces the variance of the residuals (the part of the
measurements that we cannot explain with our model), normally at a cheap cost
in terms of degrees of freedom (we will see this effect in Sec. 3). In this way,
proving that treatments have a statistically significant effect is easier since the
associated statistic outstands more from the lower level of noise. Generalized
Linear Models (Dobson and Barnett, 2008) are very rich models that can handle
simultaneously discrete and continuous variables in the same model. Depend-
ing on the experiment performed, the researcher may have to resort to this more
advanced method.

In animal experiments the cage is an important variable to block depending on
the specific experiment and the nature of the species. Some species are social
and single housing is stressful and considered detrimental to the animal welfare.
However, males may fight depending on the strain and husbandry conditions.
Cages should be balanced with respect to the treatment. In this regard putting
all the treatments or controls in the same cage is not a good idea, because we
would be confounding the cage effect with the treatment. On the other side, we
should be aware of possible coprophageous behaviour of some animals so that
untreated animals may consume metabolites of the treated ones. For this reason,
sometimes very valuable animals (like those wearing a telemetry apparatus or
with a very specific genetic variant) are housed with a companion animal that is
not part of the study. The position of the rack (animals in racks close to the door
are more disturbed) and of the cage within the rack (top or bottom) may have an
influence in the response of the animals (Gore and Stanley, 2005).

• Example 8: We are measuring the immune response of mice to 4 different
conditions. Researchers suspect that the litter the animals come from may
explain some of the differences observed in the animals (some of the litters
may have systematically higher or lower responses). For performing this
experiment, 5 litters and 4 animals per litter were used. Each one of the
animals from the litter was randomly assigned to one of the conditions.
This design allows the identification of the contribution of the litter (if this
exists). The analysis of this design is explained in detail in Sec. 3.1.3.

In experiments with chemical reactants, an important source of confounding can
be the batch from which we prepare our chemicals or the support in which per-
form our reactions. If we are using different suppliers, stocks, or bottles during
our experiment, the small differences in the concentration of the different batches
may cause a difference in the observations that can be confounded with the treat-
ments. The same would happen if the experiment takes a long time and the reac-
tant may differ from the beginning of the experiment to the end (for instance, it
may have been partially oxidized or its humidity, pH, ... may have changed over
time). Blocking the batch and performing experiments balanced in the batches
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may be important in certain settings. For instance, experiments performed with
microarrays are particularly sensitive to these effects (Johnson et al, 2007).

Another important source of confounding may come from the instrumentation,
if the experiment involves several measuring devices, or the experiment lasts for
a sufficiently long time. All instruments must be calibrated in a way that we can
know the exact relationship between our observed measurements, y, and the real
values of the variable being studied, x (for instance, we may relate fluorescence,
y, to fluorophore concentration, x; or measured concentration, y, to real concen-
tration, x). In any case, the relationship between y and x is given by a calibration
function, f (x), such that

y = f (x) (1.1)

Ideally, f (x) would be a linear function or identity (y = x). But, in practice,
many devices have non-linear responses (see Fig. 1.1). We may assume our
device is working in its linear response area if the difference between the actual
response and the ideal response is smaller than a given threshold (in. Fig. 1.1, the
relative error |x− y|/x, is smaller than 10% for x < 0.666, it is smaller than 5%
for x < 0.435). How strict this threshold should be depends on the experimenter.
Let us assume that we have two experimental groups, control and treatment. Let
us assume that the mean of the control group is x̄C = 0.1 and the mean of the
treatment group is x̄T = 0.9. The control group is clearly working on the linear
zone of the instrument, but the treatment group is working on its non-linear zone.
The difference of the measurements of the two groups is

ȳT − ȳC = 0.750−0.099 = 0.671

smaller than the true difference

x̄T − x̄C = 0.900−0.100 = 0.800

Additionally, you may notice that the slope in the non-linear zone is smaller than
the slope in the linear zone. If the true variance in both groups is the same, this
difference in slope causes a decrease in the variance of the measurements in the
treatment group with respect to the variance of the control group. As a corol-
lary, we should always, if possible, try to work on the linear response area of
our instrumentation. If we are using more than one measurement device, each
specific device has its own calibration curve making the problem of calibration
even worse. Blocking, or at least randomizing (see Point 2 in this list), the mea-
surement device may be important depending on the experiment.

Finally, the calibration curve may drift over time, meaning that, unless regularly
recalibrated, measurements from the beginning of the experiment may differ
from measurements at its end, simply by a change in the measuring instrument.
These differences may confound with the differences caused by our treatments,
and blocking the time at which the instrument has been used may be necessary.
Laboratory instruments for precise measurements like pipets, burets, and analyt-
ical balances fall under the same category of measurement instruments, and in
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many laboratories they are randomized. The same can be said of laboratory tech-
nicians, animal carers, etc. Differences in their performance can be confounded
with treatments and blocking or randomization is highly advisable.
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Figure 1.1: Calibration curve example.

2. Randomization is the process of randomly allocating the experimental units to
the treatment(s) or control. For instance, let us imagine that we perform an exper-
iment along a single day. We did not account for a variation during the day, but
we realize that there is a systematic increase of the results as the day progresses.
If we put all the control animals in the morning and all the treated animals in
the afternoon, then there will be significant differences between the two groups
because of the time of the day the experiment was carried out, and not because
of the treatment. This kind of systematic errors can be avoided if the treatments
(control or treatment) are randomly distributed along the day. Randomization
requires that animals are uniquely identified (for instance, with a number) and
the randomization should be performed by a computer (a simple random number
generator will serve this purpose) since humans tend to create regular patterns
when trying to randomize (Schulz et al, 2012). Once an experimental unit has
been assigned to a specific treatment, we should stick to it (we cannot apply
the treatment to a different animal because “it was easier to take”). Randomiza-
tion addresses the selection bias, and the omitted-variable bias for those variables
unknown to the researchers that may cause a difference in the outcome (e.g., sub-
clinical infections, shipment at different temperatures, different food suppliers,
etc.) by randomly distributing confounders in the treatment and control groups.

We should randomize as much as we can. For instance, 1) the labelling of the
groups (we should assign labels like A, B, C, ... to the different groups so that
the treatment cannot be inferred from the label, and we should not use the same
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labels across experiments, e.g., always using the labels A or C for the control
group); 2) the assignment of animals to treatments (this is what most researchers
understand by randomization); 3) the housing of animals into cages (consider the
bias caused when assigning newly arrived animals to cages, if we pick the less
active animals first because they are easier to grab, and we put them together in
the same cage); 4) cage location (it has been reported, see Sec. 3.2.1, that the
position of the cage within the rack may induce systematic biases); 5) order of
feeding, testing, etc. (performing these tasks in a systematic order may induce a
systematic pattern in the measurements).

The main difference between blocking and randomization is that by blocking we
will be able to measure the variability due to the block, by randomization we
will not be able. In both cases, we will be “protected” against biases induced by
the blocking/randomized variable, but by blocking we will determine its effect,
while in blocking we will not. For instance, consider an experiment in which
animals are presented a sequence of visual stimuli. We may randomize the or-
der in which these are presented, or we may block the order in which they are
presented and study the learning effects.

If we have variables to block, these must be measured before randomizing. This
is called stratified randomization. For instance, if the animal sex is important,
the randomization is performed within the male and the female group. In this
way, we guarantee that for each of the groups, the treatment is balanced. This
is particularly important in experiments in which some of the groups are rare.
For instance, we do not have many old animals for our experiment. If we do the
randomization before measuring the age group, we might end with most of the
old animals in the control or the treatment group. The baseline response before
applying the treatment can also be used for stratification before randomization.

If all units are known from the beginning, the randomization is simply performed
by a random permutation performed by a computer. For instance, if we are going
to study 10 animals, 5 in each group (control and treatment), we may simply sort
them as

Treatment C C C C C T T T T T
Animal ID 6 3 7 8 5 1 2 4 9 10

However, if units arrive sequentially and we want to study N animals in total
(N/2 in each group), we may randomly assign them to one of the groups with
a probability that depends on the number of animals already in each group. As-
sume that there are already nC animals in the control group and nT in the treat-
ment group. Then, we assign it to the treatment group with probability

pT =
N/2−nT

N−nT −nC

To do the random assignment we generate a random number with a uniform
distribution between 0 and 1, then we assign it to the treatment group if this
randomly generated number is smaller or equal pT .
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Sometimes, units arrive sequentially and we want to block some variables (e.g.,
sex and age). Depending on the number of animals of each kind in each one
of the subgroups we assign them to one treatment or the other with different
probabilities. For instance, assume that at the present moment we have already
received 30 animals, and that the current number of animals assigned to each
treatment per group is

Type Control Treatment
Male 7 10

Female 8 5
Age (≤9 months) 5 6
Age (≤18 months) 6 4
Age (≤27 months) 2 4
Age (≥30 months) 2 1

If a new male with 20 months arrives, the probability of assigning it to the treat-
ment will be 0.5 modified by some factors that depends on the number of treat-
ments and controls in its groups. It is a male, and there are already 10 male
treatments and 7 male controls, so we will multiply 0.5 by 7/10 so that it is more
likely to assign it to the control group. Similarly, in the group of animals between
19 and 27 months, there are 2 controls and 4 treatments, so that we will multiply
by 2/4 so that it is more likely to assign it to the control group. Summarizing,
the probability of assigning it to the treatment will be

pT = 0.5
7
10

2
4
= 0.1750

Following this procedure, groups will tend to be compensated in number while
the assignment is still random.

Stratified randomization is used if we foresee that a particular variable may in-
troduce some variability. For instance, let us assume that we are comparing
two treatments (control and treatment) and that we foresee that larger animals
may have a larger response. If we simply randomly allocate animals to the two
treatments, we might have, just by chance, larger animals in one of the groups.
Instead we can create strata in the weight, for instance, we sort all the animals
by weight and for every two animals, we randomly assign the two animals to the
control or treatment group. This strategy may increase the variability of each
one of the two treatment groups (will increase for sure if the weight really makes
a difference in the result) because the two groups now have a wide range of
weights. We may follow this randomization strategy, but at the same time in-
clude the weight in the data analysis either as a block (see Sec. 3.1.3), or, for
continuous variables like weight, as a covariate (see Sec. 3.1.4).

Randomization not only applies to the assignment of experimental units to treat-
ment groups, it can also be applied to all levels of the experiment. For instance,
let us imagine that we are interested in the ability of animals to recognize a
specific odour, and how it is affected by a particular treatment (we will have a
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control group of animals and a group of treated animals). We embed our odour of
interest in a sequence of 10 different odours. If we perform the test always with
the same sequence of odours, we would be analyzing the difference between “the
two treatments (control and treatment) under this particular sequence of odours”.
It is much more interesting randomizing the sequence of odours in each test, so
that we can analyze the difference between “the two treatments”.

3. Blinding hides the treatment information to the patient (single blinding), the
patient and the experimenter (double blinding), or the patient, the experimenter
and the data analyst (triple blinding). With laboratory animals, single blinding
is normally unnecessary. However, if possible, blinding the experimenter from
the treatment he or she is applying or evaluating drastically improves the fairness
of the experiment. Bebarta et al (2003) evaluated the outcome of 290 research
studies with animals. Those studies lacking randomization, blinding or both
were significantly more likely to report positive outcomes. Blinding directly
addresses performance and observer bias.

4. Good reporting. Unfortunately, except for a few cases like survival analysis,
there is no ideal technical solution for exclusion or attrition bias. At least, good
reporting the experiment and its data filtering and processing may help the reader
to evaluate the quality of the reported results. In this regard, Kilkenny et al
(2010); Hooijmans et al (2014); Zeng et al (2015) provide a guideline to experi-
ment reporting that should minimize this kind of bias.

1.4 Reducing variance: variable and population selec-
tion, experimental conditions, averaging, and block-
ing

Variability is inherent to biological populations and experimental measurements. Indi-
viduals differ among them in almost all imaginable variables: morphological, biochem-
ical, metabolic, genomic, proteomic, physiological, microbiome, etc. For any variable
we may even find circadian variations, variations due to specific environmental factors,
variations due to response to stimuli, etc. These are the variations most research studies
aim to understand. Different individuals in our study, called biological replicates, will
help us to model this biological variability, and new treatments should be tested with
a sufficiently wide biological scope so that our study results can be generalized to the
whole population. In addition to the biological variability, we have measurement noise
due to the imprecision of measurement device, human errors, electronic noise, uncer-
tainty in the readout of analog scales, etc. These measurement errors can be reduced by
measuring the same experimental unit multiple times, these are called technical repli-
cates. Since overall error is the sum of biological error and technical error, reducing
technical error will reduce the overall error.

Ultimately, the variability of our observations (once all variability sources have
been considered) will determine the number of samples that we need to involve in our
experiments. As a general rule, higher variability will require a larger sample size for
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detecting the same treatment effect. Alternatively, if we fix the sample size, higher
variability will hinder our ability (statistical power) to detect a given treatment effect.
These ideas are further discussed in Sec. 1.5.

1.4.1 Variable selection
As we will see in Chap. 2, the calculation of the sample size depends on the information
brought in by each one of the experimental units, and the noise of our measurements.
In this way, different types of observations are more informative and, generally speak-
ing, the information order of variables would be: categorical, ordinal, discrete, and
continuous. For instance, if we are studying the presence of macrophages in a given
microscopy field the following measurements would bring an increasing amount of in-
formation: 1) absence or presence of macrophages (categorical); 2) qualitative number
of macrophages (ordinal: none; one or two; three, four or five; more than five); 3)
quantitative number of macrophages: 0, 1, 2, 3, ... (discrete); 4) area occupied by the
macrophages in the field (continuous). If possible, we should work with as informative
vaiables as possible.

Some discrete variables may be treated as (almost) “continuous” for the purposes
of statistical analysis. For instance, we may measure the severity of arthritis of a single
paw in a scale from 0 to 4. Each animal receives a score that is the sum of the scores
of the four paws.

We must be careful with the variables we chose for the analysis, they must be as
descriptive and related to our interest as possible. For instance, in behavioural studies
we want to analyze how a particular treatment affects the exploration time of the ani-
mals. We compare the time spent exploring novel objects to the time spent exploring
familiar objects. The discrimination index is defined as

DI = 100
tnovel− t f amiliar

tnovel + t f amiliar
.

The problem with this variable is that an animal that spends 2 minutes exploring new
objects vs 1 minute exploring familiar objects gets a discrimination index of 33.3%,
the same as an animal that is lethargic for most of the experiment and explores the new
objects for 2 seconds, and the familiar object for 1 second.

We should also work with variables related to our experimental objective with as
little variance as possible. For instance, if we are interested in the appetite effect of
some treatment given with food, we should prefer directly measuring the weight in-
crease of the animals, instead of the weight of the food consumed (because animals
may throw food through the cage and we would skip the variability induced by vari-
able excrements). By avoiding the variability of unrelated events, we would reduce the
biological variability of the variable of interest.

1.4.2 Population selection
Currently experiments can be performed on mixed stocks, outbred stocks, and inbred
strains (Chia et al, 2005). Mixed stocks of animals would be the equivalent of the ge-



1.4. REDUCING VARIANCE: VARIABLE AND POPULATION SELECTION, EXPERIMENTAL CONDITIONS, AVERAGING, AND BLOCKING29

netic variability encountered in large human populations (like a whole country). Out-
bred stocks would be the equivalent of the variability of small communities with little
interaction with other communities (like Laponia). Finally, all animals of an inbred
or hybrid F1 strains would be genetically identical, as human identical twins. In this
way, the variability of our observations is mainly due to epigenetic, treatment or en-
vironmental differences between the animals. In this way, the observations variability
would be strongly reduced. Except for research related to quantitative trait loci, the
experimental use of outbred stocks is discouraged (Chia et al, 2005). And, currently,
no research experiments are performed on mixed stocks of animals due to the large
number of animals required to prove any statistically significant difference in these
populations.

Actually, it is currently preferred to show the effect of our treatment in several in-
dependent inbred strains than showing it in outbred stocks. For instance, Jay Jr (1955)
analyzed the sleeping time of different stocks of animals after a dose of 125 mg. per
kilo body weight of hexobarbital. Table 1.5 shows the mean and standard deviations
observed for each kind of animals. We note that the inbred strains cover a wide range
of sleeping time (from a mean of 18 to a mean of 48), while the outbreds are centered
around 43-48 (although with a large standard deviation). With this variability, we may
calculate the number of animals of each kind, N, needed to detect of change of 4 min-
utes in sleeping time with a confidence level of 95% and a power of 90%. Similarly,
if we fix the sample size to N = 20 animals, we may calculate the power to detect a
change of 4 minutes in the mean. We note that the sum of all animals in the inbred
strain is 79 (=23+7+13+13+23) and the statistical power is between 86 and 99% if
N = 20. However, the sample size for performing a similar experiment with an outbred
stock is between 200-300 animals (between 2 and 3 times more). If we fix the sample
size to N = 20, then the power drops from about 90% to about 15%. For this rea-
son, the current recommendation (Chia et al, 2005) is to show the effectiveness of our
treatments on a variety of inbred strains sufficiently covering the spectrum of the physi-
ological variability of the whole population. If maintaining several inbred strains is too
costly for our experiment, at least, we should make sure to report the applicability of
our results, in which conditions and with which strains is our treatment effective. The
interested reader is referred to Sec. 2.6.5 for further details on how the compromise of
the independence between individuals can affect the sample size.

1.4.3 Experimental conditions
The specific setup of the experiment may also affect the variability of our observations.
For instance, Chvedoff et al (1980) reported an increase in the variance of the weight of
mice depending on whether they were housed 1, 2, 4, or 8 animals per cage. Another
example is given by Crabbe et al (1999). They repeated the same experiment with
eight mouse strains in three different locations: Portland, Edmonton and Albany. They
controlled all the experimental conditions (same research team, same inbred strains,
equally calibrated apparatus, equated husbandry, same testing protocols, same age,
same starting time, same protocol order) so that the experiment was as homogeneously
performed as possible. They found significant differences in body weight and behav-
ioral tests in the three experimental sites, meaning that there had been some differences



30 CHAPTER 1. WHY DO WE NEED A STATISTICAL EXPERIMENT DESIGN?

Table 1.5: Sleeping time of different animal strains after a dose of hexobarbital.

Strain Type Mean (min) Std.Dev. (min) N Power

A/N Inbred 48 4 23 86
BALB/c Inbred 41 2 7 > 99

C57BL/HeN Inbred 33 3 13 98
C3H/He Inbred 22 3 13 98

SWR/HeN Inbred 18 4 23 86
CFW Outbred 48 12 191 17
Swiss Outbred 43 15 297 13

escaping their control despite their careful effort to equate everything. These studies
call for an homogenization of all the experimental variables we can control (same num-
ber of animals per cage, same calibration procedures, same protocols, ...) knowing that,
although reducing the variability, there might still be uncontrolled variables we are not
aware of and that affect our results.

1.4.4 Population scope, outliers and lack of independence
One of the key assumptions of all statistical tools is that the observations are a random
sample of the whole population being studied. Intuitively, it means that our observa-
tions are representative of the whole population being studied in all its statistics (mean,
variance, distribution, ...). Put differently, this hypothesis assumes that any individual
in the general population has the same chance of being observed, and that no individual
or subpopulation has a larger chance of being overrepresented. As we have seen in the
previous sections, we may perform experiments in too narrow populations, with very
low genetic variability, or under very strict laboratory conditions (the health, hygiene,
diet, exercise, and environmental conditions of laboratory animals differ significantly
from those from a general population of animals or humans). This certainly help to
reduce the variance, but at the cost of reducing the scope of the whole population being
studied. Our random sample of a given inbred strain is a good representative of that
kind of mice, not all mice in the world. That is why it is recommended using several
inbred strains to validate our research hypothesis (e.g., a drug is useful in decreasing a
given disease condition). The same occurs with the homogenization of the experimen-
tal conditions. They are aimed at reducing the variance of our observations. However,
they compromise the applicability of our results to a wider population. Especially, if we
are testing new treatments in laboratory animals with the aim of an ultimate commer-
cialization in humans, pet or farm animals. The variability encountered in the general
human or animal populations is much larger due to the larger genetic variability, envi-
ronmental conditions and different lifestyles.

Some experiments analyze cells coming from one animal or a pool of animals, for
instance, the proportion of cells of a given type. These experiments should be handled
with care. Seemingly, the number of cells, N, is huge and the estimated proportions
seem to be very accurate (small confidence interval) due to the large number of al-
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legedly independent events. The same problem is faced by experiments with low num-
ber of animals being analyzed resulting in large numbers of events (gene copy number,
number of RNA transcripts, ...) However, the cell type is not that independent (they are
coming from one or a few animals), and we may encounter a generalization problem:
is the proportion of this type of cell in the whole population of animals the same as the
one I have measured in my single individual or group of animals? If we have measured
very few animals, we cannot guarantee that this is the case. Ideally, in these exper-
iments we should determine the proportion of cells per animal (or pool) for several
animals (or pools), and treat these proportions as a continuous variable for which we
construct a confidence interval. Constructing the confidence interval using the standard
proportion tools is not the best approach, because events are not independent. However,
this ideal approach is not always feasible for experimental or economical reasons.

Researchers are often worried about the presence of outliers in their observation
and how they should treat them. Should they be eliminated from the sample, left in the
sample, or be treated separately? We should ask ourselves about the nature of those
outliers.

• Have they been caused by an obvious measurement error (mistyping of the num-
bers, malfunctioning devices, measurement blackouts, non-sensical numbers)?
If so, we should remove them as they do not really exist in the general popula-
tion we want to generalize our results to.

• Have they been caused by an obvious error in the application of the treatment
(e.g., not applying the correct dose, applying the treatment in a different area than
the intended one, not strictly adhering to the dosage plan, artificially lengthening
the surgery and having a longer post-operation recovery as a result, ...)? If so,
we must be aware that these application errors could be representative of the
errors that can be committed in the future in the general population of humans or
animals. As such we may want to keep the outlier observations as representative
of the situations that can be encountered in the application of our treatment.
Or alternatively, we may discard those outliers knowing that our results then
only apply to the general population of individuals for which the therapeutic
plan is perfectly applied. Keeping the observations does not mean that both
datasets (those that correctly received the treatment and those that received it in
an incorrect way) must be analyzed together. We may create two subpopulations
and draw separate conclusions for each one of them.

• Have they been caused by the different response of the individuals? If so, it
means that the general population can be subdivided into smaller populations,
each having a different response. As in the case above, we may divide the re-
sponses in subgroups and draw different conclusions for each one of them (e.g.,
80% of the population has a strong response to our treatment, while 20% of it
has a null or small response to the treatment). Stratified sampling is a statistical
technique especially aimed at characterizing the overall response in the general
population when several subpopulations with different responses are known to
coexist. The interested reader is referred to Thompson (2012)[Chap. 11].
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By removing outliers that really belong to the studied population we are biasing all our
estimates (mean, variance, ...). On the other side, leaving outliers that do not belong to
the population also biases our estimates. Unfortunately, there is no statistical technique
that can clarify the nature of an outlier. Statistical tools may indicate the presence
of samples whose observations do not follow the general population trend observed
among the samples. But, they cannot assess whether these anomalous observations are
caused by measurement errors, errors in the application of the treatment, or different
biological responses of those individuals. It is the responsibility of researchers tak-
ing a decision regarding those samples and about how they should be analyzed. The
answer “I will assume that that observation is an error” is not valid in general, since
it precludes a careful reasoning about the nature of that particular outlier. We admit
that, unless obviously nonsensical measurements, it is difficult to distinguish a poste-
riori between a measurement error and a misapplication of the treatment, but at least
we should be able to recognize differently responding subpopulations. Obviously, we
can only do this with a sufficiently large population, and with small experimental sam-
ple sizes we are bound to believe that most observations correspond to the naturally
observed variability.

The presence of subpopulations, if not well treated, can easily lead to incorrect con-
clusions similar to those obtained under the presence of outliers. Fig. 1.2 represents a
possible result of a study. We are interested in the level of a given compound in blood
after giving a drug to the animals. Before giving the drug, we measure the baseline
level of the compound. Then, we randomize the animals into a control and treatment
group, and measure the level of the compound again after treatment. The plot at the
top of Fig. 1.2 shows the mean level of the compound of interest in the two groups
along with their standard error of the mean. From this plot alone, one would conclude
that the administration of the drug results in a higher level of the compound of interest.
However, a more detailed analysis (see Fig. 1.2, bottom) reveals that before adminis-
tering the drug, we could already identify two different populations (one with a high
and another one with a lower baseline level), and that, just by chance, randomization
assigned more than half of the high responding samples to the treatment. The random
assignment along with the existence of two subpopulations falsely created the impres-
sion of a higher response of the treatment group. In Sec. 1.4.8 we will see that a correct
randomization should try to produce control and treatment groups of the same size (in
this particular case, this equal size groups would have saved the experiment because
in this simulated data there was no difference between the two groups, and the equal
size groups would have allowed us to identify this situation). In general, the existence
of subgroups in the data can create many different kinds of misleading results, and we
should always try, to the best of our ability, to identify this situation.

Another source of artificially observing a low variance is by violating the assump-
tion of independence of the samples. The assumption of independence is two-fold: 1)
independence between groups and 2) independence within group. The first assumption,
independence between groups, would be violated by the same individual participating
in several groups (control and treatment, for instance). This is obviously avoided in
laboratory research.

There are also obvious ways of violating the second assumption, independence
within group, for instance, collecting multiple samples from the same individual. These
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Figure 1.2: Effect of the presence of subpopulations (see text).
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are technical replicates and they can be averaged to produce a single measurement, as
we will see in the next section, or we may use repeated-measures ANOVA, which ba-
sically amounts to using the individual as a block (this technique is seen in Sec. 3.2.6).
However, there also are more subtle ways of violating the second assumption. For in-
stance, applying the treatment to different cultures of the same cell line. This cell line
is coming from a single individual, and may even be immortalized causing biological
artificial results that are not observed in vivo. Statistically, we see that the indepen-
dence of these samples is compromised, and they only generalize to the population of
cells of this cell line. The same occurs if we use different animals from the same in-
bred strain. They are all twins and share the same genetic background. In a way, we
are measuring multiple times “almost the same” individual. Measuring animals that
have been housed in the same cage, or are siblings from the same mother also com-
promise the independence of the observations. A human analogy would be measuring
a variable in persons from the same family and living in the same house. In all cases,
our statistics are biased. In terms of the mean, we are assuming that the rest of the
population is responding in the same way as our observations. If they do not, then our
sample mean will be a biased estimate of the population mean. In terms of variance, the
variability observed within a single individual (cell line, inbred strain, ...), within a few
families (all animals coming from a few mothers), or within a few cages (think of them
as households) is usually smaller than the variability observed in a wider population.
In this regard, as the observed variability is smaller than it should be, we tend to be
overconfident on the statistical significance of the observed differences (the p-value is
artificially low). If the p-value is close to the threshold of significance (typically, 0.05),
we may declare as significant a result that is not truly so. It is simply an artifact caused
by underestimating the population variance.

Disregarding all technical (statistical) considerations, in which many researchers
get lost in, we should always apply our common sense and think to which population
does this random sample generalize to: the population of all cells equal to ours (as in
the case of a cell culture), the population of all mice of this strain (an inbred strain),
the population of all mice under very strict environmental conditions (the laboratory
conditions), ... and consequently be humble about the generalization of our results
to larger populations and be prepared for failures when our treatments are tested in
more general experimental conditions (Phase II and Phase III in drug developments,
for instance).

1.4.5 Averaging and pooling
The simplest and most wide spread measurement model is the additive noise model:

y = x+n (1.2)

where y is the observed value, x the ideal (inaccessible) value, and n a random noise
variable. n is assumed to have zero mean (otherwise, it would be biasing our mea-
surements) and to be independent of the ideal values. Under these circumstances, the
variance of the observed measurements would be given by

σ
2
y = σ

2
x +σ

2
n (1.3)
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that has a very natural interpretation: the variability we observe in our measurements
is partly caused by the biological variability, σ2

x , and by our measurement errors, σ2
n .

Although it is not strictly necessary, in many experiments it is assumed that noise
follows a Gaussian distribution with zero mean and variance σ2

n .
If we measure the same subject M times (technical replicate), we may reduce the

variance of our measurements. Each measurement would be of the form:

yi = x+ni i = 1,2, ...,M

Our measurement for this individual would finally be

y =
1
M

M

∑
i=1

yi = x+
1
M

M

∑
i=1

ni (1.4)

Consequently, the variance of our observations is

σ
2
y = σ

2
x +

σ2
n

M
(1.5)

That is, technical replicates help to reduce the variance of our observations by reducing
the variance associated to the measurement errors.

If we have N biological replicates and we average them into a single population
mean (ȳ), then the variance of the population mean is the variance of each of the obser-
vations divided by N

σ
2
ȳ =

σ2
y

N
=

σ2
x

N
+

σ2
n

NM
(1.6)

If we associate costs to each of the kind of replicates (CB for the biological replicates
and CT for the technical replicates), then we may calculate the optimum number of
technical replicates per biological replicate by minimizing the variance of the average
subject to a constraint in the cost

min
M

σ2
x

N + σ2
n

NM

subject to CBN +CT NM =C

whose optimum is

M =

√
σ2

n

σ2
x

CB

CT

For instance, in microarray experiments we may assume that technical replicates are
4 times less variable than biological replicates ( σ2

n
σ2

x
= 1/4; obviously, this estimate de-

pends on the genes we are studying). The price of a technical replicate can be around
CT = 500$, and the price of a biological replicate (mouse) can be CB = 15+2d$ (being
d the length in days of the experiment, and 2$/day the average price for animal hous-
ing). The formula above would recommend 1 technical replicate for short experiments,
and 2 technical replicates for long experiments.
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Microarray experiments have a complicated setup and they have represented a great
technological breakthrough. In an extremely simplified description, different treat-
ments are given to animals (in Fig. 1.3 shown as A and B). The different animals
would be biological replicates (sometimes several animals are combined into a single
pool as described below). The objective of the experiment is to identify differences
between treatments at the level of mRNA. A sample from the tissue of interest is ex-
tracted and the mRNA isolated. The mRNA of the samples are reverse transcribed into
cDNA and combined with a dye. This process is repeated twice with different dyes
(red and green). This repetition is a technical replicate at the level of transcription and
dye. Every microarray sees two of these combinations with different dyes (one red and
one green). The microarray has several wells or spots. In each of the wells, there is a
DNA sequence probe that hybridizes with the sample cDNA. The ratio of fluorescence
between both dyes is measured from each well resulting in the known colored spot
images (see Fig. 1.3). In the same microarray we can put the same DNA probe in two
wells, this would be a technical replicate at the level of spot.

Figure 1.3: Setup of a microarray experiment. See text for a description of the experi-
ment.

Spot technical replicates have a correlation coefficient of 95%, indicating the high
reproducibility (low noise) of the probe hybridization and fluorescence measures. Let
us refer to this noise as σ2

n2. Technical replicates at the level of mRNA reverse tran-
scription and dying has a correlation between 60-80% (Churchill, 2002), indicating a
higher level of noise at this point, that we will refer to as σ2

n1. Although these numbers
have surely changed since 2002, the setup is still valid and illustrates a more general
problem. If we have N animals, M1 transcription and dying replicates, and from each
dyed sample we take M2 spot replicates, then the variance of the mean of the duplicated
spots will be

σ
2
ȳ =

σ2
x

N
+

σ2
n1

NM1
+

σ2
n2

NM1M2

Depending on the technology, the noise of the different stages may be higher or lower.
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It is specially important the size of the noise with respect to the biological variability,
σ2

x . Sometimes, it is very tempting to avoid biological replicates because the experi-
ment seems to be more reproducible. The apparent increase in statistical significance
and power is illusory, and the statistically significant results may simply reflect the
random fluctuation due to the specific animals used in our experiment.

In Eq. 1.3, σ2
x could be understood as the addition of two sources of variability:

within-animal and between-animal

σ
2
x = σ

2
x,within +σ

2
x,between (1.7)

The within-animal variability may be due to circadian rhythms, random fluctuations
along time, different physiological conditions between measurements, etc. While the
between-animal variability is expected to be caused by genetic and environmental dif-
ferences between the different individuals. If we want to determine the contribution
of each one of these two components, we need to measure the same animal multiple
times. The differences between measurements will be due to within-animal variability
as well as to the noise variance. We will not be able to disentangle these two com-
ponents as they go inherently together in all our measurements. For this reason, all
the argument above about reducing the variability by making repeated measures also
apply to within-animal variability. Some statistical analysis techniques, like all those
based on repeated measures (see Secs. 3.2.6 and 3.2.7), specifically exploit the fact
that some measurements are coming from the same animal to produce better estimates
of the effects of the treatments.

A useful tool to reduce the biological variability is to pool tissue or cells from
several animals, and then applying the treatments to the pool or performing measures
from that pool. By pooling, we are “creating” an artificial animal, let us call it x̃,
whose variability is, in principle, smaller than the raw biological variability. Ideally,
the variance of the pool should be reduced by the number of pooled animals, K

σ
2
x̃ =

σ2
x

K

In practice, the response of the animals is correlated because they are housed in the
same laboratory, treated by the same persons, fed with the same food, ... and, depending
on the case, they may even be tied with familiar bonds. If the correlation between the
measurements of the different animals is ρ , then the variance is not reduced by K, but
by a smaller factor

σ
2
x̃ =

σ2
x

K/(1+(K−1)ρ)

Note that for ρ = 1 (all animals are perfectly correlated, this would be the case of
clones), the variance of the pool is the same as the variance of the original animals,
while we would have the false impression of having reduced the variance of the exper-
iment by pooling from different animals.

It has also been proposed to model the effect of pooling as

σ
2
x̃ =

σ2
x

Ka
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with a being a number between 0 and 1. If a = 1, then the pooling has been maximally
effective; while if a = 0, then the pooling has not helped in reducing the biological
variability. In either way, through the correlation ρ or the exponent a, we see that
pooling aims at reducing the biological variability of our measurements, but it may not
always be maximally effective.

Important remarks

4. Gathering all animals into a single pool from which we will make several
technical replicates is not a good statistical design, because we have no
possibility to estimate the biological variability. It is much better to divide
the different animals in several pools that do not share animals (otherwise,
we compromise their independence).

The assumption of the additive noise model is that there are many sources of error
that are added to our measurements. By the central limit theorem, the addition of many
random independent variables result in a Gaussian distribution (that is why additive
noise usually assumes a normal distribution). However, not all measurement errors or
sources of variability are additive. Some systems have a multiplicative or exponential
behavior (e.g., the decay of drug concentration in blood is normally exponential, cell
divides by two after a given period of time, PCR experiments double the amount of
DNA with every replication cycle). In all these experiments, changes are relative (an
increase or decrease of 1%, 5%, or 50% with respect to the current level). Noise is
additive in the logarithmic space

y = x ·n→ log(y) = log(x)+ log(n) (1.8)

This is the multiplicative noise model. If log(y) follows a Gaussian distribution, then
y is said to follow a log-normal distribution. Limpert et al (2001) revised the appli-
cations of the log-normal in sciences and they include the abundance of bacteria, the
latent period of a disease, survival time in cancer, sensitivity to chemicals (EC50), gene
expression (Beal, 2017), and noise in imaging modalities based on the counting of
photons (e.g., fluorescence microscopy, PET and SPECT, Rodrigues et al (2008); Wa-
ters (2009)). For this reason, in many fields, like microarray analysis (Quackenbush,
2002), technical replicates are averaged using a geometric mean. The geometric mean
is equivalent to averaging in the logarithmic space as shown below

y = M
√

y1y2...yM ⇔ log(y) =
1
M

M

∑
i=1

log(yi) = log(x)+
1
M

M

∑
i=1

log(ni) (1.9)

In this way, we see that choosing between a standard average or a geometrical average
depends on the nature of the noise and the way data is generated, rather than our own
preference.

1.4.6 Blocking
Our measurements may be affected by variables that we are not interested in. For
instance, we are interested in the effect of a drug, and we perform an experiment with
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two groups (control and treatment) with the aim of comparing the mean level of some
variable y in the two groups. In each of the groups we assume that the i-th observation
(i is supposed to refer to each independent biological replicate of the experiment, that
is, the measurement of the experimental unit) respond to the model

yi = µ +αx(i)+ni (1.10)

where µ is an overall mean, αx(i) is the effect caused by being in the control or treatment
group and takes the values αcontrol or αtreatment depending on the group the i-th animal
has been assigned to. The mean of the observations in the control group is

ȳcontrol = µ +αcontrol

and the one of the treatment group is

ȳtreatment = µ +αtreatment

To make the decomposition in Eq. (1.10) unique, we impose the constrain

αcontrol +αtreatment = 0

This constrain causes that µ can be estimated from the overall mean of all our obser-
vations. Under this model, the variance of y can be decomposed as

σ
2
y = σ

2
x +σ

2
n

where σ2
x is the variance induced by the fact of taking or not the drug, and σ2

n is the
variance induced by all other experimental variables (measurement errors, chemical
batches, biological variability, sex, genotype, month of the year, day or time of the day
in which the experiment was performed, etc.) For example, it has been seen that the
results on Mondays (after two days of quietness) are different from the rest of the days.
In general, we refer to σ2

n as the noise variance or the unexplained variance. Note that
in the expression above we have assumed that there is no relationship between x and n
(if there is, we should have included a term with the correlation between the two). This
independence is not fulfilled if we presume an additive noise model, but the true model
is multiplicative, for instance.

Proving that our drug is making a difference ultimately amounts to comparing σ2
x

to σ2
n and checking whether the observed signal, σ2

x , is significantly different from the
noise, σ2

n . We may think of this as a Signal-to-Noise Ratio, and more evolved versions
of this comparison is at the core of the Analysis of Variance (ANOVA), Analysis of
Covariance (ANCOVA), and Generalized Linear Models (GLMs).

We may reduce the unexplained variance, σ2
n , by blocking the effect of some vari-

ables that we cannot control, but that we can measure, for instance, sex. We cannot
control the sex of the animals, but we can annotate it and remove the variability induced
by it from the unexplained variance. For doing so, we now explain our measurements
as

yi = µ +αx(i)+αsex(i)+n′i (1.11)
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where αsex(i) takes the values αmale or α f emale depending on whether the animal is male
or female. Then, the variance of our measurements can be decomposed as

σ
2
y = σ

2
x +(σ2

sex +σ
2
n′)

The variance of the measurements, σ2
y , does not change due to the blocking. The vari-

ance explained by the treatment or control does not change either. However, we have
decomposed the previously unexplained variance, σ2

n , by something that is explained
by sex and something else that we cannot explain yet:

σ
2
n = σ

2
sex +σ

2
n′

The statistical comparison to assess whether our treatment is successful is performed
between the variance explained by the treatment-control variable, σ2

x , and the unex-
plained variance, σ2

n′ . After blocking, the unexplained variance is smaller than the
unexplained variance before blocking

σ
2
n′ < σ

2
n

Consequently, if our treatment is making a difference, it will be easier to show that the
difference is statistically significant.

We may think of blocking as a “research insurance”. Sex may or may not make a
difference in our measurements, but if it does, by blocking, we will be able to measure
this difference and subtract its effect from the unexplained variance. If it does not make
a difference, it does not cause any harm (other than we consume 1 degree of freedom for
estimating its effect; to have a reference value, when we perform an experiment with N
experimental units, we have N− 1 degrees of freedom available for our calculations).
With this idea in mind we may block many different variables: sex, the device with
which we analyze the data (if we use several devices), the day in which we perform the
experiment (if we expect differences between the different days), the time of the day at
which we perform the experiment (for instance, weight measures early in the morning
are different from weight measures just after feeding), the cage of the animal we are
observing (depending on the experiment, cages may cause significant differences due
to the interactions with the other animals in the cage or the position of the cage in the
room), the litter the animal is coming from, the surgeon that operates the animal, ...
Blocking variables are relatively “cheap” in terms of extra number of animals for our
experiment, and may bring significant benefits in terms of explained variance.

Measuring covariates brings the same kind of benefits: removing unexplained vari-
ance. For instance, let us assume that we are measuring the blood pressure of animals.
Blood pressure may depend on room temperature and sex. So, at the same time that
we measure the blood pressure, we annotate the animal sex and the room temperature.
Then, we model our measurements as

yi = µ +αx(i)+αsex(i)+βTi +n′′i

The variance decomposition is now

σ
2
y = σ

2
x +(σ2

sex +σ
2
Temp +σ

2
n′′)



1.4. REDUCING VARIANCE: VARIABLE AND POPULATION SELECTION, EXPERIMENTAL CONDITIONS, AVERAGING, AND BLOCKING41

Our statistical analysis will be even more sensitive to differences caused by our treat-
ment. With the same number of animals we will increase our statistical power. Or
alternatively, for the same statistical power, we may reduce the number of animals in
the experiment.

1.4.7 Paired samples

Paired samples can be seen as a special case of blocking in which individuals act as
blocks, they serve as their own controls. This is the case of experiments in which we
can measure before and after applying the treatment, or we can measure the response
of the left and right eyes to different treatments. Experiments with twins, siblings
or matched pairs (looking for another individual with similar characteristics) also fall
under this category. Cross-over designs in which an individual is given a treatment
for a period, and then another treatment in another period are also analyzed as paired
samples. However, there are many detractors of cross-over designs, the main con-
cerns are related to the washout period (does it really revert the individual to its initial
condition?), and to the order in which the treatments are given (and in this regard,
randomization is an important countermeasure as usual).

Repeated measurements can be seen as an extension of paired samples (they are
also called pseudoreplications). An animal is given a treatment and, then, measured
multiple times, at different parts of its body, or at different tasks. The different time
points can be referred to the initial measurement at t = 0. An alternative analysis is
through the standard block design in which the individual acts as a block. Typically
repeated measures is treated as a split-plot design in which the subject is the factor
“hard to change” (see Sec. 3.2.6).

By computing the difference between the two measurements we remove the inter-
subject variability inherent to the analysis of two independent measurements (e.g. in
two groups of animals, control and treatment, controls and treated animals are different,
while in paired samples, they are the same individual).

This data is typically analyzed with a Student’s t-test on the difference between the
two measurements. However, this test assumes Gaussianity of the difference. Non-
parametric alternatives exist. The most popular are: 1) sign tests (the test checks if
the number of positive or negative signs in the difference is significantly different from
what is expected at random); 2) Wilcoxon’s signed rank tests, note that the sign test
does not consider the magnitude of the difference, only its sign, Wilcoxon’s signed rank
test includes the magnitude of the difference and is statistically more powerful than the
sign test; 3) McNemar’s test if the responses are binary (yes/no, absent/present, ...); 4)
permutation tests, in which the labels before and after, left and right, etc. are permuted,
the distribution of the difference between the two situations is studied with these per-
mutations, and finally the truly observed difference is compared to this distribution. In
general, these more widely used statistical techniques should be used instead of less
accepted tools as the use of ratios (Karp et al, 2012).
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1.4.8 Blocking and randomization

We may combine the benefits of blocking and randomization by first blocking and then
randomizing. Let us assume that we are performing an experiment with 80 animals,
of which 35 are males and 45 are females. We want to block sex, then we first split
the animals in two groups according to our blocking variable, and then we randomly
assign to the control or treatment groups as shown in the following table.

All animals (80)
Male (35) Control (17)

Treatment (18)

Female (45) Control (23)
Treatment (22)

We may block two variables simultaneously. For instance, we may block sex and
the time of the day we perform the experiment (morning or afternoon) as shown in the
following table.

All animals (80)

Male (35)
Morning (17) Control (8)

Treatment (9)

Afternoon (18) Control (9)
Treatment (9)

Female (45)
Morning (23) Control (12)

Treatment (11)

Afternoon (22) Control (11)
Treatment (11)

Depending on the characteristics of the block it may be balanced or not. For in-
stance, the time-of-day block in the previous example is balanced (40 animals are tested
in the morning and 40 in the afternoon); but the sex block is not balanced (because
we only have 35 males available for our experiment versus 45 females). If carefully
randomized, we may balance our treatment (40 animals in the control group and 40
animals in the treatment group), as shown above.

In the following example, we block sex, the day at which the experiment is per-
formed, and the time of the day. It is shown as an experiment planning in which at each
cell we show the kind of animal (male or female, M or F) to be tested, and the kind
of treatment (control or treatment, C or T). We assume that we have as many males as
females available for the experiment. We see that every day there is the same number
of males and females, and treatments and controls. The same happens for every time
of the day. With this design we block three variables simultaneously and we do not
confound the effect of the day, time of day, or sex with the treatment and control.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10
9:00 FT MC FT FT MC MT MC FC MT MT
12:00 MC FT MC MC MT FC FC FT MC MT
15:00 MT MC FT FT FT FC FT MC FC FC
18:00 FC FT MC MC FC MT MT MT FT FC
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We could finish this section on blocking and randomization with a statistical mantra
for experiment design: “Control what you can, block what you cannot, and randomize
the rest”. We can control our treatments, we can block those variables that we think
may have an impact on the variability of the observations, and the rest should be ran-
domized (e.g., position of the cages in the animal house racks, the order of feeding and
treating, the person applying the treatment, the person performing the measurements,
the order of measuring, etc.).

Important remarks

5. Control what you can, block what you cannot, and randomize the rest.

1.5 Automating decision making: hypothesis testing
In God we trust, all others must bring data. (Anonymous)

In our daily research life we must continuously take decisions based on our obser-
vations: Is it worthy the new compound for the treatment of this disease? Is there a
relationship between this gene and a given phenotype? Does this drug cause an ad-
verse effect in the liver? Is the temperature in our animal house within specifications?
Each one of these questions can be answered with yes or no, and our subsequent ac-
tions depend on the answer. Hypothesis testing is a statistical tool normally adopted to
automate our decision making. For every research question and collection of indepen-
dent observations (experimental units), the methodology will produce a number (the
famous p-value) that we will compare to a prespecified threshold (typically, 0.05). If
the p-value is above this threshold we will assume a state of affairs (e.g., our drug does
not have any effect on the disease), and if the p-value is below the threshold, then we
will assume a different state of affairs (e.g., the drug improves the disease state). The
p-value is calculated assuming a particular state of the world (the null hypothesis, e.g.
the drug does not have any effect) and it is the probability of observing results at least
as extreme as the ones we have observed if the null hypothesis is true (the alternative
hypothesis, e.g. the drug does help). Particularly important is the assumption under the
null hypothesis of the statistical distribution of the observations. The p-value is correct
if, and only if, under the null hypothesis the observations really behave as assumed. If
they do not, then the p-value is only a good approximation of the true probability of
observing some results at least as extreme as the ones we have observed if the distribu-
tion of the observations under the null hypothesis does not deviate too much from the
assumed distribution. For strong deviations, the p-value is simply useless.

In hypothesis testing we must specify a null hypothesis (H0) and an alternative
hypothesis (Ha). The goal of the technique is to disprove that the null hypothesis
really represents the state of the nature. With a controlled risk of committing an error
(bounded by the level of confidence), we may reject the null hypothesis or fail to reject
it. For this reason, we must always place our research hypothesis in the alternative
hypothesis.

• Example 9: We are developing a new vaccine for a disease whose incidence is
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10% (understood as the probability of acquiring the disease within a year). We
expect that our vaccine lowers this incidence. The hypotheses to be used would
be:

H0 : πvaccine ≥ 0.1
Ha : πvaccine < 0.1

If we succeed in our vaccine, we will disprove the null hypothesis and accept
the alternative one (the probability of acquiring the disease in one year is smaller
than 10%). Except in likelihood ratio tests, by construction, the null hypothesis
has to be the complement of the alternative. That is why we have H0 : πvaccine ≥
0.1.

• Example 10: We are developing a new vaccine for a disease. In our experiment
we will have two groups of animals and both will be challenged in the same
way with the pathogen. We expect that the proportion of vaccinated animals that
acquire the disease is smaller than the proportion of control animals that acquire
the disease. The hypotheses to test are:

H0 : πvaccine ≥ πcontrol
Ha : πvaccine < πcontrol

• Example 11: For the disease of the previous two examples, we want to explore
the effect of an environmental variable to the incidence of the disease. But, ac-
tually, we do not know whether the environmental variable will promote, inhibit
or be neutral for the transmission of the disease. For our experiment, we will
have two groups, control and treatment. The treated group will be exposed to the
environmental variable, while the control will not. The hypotheses in this case
are:

H0 : πtreatment = πcontrol
Ha : πtreatment 6= πcontrol

We may have noticed that Examples 9 and 10 use inequalities (≥) while Example
11 uses an equality (=). This makes Examples 9 and 10 to be one-tail tests, and Ex-
ample 11 a two-tails test. This technical difference makes an important experimental
difference: the number of animals for one-tail tests is smaller than for two-tail tests.
The reason is that in two-tails tests we want to disprove the null hypothesis in more
cases (if the incidence in the treatment group increases or decreases), while in the one-
tail tests we want to disprove the null hypothesis only if the proportion decreases. The
extra requirements for the two-tail tests call for a larger number of animals. This is
another reason to establish correctly the way we will analyze the data before carrying
out the experiment, because its statistical power depends on the number of animals we
have chosen, and it is not the same in a one-tail than a two-tail test.

Examples 9, and 10 are examples of superiority tests (our treatment is superior to a
reference, Example 9, or a control group, Example 10). Example 11 is an example of
significance tests (our treatment is significantly different from the control). Superiority
and significance tests are the most common ones used in animal research. However,
there are other classes of tests.
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• Example 12: We are developing a generic vaccine that is supposed to work in the
same way as the reference commercial vaccine in the market. If we succeed in
such an endeavour we will reject the null hypothesis and accept the alternative
one. Consequently, we must use the equality in the alternative hypothesis instead
of the null hypothesis as we did in Example 11

H0 : πgeneric 6= πre f erence
Ha : πgeneric = πre f erence

These kinds of tests are called equivalence tests and the way to calculate the
p-value is more involved than in the case of significance tests. Similarly, the
number of animals of equivalence tests is higher than for significance tests.

• Example 13: We are developing a new vaccine that is supposed to work at least
as well as the reference commercial vaccine in the market. In this case the hy-
potheses are

H0 : πnew > πre f erence
Ha : πnew ≤ πre f erence

Note that this time the equality sign falls under the alternative hypothesis as
opposed to Examples 9 and 10 in which the equality sign fell under the null
hypothesis. These tests are called non-inferiority tests (our new drug is at least
as good as the reference), and the way to calculate the p-value and the number
of animals is different from the significance tests.

It is important to correctly set from the beginning the kind of test because it af-
fects the number of animals required for our experiment, and because if incorrectly
set, we will never be able to prove our research hypothesis (remember that the research
hypothesis goes to the alternative hypothesis). We can reject the null hypothesis and,
consequently, accept the alternative hypothesis. We have succeeded in proving that the
null hypothesis is false. But we can never accept the null hypothesis, simply we have
failed to prove that the null hypothesis is false. It is like in legal trials, we accumu-
late evidences to disprove the innocence of the defendant, but we can never prove his
innocence (many trials absolve the defendant because there not enough evidences of
his guilt). In hypothesis testing, each new observation brings new evidence about the
falseness of the null hypothesis until there is so much evidence (the p-value is so low)
that we reject the possibility that the null hypothesis describes the state of the nature.
The following example shows why failing to show the falseness of the null hypothesis
does not automatically imply that it is true.

• Example 14: Michael Jordan (of the Chicago Bulls) and I go to play some bas-
ketball together. We try 7 free throws and he scores 7 (of 7) and I score 3 (of 7).
Do Michael Jordan and I have the same skill in scoring free throws? Do we have
the same success probability?

H0 : πJordan = πme
Ha : πJordan 6= πme

The p-value of this experiment is 0.062, as it is above 0.05, with a confidence
level of 95% we cannot reject the hypothesis that Michael Jordan and I have the
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same scoring probability in free throws. But it does not mean that Michael Jordan
and I do have the same scoring probability. It means that, with the acquired
evidence, we cannot reject the hypothesis that we are equally good (if we make
a longer experiment with more free throws, it would become clear that we do not
have the same skills).

In animal research, the example above shows that we can never accept the null hypoth-
esis, simply we did not accumulate enough evidence to show it is false. That is why
calculating the sample size in advance is so important. We will determine the smallest
difference we want to detect, then we can calculate the number of experimental units
needed to detect that difference. For instance, if we want to detect a difference of at
least 50% when the percentage of Michael’s free throws is about 85%, then we will
need at least 22 free throws each. If we want to detect a difference of at least 5%
between Michael Jordan and Larry Bird (of Boston Celtics), then the number of free
throws rises to 1,252. (For the curious, the historical percentage of free throws of Larry
Bird was 88.6% and the one of Michael Jordan 83.5%.) The smallest size we want to
detect, the 50% or 5% in the example of Michael Jordan, is called the effect size and
we need to specify it in advance in order to calculate the number of animals required
for our experiment. By specifying the effect size, we are specifying the sensitivity of
our experiment and will adjust accordingly the number of animals to our sensitivity
requirements.

Important remarks

6. The smaller the difference we want to detect (the effect size), the larger the
number of experimental units required for the experiment.

7. We can reject or not the null hypothesis.

8. Failing to reject the null hypothesis does not make it true.

1.5.1 An intuitive introduction to hypothesis testing
The goal of this section is to give a non-technical insight into the hypothesis testing
procedure. The reader is referred to Ellenberg (2014) for an excellent general pub-
lic book on statistical, and mathematical in general, thinking. Ellenberg manages to
smoothly introduce the reader into many complex statistical concepts.

As we have already stated, the goal of hypothesis testing is to disprove the null
hypothesis. The p-value is a measure of our “surprise” to see the observed results if the
null hypothesis is true. Suppose we are studying the effect of a new drug. For doing
so, we follow 100 animals with a particular disease that has a mortality of 10%. Half
of the animals receives the drug, while the other half does not. On average we should
expect to have about the same number of deaths in both groups (about 5, that is, 10%
of 50), if the drug does not help the animal to overcome the disease. Actually, seeing
exactly 5 deaths in one of the groups, although it is the most likely event, it has only
a probability of 18.5%, and there are other frequent events as seeing only 3, 4, 6 or 7
deaths. Also, having exactly the same number of deaths in both groups is a relatively
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infrequent result even if the drug does not help. Assuming that the drug does not help,
the null hypothesis is true, only in 13.3% of the experiments we will see this result,
while in 43.3% of the experiments we will see more deaths in the control group, and in
43.3% of the experiments we will see more deaths in the treated group. In other words,
simply seeing fewer deaths among the animals receiving the drug is not a guarantee
that the drug is working.

Assume we do not see any death in the treated group. Each of the animals has a
survival probability of 0.9. So, if the null hypothesis is true (the drug does not cure
this disease), observing 50 survivals occurs with probability 0.950 = 0.005, i.e., only
in 1 of 200 similar experiments in which the drug does not help. Consequently, after
seeing this results, we would be rather surprised that the drug does not help. The p-
value quantifies this surprise (the calculation of the p-value for the comparison of two
groups is different from the 0.950 that we have shown above, but this number illustrates
the idea in a very simple manner). Once we have calculated the p-value, we need some
mechanism to take the decision of whether it is worthy to continue studying this drug,
or we should devote our efforts to some other candidate. This is done by comparing
the p-value to a pre-established threshold (typically, 0.05, that is 1 in 20). If the p-
value is below this threshold, we declare the drug effects as significantly different from
no effect. Note that the goal of hypothesis testing is helping us to take a decision, not
revealing the truth. The truth will always remain unknown because we might have been
unlucky with our sample (Type I and II errors in the following section). However, if
our experimental design is sufficiently powered (1−β in the following section, that is,
if we have tested enough individuals) and the drug effect is declared non-significant, it
does not mean that the drug exerts no effect at all (it is hard to think that a chemical
compound goes totally unnoticed in an organism), but its effect is sufficiently small as
to not to be distinguished among the biological and measurement variability normally
observed in animals. Consequently, very likely this compound does not deserve further
efforts.

Note that the expression “statistically significant” does not mean “practically im-
portant”, it simply means that its effect is clearly different from the effect expected
under the null hypothesis. The difference could be still small enough to be of practical
importance. For instance, if a drug significantly increases the risk of blood clotting
(could result in a severe or fatal event) with respect to another treatment by a factor
two, this is not a sufficient reason to abandon the treatment. If the probability of blood
clotting of the first treatment is very small, twice this probability is still very small, and
the benefits of the drug in many other aspects may largely compensate the risk increase.

We have to be careful with the 0.05 threshold of the classical statistical testing.
This threshold implies that, on average, in 1 out of 20 experiments in which the drug
does not make a difference, we will declare its effects as significantly different from no
effect. If we are screening thousands of compounds (technically this problem is known
as multiple testing), this is a very large number of false positives and some correction is
needed (see Sec. 1.5.3). The same happens in other contexts in which many statistical
tests are performed. In functional Magnetic Resonance Imaging, fMRI, of the brain,
each voxel is statistically compared to some background distribution to determine if it
is activated or not, if there is brain activity at that location or not. This is very useful
to map the brain regions in charge of the different cognitive or physiological tasks.
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However, Bennett et al (2009) warns against uncorrected tests as they might result in
significantly activated brain areas in dead salmons! When the multiple testing cor-
rections are performed, these significantly activated brain areas disappear, as expected
from a dead body.

The problem with the threshold of 0.05 (on average, 1 in 20 experiments in which
the null hypothesis is true is declared to have statistically significant results) is that it
is too high, leading to many false positives. The following example is taken from El-
lenberg (2014). Imagine that we are haruspices trying to predict the outcome of given
events by reading the entrails of sacrificed animals. We try to predict the price of the
NYSE and we fail, to predict the next U.S. president and we fail, to predict the con-
sumption of natural gas next winter and we fail, ... We fail in most of our predictions,
but thanks to the gods, we successfully predict the occurrence of an earthquake next
month. Our predictions had a p-value below the well accepted threshold of 0.05 and we
are allowed to publish our results in the International Journal of Haruspicy. Reading
the entrails of animals are not related at all with any of our predicted outcomes (the null
hypothesis is true in absolutely all of our experiments). But as we, and the thousands of
other haruspices around the world, are making “random” predictions, just by chance,
on average, 1 in 20 of those predictions will fall below the 0.05 decision threshold.
This is nothing but the verification of the principle that improbable events are not im-
possible, and actually they occur (the probability of winning the lottery is extremely
small, but among the many lottery players, one of them is winning). Fisher, one of
the fathers of statistical inference, wrote that “A scientific fact should be regarded as
experimentally established only if a properly designed experiment rarely fails to give
this significance level”. The important part is “a properly designed experiment rarely
fails to give”, and not “succeeds once in giving”. This calls for either extremely low
p-values (say, 10−6, see Sec. 1.5.3, although this number is not meant in any way as
a suggested threshold of anything, but just as an illustration of what a extremely low
p-value means) or confirmation of the results by further experimentation. Biomedical
research is not haruspicy, but in recent years there have been important alarms about
the reproducibility of research studies (Ioannidis, 2005; Begley and Ioannidis, 2015;
Baker, 2016). There are systemic reasons for this like systematically small experi-
mental groups, the pressure to publish significant results, the fact that negative results
cannot normally be published, the fact that the same or similar problems are studied
by many groups worldwide and, just by chance, one of them gets a significant result,
the fact that results tend to be published only once (if it is a positive result, a second,
third, ... group cannot normally publish the confirmation of the result; and if it is a
negative result it is more difficult to publish because it goes against the “established,
peer-reviewed” previous result), the researcher freedom to choose the data to analyze
and the analysis technique (Ioannidis, 2005; Simmons et al, 2011), etc. In the case of
haruspicy we may quickly realize that our statistically significant prediction belongs
to the Type I error class (the p-value was significant just by chance, because the null
hypothesis -entrails cannot predict future events- is always true). But in the case of
the relationship of a particular gene to a particular disease, our intuition is much less
protected (because we know that genes and diseases are connected).

One of the problems of the standard hypothesis testing is that it does not take into
account prior probabilities. To illustrate the problem, let us consider the following
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Table 1.6: Average number of genes in each of the situations (P represents protein and
D disease).

P related to D P not related to D Sum
Test statistically significant 9 5,000 5,009

Test not statistically significant 1 94,990 94,991
Sum 10 99,990 100,000

scenario. The human proteome is made of approximately 100,000 proteins. Out of
which, let us say that only 10 are actually related to any particular disease (the prior
probability of any randomly taken protein being related to that particular disease is
10/100,000=10−4). If we make a standard statistical test with all proteins with the
standard parameters (confidence level of 95% and statistical power of 90%, see next
section for the formal definition of these parameters) we would end, on average, with
the distribution shown in Table 1.6. The statistical test is not the problem: the pro-
teins that are not related to the disease rarely pass the test, and most of the proteins
that are related to the disease pass the test. The problem is that the number of genes
not related to the disease are massively preponderant with respect to the proteins that
are related to the disease. If we incorporate our knowledge about the prior probability
of a randomly chosen protein being related to that particular disease (already reflected
in Table 1.6), what is called a Bayesian approach, then the probability that the protein
is actually related to the disease knowing that the test is statistically significant is only
9/5,009=0.0018. In other words, only in 0.18% of the experiments in which the sta-
tistical test states that the protein is related to that particular disease, this statement is
correct. Under this point of view, we better understand that a statistically significant
result opens an interesting research line that requires more investigation and confir-
mation by similar or related experiments. Genomics and Proteomics data analysis are
well aware of this problem, and they duly take countermeasures (see Sec. 1.5.3). How-
ever, in many biomedical domains we do not know the a priori probabilities, and we
do not simultaneously perform thousands of tests as to take multiple testing protec-
tions. But, when we consider the number of experiments performed in the lifespan of
a single researcher, we wonder if we should have not increased the confidence level of
our statistical tests. As researchers, we are saved by the fact that we do not perform a
“randomly chosen experiment” among a “universe of 100,000 possible experiments”,
but we carefully choose the experiment we will perform “among the universe of ex-
periments that our current knowledge predicts that they have higher chance of giving a
positive result”. But in any case, it is important being aware of this problem of repro-
ducibility before we launch ourselves at reporting statistically significant findings.

1.5.2 Statistical power and confidence

Table 1.7 shows the different situations we may encounter when performing an hypoth-
esis test. In reality, H0 can be true or false, and our hypothesis test may reject it or not.
If H0 is false and we rejected it, we made a correct decision. The same if H0 is true and
we cannot reject it. However, there are two situations in which we can make wrong
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Table 1.7: Possible situations encountered when performing an hypothesis test

H0 is false H0 is true
H0 is rejected True Positive (Correct) False Positive (Type I error)

H0 is not rejected False Negative (Type II error) True Negative (Correct)

decisions: 1) if H0 is true and we reject it (false positive), and 2) if H0 is false and we
cannot reject it (false negative). In the statistical literature, the first kind of errors are
called Type I errors, while the second Type II errors. A test is said to be positive if
H0 is rejected, and negative if H0 cannot be rejected. In this way, Table 1.7 also labels
each one of the situations as true or false positive or negative.

• Example 15 (Type I error): Let us assume that H0 is “the new vaccine does not
reduce the probability of infection” (H0 : πvaccine ≥ πcontrol , see Example 10 in
the previous section). Let us also assume that in reality, this statement is true. If
we commit a Type I error, after analyzing our observations we would incorrectly
believe that the new vaccine reduces the probability of infection and we would
keep on working on its development, even if in reality the new vaccine is useless.

• Example 16 (Type II error): Let us assume that H0 is “the new vaccine does not
reduce the probability of infection” (H0 : πvaccine ≥ πcontrol , see Example 10 in
the previous section). Let us also assume that in reality, this statement is false and
our new vaccine is really effective. If we commit a Type II error, after analyzing
our observations we would incorrectly believe that the new vaccine is useless,
and we will stop researching into it, abandoning a research line that could have
led to a successful vaccine.

The statistical theory for hypothesis testing explicitly controls the probability of
committing Type I and II errors assuming that we correctly identified the distribution
of the observations if the H0 is true. These probabilities are called α and β respectively.
Traditionally, α is set to 0.05, that is in 5% of our experiments in which the new vaccine
is not useful, we will incorrectly believe it is helpful. There is nothing special about the
number 0.05 except tradition. We could have lowered it to 0.5%, and we would be even
more conservative stating that a new treatment is useful only if there is much evidence
supporting it (actually, this suggestion has been recently proposed as a way to increase
the reproducibility of biomedical experiments, Benjamin et al (2018); on a related
topic Simmons et al (2011) has shown that the freedom of the researcher to choose the
variables to study from a set of collected data could effectively raise the Type I error
up to 60%). The complement of α , that is 1−α , is called the statistical confidence,
and it is traditionally set to 95%. There is less consensus about β , but typical values
are 10% or 20%, meaning that in 10% or 20% in which the new treatment is useful we
will miss this effect, and incorrectly believe that it is not. Larger values of β are not
so sensible because it would mean that in our experimentation we would miss many
useful treatments and it compromises the ultimate goal of experimental research. As
an extreme example, if β = 0.5 we might as well have tossed a coin. The complement
of β , that is 1−β , is called the statistical power.
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These probabilities are calculated assuming that if H0 is true, we correctly know the
distribution of the observations and that errors are strictly caused by sampling errors.
In some experiments we may have been “unlucky” with the animals in our experiment
which are “extremes” of the distribution if H0 is true, leading us to incorrect conclu-
sions. The way of controlling the Type I and II errors is by calculating the sample size
needed to maintain these probabilities under desired upper bounds (typically α = 0.05
and β = 0.1 or 0.2). However, sample size calculations assume that sampling errors
are the only ones in place. Systematic errors (see Section 1.3) completely invalidate
the calculations and will result into much higher error probabilities.

For experiments with live animals it is essential to use 3Rs principles; carrying
out a power calculation is an excellent way to produce a robust justification of animal
numbers for funding bodies and regulatory authorities.

Important remarks

9. For a fixed confidence level and effect size, increasing the number of an-
imals increases our statistical power: if our treatment makes a difference,
we will detect it with more probability.

10. For a fixed confidence level and statistical power, increasing the number of
animals increases our experiment sensitivity (the detectable effect size is
smaller): if our treatment makes a small difference, we will detect it (with
the probability specified by the statistical power).

11. By calculating the sample size before performing the experiment we can
control the Type I and II errors at will, assuming that there are not system-
atic errors causing bias.

It is important to realize at this point that the p-value itself is also a random variable
(Boos and Stefanski, 2011). If we repeat the same experiment from the same population
(but different realization of the sample), we would get different results.

• Example 17: We perform an experiment in order to determine if there is any
difference in the systolic blood pressure between two mouse strains. We want to
have a statistical power of 80% if the difference between the two strains is larger
than 20 mmHg. We assume that the standard deviation of the measurements in
each one of the groups is also 20 mmHg. For a confidence level of 95%, we need
a sample size of N1 = N2 = 17 animals per group.

In Fig. 1.4 we show the p-values and the confidence intervals for 1,000 simulated
experiments in which the true underlying difference is 20 mmHg. We can see
that the p-values range from highly significant results (p-value< 10−8) to non-
significant p-values (the maximum p-value is 0.935).

Important remarks
From the previous example we draw several conclusions:

12. The p-value is itself a random variable with a large variability. Due to
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Figure 1.4: Top: Histogram of p-values (represented in logarithmic scale) of 1,000
simulated experiments as the one described in Example 17 in which the true underlying
difference between the two groups is 20 mmHg. Bottom: Confidence interval of some
of the experiments. On the left scale, we see the logarithm of the p-value of that
experiment. We have labeled the experiments and p-values with *** if the p-value is
smaller than 0.001, ** if it is smaller than 0.01, and * if it is smaller than 0.05.
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random sampling we may have experiments with the same underlying truth,
but some of them are not significant and others have a significance of 10−8.
Even, among the significant results, there are several orders of magnitude
of difference between experiments (the effective range of significant results
span from 10−1.3 to about 10−5.5).

13. The example shows that if we get a p-value of 10−5 in an experiment it
does not mean that if we repeat the experiment we will most likely get a
highly significant result (in the example, experiments with 10−5 had the
same underlying truth as experiments with 10−1 or 10−0.5). Actually, if
the p-value is at the significance threshold (typically, 0.05), then there is a
probability of 50% of repeating the experiment and having a result in either
side (significant or non-significant, Greenwald et al (1996)).

14. The freedom of many researchers to choose the data and the variables that
participate in the analysis may inflate the effective false positive rate (Type I
errors, α) well above the 0.05 level (up to 0.6 as reported by Simmons et al
(2011)). The solution suggested by these authors is reporting the specific
choices performed, all the data measured, and the analysis with and without
the removed data.

15. Confidence intervals are much more stable and they do not exhibit these
wild variations (Cumming, 2008). Even, some of the non-significant re-
sults show confidence intervals that point to “almost significant” results. In
these cases, repeating the experiment with a higher statistical power would
help elucidating whether there is really a difference between both groups or
not. There have been recent alarms on the reproducibility of experiments
in Science (Begley and Ioannidis, 2015; Baker, 2016) and its economical
impacts (Freedman et al, 2015). Among many other reasons, experiments
with low statistical power and poor (but significant p-values) are behind
this recent concern. There has been a recent and very simple proposal to
increase the reproducibility in many experiments, simply by lowering the
significance threshold from 0.05 to 0.005 and relabelling the experiments
with p-values in the range 0.05 to 0.005 as suggestive results (Benjamin
et al, 2018).

1.5.3 Multiple testing
As presented above, the probability of Type I and II errors refer to a single hypothesis
test. However, in current research, the technology allows us to perform many simul-
taneous tests. For instance, in drug screening we can test the effect of thousands of
compounds on a cell culture, or microarray experiments give the expression level of
thousands of genes. Let us illustrate the problem of multiple testing with microarray
experiments. The current methodology to analyze gene expression (Allison et al, 2006)
is much more involved than the extremely simplified version exposed in this chapter.
But it illustrates the need for developing more advanced statistical tools.

Let us assume that we measure the gene expression level of 20,000 genes in a group
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Table 1.8: Average number of genes in each of the situations.

H0 is false H0 is true Sum
H0 is rejected 900 950 1,850

H0 is not rejected 100 18,050 18,150
Sum 1000 19,000 20,000

of healthy animals and a group of diseased animals. We want to identify those genes
that are related to our disease (the relationship can be causal, a change on the expression
of this gene is partially causing the disease, or consequential, the expression of this gene
is changed because there are other genes that have also changed their expression level).
Let us assume that 1,000 of the genes are truly affected by the disease. However, this
number is unknown to us and that is why we are performing the experiment. For each
gene, we perform an hypothesis test

H0 : µhealthy = µdisease
Ha : µhealthy 6= µdisease

Let us assume that we design our experiments with 90% of statistical power and 95%
statistical confidence. Due to Type II errors, of the 1,000 related genes, we will cor-
rectly identify 900 and miss 100. Of the 19,000 unrelated genes and due to Type I
errors, we will incorrectly think that 950 of them are related to the disease. All these
information is shown in Table 1.8.

From the experiment we will obtain 1,850 (=900+950) positives. Once the hypoth-
esis test rejects the null hypothesis, the probability that the gene is actually related to
the disease (it is a True Positive given it is a Positive) is

pT P|P =
900

1,850
= 48.6%

That is, more than half of the related genes are False Positives, instead of the 5% used
in the design. This ratio is called the False Discovery Rate . We have encountered two
problems in this example: 1) Typical experiment designs do not consider the a priori
probability of H0 being true; 2) The confidence level considers a single test and not a
family of tests. The first problem can be addressed through Bayesian sample size de-
termination (Adcock, 1997). The second problem through multiple testing correction.
Most of them change the α value to be used in sample size determination and hypoth-
esis testing considering the total number of tests to be performed, K. The K tests still
have a specified family Type I error (typically α f amily = 0.05), but each individual test
has a much smaller α . A well-known correction is the Bonferroni correction:

α =
α f amily

K

This is too conservative and other corrections have been suggested like Sidak

α = 1− (1−α f amily)
1
K
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A very popular approach to control the family Type I error is the Benjamini-Hochberg
procedure. First, we sort the K p-values of the K tests in ascending order (p1, p2, ..., pK).
Second, we reject the null hypothesis for the k-th test if

pk ≤ k
α f amily

K

Once we cannot reject the null hypothesis for the test k0, we cannot reject it for k > k0.

Important remarks

16. Significance answers the questions:

• If H0 is true, what is the probability of incorrectly rejecting it?

• Of all the experiments you could run in which H0 is true, what is the
fraction in which you will reach the conclusion that the results are
statistically significant?

Power answers the questions:

• If H0 is false, what is the probability of correctly rejecting it?

• Of all the experiments you could run in which H0 is false, what is
the fraction in which you will reach the conclusion that the results are
statistically significant?

False Discovery Rate answers the questions:

• If a result is statistically significant, what is the probability that H0 is
true?

• Of all the experiments that reach a statistically significant conclusion,
what is the fraction in which H0 is true?

17. Significance level, statistical power and FDR depend on the sample size,
the effect size and the population variance. The following analog explains
these ideas. You send your child into the basement to find a tool. He comes
back and says “It isn’t there”. What do you conclude? Is the tool there (H0)
or not (Ha)? Your conclusion depends on:

• How long the kid has been looking for. (sample size)

• How large the tool is (it is easier to find a snow shovel than a small
screw-driver to fix glasses). (effect size)

• How messy the basement is. (population variance)

1.5.4 A worked example
Let us now illustrate all these ideas with a particular example. In the following we
provide an extremely simplified model of the functioning of a thermostat that keeps
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constant the animal house temperature. It will serve our illustration purposes, but a
real operation of a thermostat would require at least two hypothesis tests because the
temperature is specified to be within a range, and not a single value as in our example,
and because there are variations of the temperature along the day that are not considered
by our simplified model.

Let us assume that we are in charge of the thermostat of the animal house and that
our aim is to keep constant the animal house temperature at a fixed value of 21◦C. Un-
der normal operation, the temperature mean is µ = 21◦C, temperature measurements
are Gaussianly distributed, and they have a standard deviation of σ = 0.5◦C. We mea-
sure the temperature once every hour, and we compute an average using the last 24
measurements. In a particular day, our average is 20.76◦C, that is not exactly 21◦C,
but it is not too far either. Should we assume that the thermostat is malfunctioning,
and take the necessary compensatory actions? Doing it when it is not necessary in-
curs some operational costs, conversely not doing it when it is necessary biases all the
experiments in the animal house.

Hypothesis testing provides a simple mechanism of taking these decisions. It com-
putes the probability of the observing a value at least as extreme as the one we have
observed, 20.76◦C, if the thermostat is working correctly. This probability is known as
the p-value, which in this case is 0.0188 as we will justify below. This value is smaller
than 0.05, consequently, we would reject the hypothesis that the thermostat is working
correctly and go for maintenance. In the following we show how we have arrived to
this probability.

Let us assume that we take a single measurement of the temperature. This observa-
tion is 21.17◦C. At this moment, our best estimate of the mean is

µ̂ = 21.17

and our uncertainty about the mean (measured as the standard deviation of our estimate)
is the same as the variability of the underlying measurements

σµ̂ = σ = 0.5

Fig. 1.5 shows the presumed distribution of the temperature measurements if the ther-
mostat is working correctly. It shows our, for the moment, single observation, and with
this observation, the observed mean and the uncertainty about the location of the actual
mean.

After two hours we have collected two more samples of the temperature (20.52 and
21.55). At this moment, our best estimate of the underlying mean is

µ̂ =
21.17+20.52+21.55

3
= 21.08

and we have reduced our uncertainty thanks to the acquisition of more information (see
Fig. 1.6)

σµ̂ =
σ√

3
=

0.5√
3
= 0.29
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Figure 1.5: Blue: Presumed distribution of the measurements if the thermostat is work-
ing correctly. Red: One observation of the temperature. Black: A posteriori distribu-
tion of the mean after one observation.
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Figure 1.6: Blue: Presumed distribution of the measurements if the thermostat is work-
ing correctly. Red: Three observations of the temperature. Black: A posteriori distri-
bution of the mean after three observations.
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As we acquire more and more samples, the uncertainty about the mean is further
reduced. After 24 samples, our estimate of the mean is the average of the last 24
samples, that is, 20.76 and the uncertainty has been reduced to (see Fig. 1.7)

σµ̂ =
σ√
24

=
0.5√

24
= 0.10

At the sight of this figure we see that, although 20.76◦C is rather close to 21◦C, with the
acquired evidence, it would be rather unlikely that the true underlying mean is 21◦C.
We need now some mechanism to determine whether we should reject the hypothesis
that the thermostat is correctly working or not.
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Figure 1.7: Blue: Presumed distribution of the measurements if the thermostat is work-
ing correctly. Red: 24 observations of the temperature. Black: A posteriori distribution
of the mean after 24 observations.

This tool is hypothesis testing. Our null hypothesis is that the thermostat is correctly
working:

H0 : µ = 21
Ha : µ 6= 21

We need to know the distribution of a random variable, also called a statistic, if the null
hypothesis is true. In the case that the measurements are normally distributed and their
standard deviation is known, such a statistic is

z =
µ̂−µ0

σ√
N

∼ N(0,1) (1.12)

that is the difference between the observed mean, µ̂ , and the reference mean, µ0 (in
our example µ0 = 21, over the standard deviation of our mean estimate is Gaussianly



1.5. AUTOMATING DECISION MAKING: HYPOTHESIS TESTING 59

distributed with 0 mean and standard deviation 1. If we plug in our data, we obtain

z =
20.76−21

0.1
=−2.35

The probability of observing a value as extreme as -2.35 (or lower) or 2.35 (or upper)
is 0.0188, that is, if the null hypothesis is true (and the thermostat is correctly working)
we would only observe a z statistic as large as 2.35 or larger in only 1.88% of the
experiments taking 24 independent samples (see Fig. 1.8). This 0.0188 is the p-value.
We reject the null hypothesis if this p-value is below a given threshold, typically 0.05(=
α). Consequently, in this example we would reject the hypothesis that the thermostat
is correctly working and go for maintenance. The two vertical dashed lines are located
at the z values for which the area in the central region is 95%(= 1−α) and they are
represented as z α

2
and z1− α

2
, meaning that the area from −∞ to these two points are α

2
and 1− α

2 , respectively.
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Figure 1.8: The red shaded area is the probability of observing a z statistic as large as
-2.35 or larger (in absolute value) if the null hypothesis is true. The two vertical dashed
lines indicate the z statistic for which that area is 0.05.

Fig. 1.8 shows the rejection area in terms of the z statistic, but we could map it
back to the temperature space (see Fig. 1.9), by exploiting

z =
µ̂−µ0

σ√
N

⇒ µ̂ = µ0 +
σ√
N

z (1.13)

that is,

µ̂ ∼ N
(

µ0,
σ2

N

)
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In plain words, our estimate of the mean if the null hypothesis is true has mean µ0 and
variance σ2

N (remember that the variance is the square of the standard deviation).

20.6 20.7 20.8 20.9 21 21.1 21.2 21.3 21.4

Temperature

0

0.5

1

1.5

2

2.5

3

3.5

4

L
ik

e
lih

o
o
d

Figure 1.9: The red shaded area is the probability of observing a sample mean as far
from 21◦ as 20.76 or further if the null hypothesis is true. The two vertical dashed lines
indicate the temperatures for which that area is 0.05.

1.6 A primer in sample size calculations
We can at this point partly understand the logic behind sample size calculation. When
we do the experiment we will reject the null hypothesis if our sample mean is further
than a given distance from the reference temperature, 21◦C, see Fig. 1.9 and Eq. 1.13:

µ̂−µ0
σ√
N

< z α
2

or
µ̂−µ0

σ√
N

> z1− α
2

(1.14)

Because of the symmetry of the Gaussian function this is equivalent to∣∣∣∣∣ µ̂−µ0
σ√
N

∣∣∣∣∣> z1− α
2

For α = 0.05, z1− α
2

takes the value 1.96. The distance |µ̂−µ0| is called the effect size,
and it is the minimum difference from the reference mean that we will be able to detect
with a Type I error of α . Let us rewrite the effect size as ∆. We may rearrange the Eq.
1.14 and solve for the sample size

N >

( z1− α
2

σ

∆

)2

=

( z1− α
2

∆/σ

)2

(1.15)
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If we want to detect with a confidence of 95% a change of 0.25◦C in our thermostat
example, whose standard deviation is 0.5◦C, then we simply need to plugin our speci-
fications into Eq. 1.15

N >

(
1.96

0.25/0.5

)2

= 15.36

That is, we need at least 16 samples to detect such changes. With temperature samples,
we may use more if desired, but with animal samples, we run into ethical and econom-
ical considerations (why use more animals in an experiment, whose goal has a strong
likelihood of being achieved with fewer animals?).

An interesting consequence of Eq. 1.14 is that the effect size and the sample size
are linked. If we fix the effect size, then we can calculate the sample size required
for detecting it, as we have done in the previous paragraph. If we fix the number of
samples, then the effect size adapts consequently. If we keep running our experiment
with 24 samples, then we will be able to detect an effect of (see Eq. 1.14)

∆ > 1.96
0.5√

24
= 0.2◦C

As expected, with more than 16 samples, we will be more sensitive (0.2◦C < 0.25◦C).
However, this relationship is not linear, twice the number of samples does not imply
a reduction the effect size to a half (the corresponding effect size for N = 32 mea-
surements is ∆ > 0.17◦C). This nonlinear relationship comes from the square root that
participates in the formula.

The example above has given us some intuition on how we may calculate the sam-
ple size for our experiment:

1. We need to know how the data will be analyzed: we will perform an hypothesis
test in which the null hypothesis is of the form H0 : µ = µ0. We will assume that
the samples are normally distributed, and we will reject the null hypothesis with
a Type I error rate of α .

2. We need to determine the effect size that we want to detect, that is, the minimum
departure from the null hypothesis we want detect with the specified confidence
(1−α).

However, in this design we have not considered Type II errors (the thermostat is not
working correctly, but with a small sample size, I fail to prove it). Let us assume that
we want to have a statistical power of 80% in detecting an effect size of ∆ = 0.25◦C.
That is in 80% of the experiments in which the departure from the reference mean,
21◦C, is ∆, we will correctly reject the null hypothesis in 80% of the cases (β = 0.2).
Fig. 1.10 shows this situation. The distribution of the sample mean under the null
hypothesis is still represented in blue and it is centered around 21◦C. Before performing
the experiment we cannot know whether the thermostat is malfunctioning due to an
excessively low or high temperature, and we will have to do the sample size calculation
for both cases.

• Excessively low temperature. Let us assume that the thermostat is actually mak-
ing the temperature to be lower than the reference. As our effect size is 0.25◦,
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Figure 1.10: The red shaded area is the probability of observing a sample mean as far
from 21◦C as 0.25◦C or further if the null hypothesis is true. Departures can be above
or below 21◦ resulting in two possible distributions (see text).

the distribution of the sample mean under the alternative hypothesis is centered
around µ1 = 20.75◦C. The variance is still given by σ2/N because it only de-
pends on the variance of the samples and the number of samples. When the
experiment is carried out, we will reject the null hypothesis if the observed sam-
ple mean is outside a given region. Then, we must set the number of samples,
such that the probability of not rejecting the null hypothesis when the thermostat
is causing a lower temperature is β . That is, the blue area in Fig. 1.10 coming
from the left Gaussian must be β (=0.2 in our example). Summarizing, we must
find a number of samples such that the red area on the left is α/2(=0.025) and
the blue area is β (=0.2). At the left rejection border, if the null hypothesis is true,
we must have:

Pr

{
µ̂−µ0

σ√
N

< z α
2

}
=

α

2

For α = 0.05, z α
2
=−1.96 (note that it is a negative value). The critical value at

which we will reject the null hypothesis is

µ̂crit = µ0 +
σ√
N

z α
2

If the alternative hypothesis is true, this critical value has a normalized position
given by

za
crit =

µ0 +
σ√
N

z α
2
−µ1

σ√
N

=
∆

σ√
N

+ z α
2
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The Type II error probability is given by the probability under the alternative
hypothesis of z being larger than za

crit . If we want this probability being β , we
must have

Pr{z > za
crit}= β = Pr

{
za > z1−β

}
or what is the same

za
crit = z1−β

∆
σ√
N
+ z α

2
= z1−β

From the latter equation, we deduce that

N =

( z1− α
2
+ z1−β

∆/σ

)2

(1.16)

where we have made use of the fact z1− α
2
=−z α

2
.

• Excessively high temperature. Let us now assume that the thermostat is making
the temperature to be higher than the reference. Now the distribution of the
sample mean under the alternative hypothesis is centered around µ1 = 21.25◦C.
We may now make the reasoning as we did in the previous case, we must find a
number of samples such that the blue area of the right Gaussian is β and the red
area on the right is α/2. At the right rejection border, if the null hypothesis is
true, we must have:

Pr

{
µ̂−µ0

σ√
N

> z1− α
2

}
=

α

2

For α = 0.05, z1− α
2
= 1.96. The critical value at which we will reject the null

hypothesis is
µ̂crit = µ0 +

σ√
N

z1− α
2

If the alternative hypothesis is true, this critical value has a normalized position
given by

za
crit =

µ0 +
σ√
N

z1− α
2
−µ1

σ√
N

=
∆

σ√
N

+ z1− α
2

The Type II error probability is given by the probability under the alternative
hypothesis of z being smaller than za

crit . If we want this probability being β , we
must have

Pr{z < za
crit}= β = Pr

{
za < zβ

}
or what is the same

za
crit = zβ

∆
σ√
N
+ z1− α

2
= zβ

From the latter equation, we deduce that

N =

( z1− α
2
+ z1−β

∆/σ

)2

(1.17)



64 CHAPTER 1. WHY DO WE NEED A STATISTICAL EXPERIMENT DESIGN?

where we have made use of the fact z1−β =−zβ . Because of the symmetry of the
distributions involved, solving for N in this case also results in the same sample
size calculated in Eq. 1.16.

For the specifications of the thermostat (∆ = 0.25, α = 0.05 and β = 0.2) we have

N =

(
1.96+0.84

0.25/0.5

)2

= 31.40

That is, we need at least 32 samples to detect a departure of 0.25◦C from the reference
temperature with a statistical confidence of 95% and a statistical power of 80%. In this
sense, we realize now that with 24 samples, we were having a much smaller statistical
power (69%) to detect deviations of 0.25◦C.

Sample size lessons
The main formula for the sample size calculation in the example above was

N =

( z1− α
2
+ z1−β

∆/σ

)2

This formula already shows the ideas exposed in Sec. 1.5:

Important remarks

18. The sample size (N), effect size (∆), statistical confidence (1−α) and sta-
tistical power (1−β ) are linked by a single formula. Fixing three of them
automatically fixes the fourth one.

19. More important than the effect size in itself, ∆, is the relationship (∆/σ )
between the effect size and the variance of the observations, σ . We may
regard this ratio as a target Signal-to-Noise Ratio (SNR), and it is called the
normalized effect size.

20. Increasing the statistical confidence or power results in a larger number of
samples, since z1− α

2
and z1−β increase.

21. Smaller normalized effect sizes result in larger number of samples, since
we want to be more sensitive.

22. Let us summarize the procedure followed to find the sample size:

(a) We have constructed a statistic, z, whose distribution is known under
the null hypothesis.

(b) We have found a critical value of this statistic beyond which we will
reject the null hypothesis. This critical value fulfills

Pr{z > z1− α
2
}= α

2
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(c) We have translated this critical value of the statistic into a critical
value of our observation, µ̂crit .

(d) Then, we have calculated the Type II errors associated to this value if
the alternative hypothesis were true.

Pr{za < za
crit}= β

The design equations can be summarized as finding the minimum N for
which

Pr
{

z < ∆
σ√
N
+ z1− α

2

}
< β (1.18)

In this case, this procedure has resulted in a closed form formula for the N.
However, this is not the situation, in general. Instead, we can progressively
increase the sample size until the criteria of statistical confidence (1−α)
and power (1−β ) are satisfied.

The sample size is tightly connected to the data analysis procedure, in particular
the hypothesis test, that we will perform once the experiment is finished. The specific
hypothesis test implies a statistic, in our example the z statistic, whose distribution
under the null and alternative hypotheses must be known. This knowledge is the one
that allows relating the sample size to the statistical confidence and power, resulting in
a useful equation that can be used to calculate the sample size.

Important remarks

23. Each hypothesis test implies its own sample size formula. There is no “uni-
versal” sample size formula valid for all experiments and situations. Also,
we must pay careful attention to the assumptions of the hypothesis test (dis-
tribution of the observations, known parameters, the specific null and alter-
native hypotheses, ...).

Non-parametric tests are often used if the experimental data does not fulfill the distri-
butional assumptions of parametric tests. Unfortunately, except for some few cases,
there is no easy relationship between non-parametric hypothesis tests and the sample
size. A perfect solution would be simulating the experiment many times and adjusting
the number of samples to the required confidence level and statistical power. However,
these simulations are normally out of the reach of many researchers. The common al-
ternative is to design the sample size as if we were going to perform a parametric test,
and then correct by some “safety” factor that increases the sample size accounting for
the fact that our uncertainty is larger since we do not know the statistical distribution
of the observations. In this way, the sample size is calculated as

Nnon−parametric =
Nparametric

ARE
(1.19)

where ARE is the Asymptotic Relative Efficiency. The following table shows the most
common non-parametric tests along with their parametric counterparts and ARE:
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Non-parametric Purpose Parametric ARE

Mann-Whitney U
test

Compare 2
independent
samples

Student’s t test 3/π = 0.955

Wilcoxon
signed-rank test

Compare 2
dependent
samples

Paired Student’s t
test 3/π = 0.955

Spearman
correlation test

Correlation
between 2
variables

Pearson’s
correlation test 0.91

Kruskal-Wallis
ANOVA

Compare 3 or
more groups 1-way ANOVA 0.864

If not in this table 0.85

There are a number of situations in which the sample size calculation fails, in par-
ticular:

Important remarks

24. If we assume an incorrect variance of the observations. This is a very com-
mon error and we tend to be optimistic about the variability of our experi-
ments.

25. If we violate the assumptions of the hypothesis test, especially the distribu-
tion of the observations.

26. If we misunderstand the questions performed by the sample size calculation
software. It is advisable, if possible, to use two different software or verify
with some easy-to-calculate approximate formula.

The sample size calculation is performed at a stage of research in which we have
not yet performed the experiment. Consequently, there is a large amount of uncertainty
at this point, and the sample size calculation only gives approximate suggestions of
sensible sample sizes (if the sample size calculation suggests 32 samples, we know
that we cannot accomplish our goals with 10 and that we do not need as many as 100;
however, we do not have precision at this point, because we only have a guess of the
variability of the experiment, to determine if we need 30 or 35 samples).

Sometimes, researchers are pushed to achieve too much with limited resources.
For instance, a researcher is interested in the effect of a new treatment compared to
a control group. He/she will study the effect at five time points. There are a total of
20 animals. That leaves two animals per time point and treatment. However, two is
typically a very low number (as we will see in the next chapter, being low or high
depends on the variability of the measurements) for any useful comparison (although
a full factorial experiment design may help a bit in this regard). It might be better to
concentrate on fewer time points, so that the number of animals per time point and
treatment is increased.

Next chapter shows the calculation methods, assumptions and consequences for the
most common experimental situations encountered in animal research. It is meant to
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be a reference chapter, so that we only look up the case in which we are interested at a
particular moment. In a first pass over the book, the reader may go over the examples
and important remarks to get an idea of the kind of problems he/she may encounter and
for which there is already a good statistical solution.
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Chapter 2

Sample size calculations

In this chapter we will review the most common cases encountered in animal exper-
iments. The sample size depends on the objective of our study. We will distinguish
between two different kinds of studies:

1. Hypothesis test: these studies aim at rejecting a null hypothesis and, conse-
quently, accepting the alternative hypothesis. It is the most common situation
in experimental research: we want to prove that our vaccine or drug is effective,
that a given gene is related to a disease, that a given diet has some particular
effect on individuals, or that some environment causes some specific phenotype.
The result of an hypothesis test is binary: the null hypothesis is rejected or it
cannot be rejected.

2. Confidence intervals: these studies aim at identifying a range of values that char-
acterize a parameter of interest: which is the average temperature of the labora-
tory, which is the average number of leukocytes per mL. of blood, which is its
variance, which is the proportion of animals that get infected with a virus at a
given virus dose, or which is the correlation between the expression level of a
given gene and a phenotype of interest.

Actually, both kinds of studies are related and both are based on the same statistical
inference theory. In fact, the hypothesis test can be calculated by computing a confi-
dence interval on a statistic and checking if this statistic includes the value specified by
the null hypothesis.

We will review the sample size when the test or confidence interval is on the mean
of a given variable, a proportion, a regression coefficient, a variance, a Poisson count,
or a survival rate. We will also see how to design the sample size for a pilot study
in which there is no prior knowledge about the experiment results, and how to design
experiments with early stopping criteria if we see that the treatment is not effective
enough or we have already collected enough evidence that the treatment is effective.

The chapter is written as a reference and there is no need to read it all together.
However, in a first reading, we recommend to see the examples to get an idea of the
kind of problems that can be successfully solved and that cover a wide spectrum of
experimental situations.

69
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2.1 Sample size for the mean

2.1.1 Hypothesis test on the mean of one sample when the variance
is known

This is exactly the case of Sec. 1.6. For completeness, let us reproduce it here. The
hypothesis test is of the form

H0 : µ = µ0
Ha : µ 6= µ0

(2.1)

The sample size formula was

N =

( z1− α
2
+ z1−β

∆̃

)2

(2.2)

where α is the Type I error probability (rejecting the null hypothesis when it is wrong)
and β is the Type II error probability (not rejecting the null hypothesis when it is false).
zx is the point of the standardized Gaussian curve (zero mean and standard deviation
one) whose area under the curve from −∞ to that point is x. ∆̃ = ∆/σ is the effect size
normalized by the standard deviation of the observations, σ is the standard deviation
of our observations and ∆ is the effect size we want to detect with power 1− β and
statistical confidence 1−α . That is if µ departs from µ0 in at least ∆, then we will
detect it with the specified power and statistical confidence. The use of a normalized
effect size, ∆̃ highlights the fact that how large or small an effect size is, is relative to
the amount of noise present in our measurements. Large effect sizes buried in a lot of
noise are as difficult to detect as smaller effect sizes with less noise.

The sample size design formula above is valid only for two-tail tests (those in which
the null hypothesis uses an equal sign). For one-tail tests,

H0 : µ ≥ µ0
Ha : µ < µ0

(2.3)

or
H0 : µ ≤ µ0
Ha : µ > µ0

(2.4)

the formula must be slightly modified to

N =

(
z1−α + z1−β

∆̃

)2

(2.5)

As we have discussed, z1−α is smaller than z1− α
2

and, consequently, the number of
samples required for one-tail tests is smaller than that for two-tail tests.

• Example 18: In the example of the laboratory temperature, the standard devia-
tion of the thermostat is σ = 0.5◦, we wanted to detect a deviation of ∆ = 0.25◦,
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with a statistical power of 80% and a statistical confidence of 95%. As we
showed above, this requires 32 samples

N =

(
z0.975 + z0.8

∆̃

)2

=

(
1.96+0.84

0.25/0.5

)2

= 31.40

However, our thermometer also has a measurement error whose standard devi-
ation is 0.2◦ that adds to the standard deviation of the thermostat. Independent
additive variables (true temperature+thermometer error) add their variances, so
that the variance of our observations will be

σ
2 = σ

2
thermostat +σ

2
thermometer = 0.52 +0.22 = 0.29

The standard deviation of our measurements become now

σ =
√

0.29 = 0.54

And the sample size

N =

(
1.96+0.84
0.25/0.54

)2

= 36.57

That is, we would need 37 samples to take the decision of stopping the thermostat
or not. This is 5h later (remember that we take a sample every hour) than in the
case of a perfect thermometer. This is due to the extra uncertainty introduced
by the measurement process. However, we may reduce the reaction time to the
same 32h as in the case of a perfect thermometer. For doing so, we simply
need to take 8 samples every hour of the current temperature, and average them.
The averaging will reduce the uncertainty due to the thermometer, but it cannot
reduce the uncertainty due to the thermostat

σ
2 = σ

2
thermostat +σ

2
thermometer/8 = 0.52 +0.22/8 = 0.255

and now the required sample size is

N =

(
1.96+0.84

0.25/
√

0.255

)2

= 31.99

That is N = 32.

2.1.2 Hypothesis test on the mean of one sample when the variance
is unknown

This case is much more common than the previous one. Although, in order to design
the experiment we must have a guess of the standard deviation of the observations,
when the experiment is performed, this standard deviation will normally be estimated
from the samples themselves. This acknowledges our uncertainty on the prior we have
used. For instance, in the previous example we assumed that the standard deviation of
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the thermostat was 0.5◦C and that of the thermometer 0.2◦C. However, in reality, we
may be uncertain about the absolute correctness of these numbers, and we may prefer
estimating them from the data once the experiment is performed. Let us refer to the
observations as yi (i = 1,2, ...,N). Let the population mean and standard deviation be
µ and σ . We do not have access to these parameters, but we may estimate them as

µ̂ = 1
N

N
∑

i=1
yi

σ̂ =

√
1

N−1

N
∑

i=1
(yi− µ̂)2

(2.6)

These statistics are called the sample mean and standard deviation, respectively. As
opposed to the sample parameters, that are fixed numbers, our estimates of the pa-
rameters are random variables, with their own distributions around the true population
parameters. Our statistical test is still on the hypotheses in Eq. 2.1. However, along
the analysis we will substitute the population parameters by the sample parameters.
Instead of the z statistic that uses the population standard deviation

z =
µ̂−µ0

σ

we use the t statistic that uses the sample standard deviation

t =
µ̂−µ0

σ̂

The larger the sample, the more similar our estimates are to the population parameters.
Additionally, the fact that our estimates are random variables means that the sample
size design formulas employ different distributions with respect to the their ideal sam-
ple size design formula. But the design principles are still valid (see Eq. 1.18 and the
reasoning around): 1) given a statistical confidence (1−α) we find the threshold of the
statistic such that the probability of observing a statistic at least as large as the thresh-
old if the null hypothesis is true is α (or α/2 if we have a two-sided test); let us refer
to this threshold as the “critical” value; 2) with the critical value above, the probability
of not rejecting the alternative hypothesis at a given effect size is at most β . This latter
probability depends on the sample size, N, and we must find the sample size such that
this latter constraint is fulfilled. In the case of the Student’s t, the sample size design in
the ideal case, Eq. 1.18, now becomes

Pr
{

tλ ,N−1 < t1− α
2 ,0,N−1

}
< β (2.7)

The probability is measured with a Student’s t with N− 1 degrees of freedom and a
non-centrality parameter of λ = ∆

σ̂

√
N, while the threshold is coming from a centered

Student’s t with N− 1 degrees of freedom. This sample size design formula is not so
similar to its ideal counterpart. In particular, it has some important differences:

1. It calls for the sample standard deviation at a stage in which we have not yet
performed the experiment, and we need an educated guess of it. In practice, we
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tend to be overoptimistic about our experiments, and the guess of the standard
deviation used for the sample size design is normally smaller than the true one.

2. It uses the percentiles of the Student’s t distribution, which are more difficult to
work by hand than the standardized normal distribution. The latter distribution is
parameter free (it has zero mean and standard deviation one) and its percentiles
are well known (for instance its 95% percentile is z0.95 = 1.64, meaning that a
random number drawn from the standardized Gaussian distribution has a proba-
bility of 95% of being smaller than 1.64). However, the Student’s t distribution
has two free parameters, the centrality parameter, λ , and the number of degrees
of freedom, ν . In this way, the 95% percentile of the Student’s t distribution is
now t0.95,λ ,ν . To know this number we must specify these two free parameters.
In the design formula, the number of degrees of freedom is ν = N−1 for both,
the confidence and power terms; while the centrality parameter is λ = 0 for the
confidence term (the Student’s t is centered and symmetric) and λ = ∆

ˆsigma

√
N

for the power term (the distribution is no longer symmetric).

3. More importantly, the number of samples, N, is also a parameter of the distribu-
tion (the Student’s t has N−1 degrees of freedom), and there is no analytical so-
lution of this equation, meaning that its exact solution can only be found through
numerical algorithms (normally implemented by a computer program).

• Example 19: For the example of the previous section in which the standard de-
viation of the observations was supposed to be close to 0.54 and we wanted to
detect deviations of at least 0.25◦C, we would require

Pr
{

t 0.25
0.54
√

N,N−1 < t0.975,0,N−1

}
< 0.1⇒ N = 51

As expected, this sample size is larger than the one in Example 18, N = 37,
because we have to estimate the standard deviation from the data, instead of
assuming it is known. Less prior information results in larger sample sizes. We
are now using t rather than z and t is always larger than the corresponding z
value.

The sample size design formula above is valid for two-tail tests. For one-tail tests, the
percentile must be changed from t1− α

2 ,0,N−1 to t1−α,0,N−1.

2.1.3 Confidence interval for the mean
The sample size design for hypothesis test on a single mean with unknown variance
(Eq. 2.7) can be used to calculate the sample size needed to estimate a confidence
interval of the mean with a given precision. Let us assume that the goal of our research
is to determine the mean of a given normal variable, e.g. the room temperature at which
the thermostat is regulated reducing the uncertainty associated to this determination to
a value smaller than a certain limit. This is achieved by a confidence interval. Once we
perform the experiment with N samples, we will have an estimate of the mean and the
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standard deviation of the population (see Eq. 2.6). Then, we can construct a confidence
interval with confidence 1−α as(

µ̂− t1− α
2 ,0,N−1

σ̂√
N
, µ̂ + t1− α

2 ,0,N−1
σ̂√
N

)
Let us call ∆ to the maximum deviation from the mean of the confidence interval

∆ = t1− α
2 ,0,N−1

σ̂√
N

Then, we can easily calculate the number of samples required to achieve this maximum
width as

N =

( t1− α
2 ,0,N−1

∆̃

)2

(2.8)

with ∆̃ = ∆/σ̂ .

• Example 20: Consider the thermostat Example 19, in which we want to construct
a 95% confidence interval whose maximum half-width is 0.25◦C. We presume
that the standard deviation of the observations will be close to 0.54. The number
of samples required for this experiment is

N =

(
t0.95,0,N−1

0.25/0.54

)2

⇒ N = 21

Note that it is is much smaller than in the Example 19, the reason being that we
only want to construct a confidence interval, rather than testing if the thermostat
is malfunctioning with an hypothesis test.

Important remarks

27. Constructing confidence intervals is much cheaper in terms of sample size
than testing an hypothesis. The reason being that we require the test to have
a given power if the difference is at least ∆, while the construction of the
confidence interval does not care about alternative hypotheses.

2.1.4 Hypothesis test on the mean for paired samples
• Example 21: Let us assume we are studying the effect of a new compound A on

the intraocular pressure of a mouse strain that serves as a model of glaucoma.
The compound is administered in eye drops so that one eye of the mouse can be
given the new compound while the other one may serve as its control with only
the vehicle being administered. Since an animal serves as its own control, we
reduce the variability between subjects and the effect of the treatment is easier
to detect due to the lower variance. Let us assume that the intraocular pressure
without treatment is about 14.8 mmHg with a standard deviation about 2.2. We
want to detect pressure reductions of 0.5 mmHg, and let us assume that the stan-
dard deviation with and without treatment is the same.
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For each animal we will get two observations (one from the treated eye and another
one from the control eye; a good experimental design would randomize for each animal
whether the treated eye is the left or right one). Let us call these two observations as
y1i and y2i where i refers to the i-th animal. For each animal we will calculate the
difference

∆yi = y1i− y2i

and the compound A is interesting if the mean of the ∆i’s is negative (there is a decrease
of the intraocular pressure after applying the treatment)

µ̂∆y =
1
N

N

∑
i=1

∆yi

Consequently, our hypothesis test will be of the form

H0 : µ∆y ≥ 0
Ha : µ∆y < 0 (2.9)

Our independent observations are the ∆y’s and not the individual y’s. When analyzing
the data we will transform the y measurements into ∆y’s and continue the analysis with
them. We no longer have two population of independent measurements (treatment
and control), but a single population of measurements, the difference between the two
groups, and we want to detect a deviation of this difference from a reference situation.
Consequently, we are in the same case as in the previous section and the sample size
design formula is the one in Eq. 2.7. However, the important standard deviation for
the sample size design is not the one of y, but the one of ∆y, because these are the
measurements upon which we will perform the statistical test. ∆yi is constructed as
∆yi = y1i− y2i and its variance is

σ
2
∆y = σ

2
1 +σ

2
2 = 2σ

2

This comes from the facts that we have assumed that the variance before and after
treatment are equal (σ2

1 = σ2
2 = σ2) and that for any random variable constructed in

the form
Y = aY1 +bY2

its variance is
σ

2
Y = a2

σ
2
Y1
+b2

σ
2
Y2

• Example 21 (continued): In this way, we can calculate the sample size as

Pr
{

t 0.5√
2·2.2
√

N,N−1 < t0.95,0,N−1

}
< 0.1⇒ N = 333

333 is the number of pairs we need to study. In this case, the number of pairs co-
incides with the number of animals, since each animal is providing the two eyes.
The large number of pairs, 333, comes from the fact that the normalized effect
size is relatively small ∆̂ = 0.5/(

√
2 · 2.2) = 0.16. The larger the normalized

effect size, the smaller the sample size.
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2.1.5 Hypothesis test on the difference of the mean of two samples
This is, probably, the most common kind of test in biomedical and animal research.
We study the difference between the mean of two groups, typically a treatment and a
control group. The difference with the case of the previous section is that each subject
is not its own control anymore, and the animals in both groups are different. This is,
for example, the case of the development of most new drugs. The drug is tested on a
treatment group and its effect is compared to a control group.

• Example 22: For instance, we may study the systolic blood pressure of mice.
In the standard population, it should be around 120 mm Hg with a standard
deviation of about 6 mm Hg (although this standard deviation depends on the
strain). NZO/HILtJ is a mouse strain with a systolic blood pressure around 130
mm Hg. We are studying the effect of a new drug against hypertension and we
want to determine the dose at which the blood pressure drops 5 mm Hg. How
many mice of this strain do we need in each group to find these differences with
a statistical confidence of 95% and a statistical power of 90%?

As we did in the previous section, let us call y1i and y2i the i-th measurement in
the Groups 1 and 2, respectively. As opposed to the previous section, this time the i-th
animal in Group 1 is not the i-th animal of Group 2. Actually, each animal belongs to
only one group. We can estimate the mean and standard deviation of each group as

µ̂1 =
1

N1

N1
∑

i=1
y1i

µ̂2 =
1

N2

N2
∑

i=1
y2i

σ̂1 =

√
1

N1−1

N1
∑

i=1
(y1i− µ̂1)2

σ̂2 =

√
1

N2−1

N2
∑

i=1
(y2i− µ̂2)2

In the most general case, we will assume that the variance of each group is different.
Then, we will estimate the difference between the two groups as

µ̂∆y = µ̂1− µ̂2

and our hypothesis test is
H0 : µ∆y ≥ 0
Ha : µ∆y < 0 (2.10)

The variance of the difference between the two groups is

σ̂
2
µ̂∆y

=
σ̂2

1
N1

+
σ̂2

2
N2

The calculation of the sample size boils down to a Student’s t with ν degrees of freedom

ν =

(
σ̂2

µ̂∆y

)2

1
N1−1

(
σ̂2

1
N1

)2
+ 1

N2−1

(
σ̂2

2
N2

)2
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and a non-centrality parameter

λ =
∆

σ̂µ̂∆y

The sample size design formulas for this case is

Pr
{

tλ ,ν−1 < t1− α
2 ,0,ν−1

}
< β (2.11)

Apart from the specific details of the formulas, which are irrelevant from a user
perspective because these formulas are implemented in software programs that help
the researcher to design the experiment, there are some important lessons to learn from
the sample size design formulas seen so far:

Important remarks

28. The sample size formula depends on how the data will be analyzed. Specif-
ically, on the test that will be performed (a test on the mean of a sample,
on the mean of the difference, on the difference between two means, ...;
one-tail or two-tails).

29. It is necessary to know the distribution of the statistic upon which the deci-
sion will be taken. For means, the important distributions are the Gaussian
(if the variance of the measurements is known) or the Student’s t (if the
variance is to be estimated from the observations).

30. The normalized effect size plays a crucial role in all designs and each spe-
cific case has its own normalization rules.

• Example 22 (continued): In our example ∆ = 5 mmHg. We will assume that the
standard deviation in both groups are the same σ̂1 = σ̂2 = 6 mmHg. With this
information, we can calculate the sample size that turns out to be N = 24 in each
group.

2.1.6 Hypothesis test on the mean of several groups (ANOVA)

Analysis of Variance (ANOVA) is a statistical technique that allows to test whether the
mean of a collection of groups, normally called treatments, are all equal. This is a
rather common situation in science, and technically it is called 1-way ANOVA because
we have only one variable defining the groups (the different treatment applied to each
group).

• Example 23: Continuing with the example of the previous section on blood pres-
sure (Example 22), we are simultaneously studying multiple drugs. Each group
receives one of the drugs. If at least one of them reduces the blood pressure 5 mm
Hg (from 130 of hypertensive mice to 125), then we want to detect this change
with a statistical confidence of 95% and a statistical power of 80%?
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If there are T treatments, the ANOVA hypotheses are

H0 : µ1 = µ2 = ...= µT
Ha : µi 6= µ j for at least two of the treatments (2.12)

For just two groups, ANOVA is equivalent to the hypothesis test on the difference
of the mean of two independent samples (see the previous section). For more than two
groups, if the ANOVA test rejects the null hypothesis, then at least one of the groups
is different from the rest, but we do not know which one. Then we will perform the
so-called post-hoc tests to identify which are the two groups that are different. These
post-hoc tests explicitly account for the multiple comparisons inflation of the Type I
error (see Sec. 1.5.3). Amongst the post-hoc procedures Tukey’s honestly significant
difference test is one of the most popular, but many other exist.

In this section we give the ANOVA sample size formula when all groups have the
same size, more general designs with variable group sizes are available. As we will see
at length in Sec. 3.1, the ANOVA test ultimately finishes in a Snedecor’s F statistic,
f . Under the null hypothesis, this statistic is distributed as a central Snedecor’s F with
T − 1 and N − T degrees of freedom. Under the alternative hypothesis, we need to
hypothesize some result for which we want to have a specific statistical power. For the
example above, we wanted to detect a change of 5 mmHg., in one of the groups. Let αi
denote the difference between the i-th treatment and the overall mean. In our example,
we had α1 =−5 and αi = 0 for all the rest. Then,

σ
2
α =

1
T ∑

i
α

2
i

is a sort of “effect size” (what is the average variance with respect to the overall mean by
any individual in any of the groups). Under the alternative hypothesis, f is distributed
as a non-central Snedecor’s F with T −1 and N−T degrees of freedom and with non-
central parameter

φ = N
σ2

α

σ2
ε

where σ2
ε is the variance within each one of the treatment groups (for instance, in

Example 22, we assumed that the variance within each group was 6 mmHg.) The
sample size, N must be such that

FT−1,N−T,0,1−α = F
T−1,N−T,N σ2

α

σ2
ε

,β

If we apply this formula to the example above we have the following results de-
pending on the number of groups

• Example 23 (continued):

T 2 3 4 5 6 7 8 9
N 32 29 29 29 30 31 31 32
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In this table we recognize three important features:

1. For T = 2, the ANOVA design requires N = 32 while the two sample design
of previous section (Example 22) required only N = 26. The reason is
that the ANOVA is a two-tail test, while in Example 22 we planned the
experiment as a one-tail test, and consequently it required less samples.

2. If we have T = 3 groups, we are really interested in the two-tail test, and
ANOVA rejects the null hypothesis, then we will perform pairwise com-
parisons to identify the pair that is making a difference. But, we have only
N = 29 samples per group, and this number of animals per group lacks
power to identify a difference of ∆ =±5mmHg (we require at least N = 32
individuals per group for this test). In this way, we may face the situation
in which ANOVA rejects the hypothesis that all groups are the same, but
the p-value of all pairwise comparisons are not statistically significant.

3. There is a non-linear relationship between the number of groups and the
number of samples per group.

Important remarks

31. Sample size designs based on ANOVA are specifically aimed at rejecting
the ANOVA null hypothesis (all means are the same), but may not be useful
for the post-hoc tests.

32. If post-hoc tests are important in our research, we should design the exper-
iment using the two sample designs of previous section taking into account
that we may incur in a Type I error inflation due to multiple testing.

As a simplified design, Mead’s resource equation has been proposed. This equation
states that the number of samples, N, must fulfill

N−1 = T +B+E (2.13)

where T is the number of treatments, B the number of blocks and E the number of
degrees of freedom available for the residuals, which should be between 10 and 20.
This equation is based on the number of degrees of freedom consumed by each one of
the different components of the variance (see Sec. 3 for a detailed explanation of this
decomposition). As can be easily seen, this design does not make any consideration
of effect size and power. Although we cannot give an exact number for the effect size
addressed by this formula, this can be estimated to be (depending on the number of
treatments and blocks) between 1.5 and 2 with a statistical power of 90%. That is,
this design is capable of identifying changes in the mean of one of the groups if this
change is at least 1.5 times the standard deviation of the observations for each one of
the treatments.

A different perspective of similar problems on the sample size calculation for de-
signed experiments is given in Sec. 3.4.
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2.1.7 Unequal group sizes
In the previous section, the variance of our estimate of the difference is

σ
2
µ̂∆y

=
σ2

1
N1

+
σ2

2
N2

Actually, we may try to minimize this variance while keeping fixed the total number of
samples

min
N1,N2

σ2
1

N1
+

σ2
2

N2
subject to N1 +N2 = constant

The solution is

N2 = N1
σ2

σ1
(2.14)

Important remarks

33. That is, we should put more samples in the more variable groups, and if the
two groups are equally variable, then the number of samples in both groups
will be the same N1 = N2.

Another situation in which we may want to have different group sizes is when the
cost of getting samples from Group 1 is different from the cost of getting samples
in Group 2. This cost may represent a real economical cost, or the difficulty to find
animals with a given condition (animals from Group 1 are 10 times more rare than
animals from Group 2, then the cost of Group 1 is 10 times higher than the cost of
Group 2). Let us represent the cost of both groups as C1 and C2. Then, we may
minimize the variance of the estimate of the difference keeping the cost constant:

min
N1,N2

σ2
1

N1
+

σ2
2

N2
subject to C1N1 +C2N2 = constant

The solution is

N2 = N1

√
C1

C2
(2.15)

Note that if C1 >C2, then N2 > N1.

34. That is, we should put more samples in the less costly group.

Finally, if different treatments are to be compared to a control group. Let us assume
that we have T groups receiving T different treatments and a control group. Let the
number of samples in each of the treatment groups be NT , while N0 represents the num-
ber of animals in the control group. Similarly to the previous paragraph, the variance
of each of the comparisons is

σ
2
µ̂∆y

=
σ2

N0
+

σ2

NT
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We may minimize this variance while keeping fixed the total number of samples

min
N0,NT

σ2

N0
+

σ2

NT
subject to N0 +T NT = constant

The solution is
N0 = NT

√
T (2.16)

Important remarks

35. That is, we should put more samples in the control group, since it will
participate in many more comparisons, and diminishing its variance will
result into more powerful comparisons.

2.1.8 Hypothesis test on the equivalence of two means
Many research experiments respond to the significance test paradigm

H0 : µ1 = µ2
Ha : µ1 6= µ2

If we reject the null hypothesis, then we presume that the true state of affairs is the
alternative hypothesis, and the mean in the group of the new treatment is different from
the one in the control.

However, some studies respond to the equivalence test paradigm

H0 : µ1 6= µ2
Ha : µ1 = µ2

Note that the equal sign has moved from the null hypothesis to the alternative hypoth-
esis. If we reject the null hypothesis, then we presume that the true state of affairs is
the alternative hypothesis, and the mean of the treatment and control groups are not
different. This is the case, for example, of bioequivalence: we need to show that the
effect of our new drug is not different, within limits, from the effect of the reference
drug.

Technically, equivalence tests are more difficult than their significance test coun-
terparts. The reason is that the null hypothesis of equivalence tests imply two different
tests. To see how this arises, let us first define when two means are considered to be
“the same”. Normally, it is assumed that two means are the same if their difference,
∆µ = µ1−µ2 is small

H0 : ∆µ ≤ εL or ∆µ ≥ εU
Ha : εL < ∆µ < εU

According to the European Medicines Agency Guideline CPMP/EWP/QWP/1401/98,
a drug (normally, a new generic coming into the market) is bioequivalent to another
(the reference drug) if the effect of the new drug is within a limit from 80% (=0.8) to
125% (=1/0.8) of the effect of the reference (see Fig. 2.1).
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Figure 2.1: Two drugs are said to be bioequivalent if the 95% confidence interval of
the ratio of variables of relevance (peak concentration, effect, etc.) is inside the bioe-
quivalent area defined between 80% and 125%. The figure shows six different possible
confidence intervals and the interpretation of each one of the results.

• Example 24: We are developing a generic of a drug against hypertension. The
reference drug is capable of lowering the mean systolic blood pressure of a
mouse model of hypertension from 130 mmHg to 120 mmHg (see Example 22).
The effect size of the reference drug is ∆ =−10 mmHg. The new drug is a bioe-
quivalent of the reference if its effect size is between 8 and 12.5 mmHg. From
this data, we can compute the lower and upper limits for the equivalence tests.
∆µ = µre f erence−µgeneric and it must be

120−122 < ∆µ < 120−117.5
−2 < ∆µ < 2.5

Equivalence tests are usually translated into two one-sided t-tests (TOST) by check-
ing two other hypothesis tests

H01 : ∆µ ≤ εL
Ha1 : ∆µ > εL

and
H02 : ∆µ ≥ εU
Ha2 : ∆µ < εU

Our new drug is bioequivalent to the reference drug if we can reject the two null hy-
potheses H01 and H02, as a consequence it must be εL < ∆µ < εU . Each one of these
tests is a one-sided t-test of two samples as the one we designed in Eq. 2.11. We will
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not give at this moment explicit design formulas as the sample size design software im-
plement them and we have already settled the main ideas of sample size calculations.

• Example 24 (continued): For our drug bioequivalence problem we will need
Nre f erence = Ngeneric = 166 observations (statistical power of 90% and statistical
confidence of 95%). We may compare this sample size with the one of Example
22, N = 26.

Fig. 2.2 shows the statistical distributions of the two null hypothesis and the alternative
hypothesis when ∆µ = 0. Compared to significance tests (Fig. 1.10) we see that in
significance tests, the null hypothesis results in a centered distribution of the statistic
and the alternative hypotheses are on each side. However, for equivalence tests, it is
just the opposite.

Figure 2.2: The red shaded area is the probability of rejecting any of the null hypotheses
if they are true (this area is the complement of the statistical confidence). The blue
shaded area is the probability of not rejecting the null hypotheses when the alternative
hypothesis is true (only represented for ∆µ = 0). The symmetry is broken by the 80%
and 125% requirement of the guideline.

Important remarks

36. Although equivalence tests use the same “ingredients” as significance tests
(statistical confidence and power, one-tail statistical tests), they are used in
a different manner. Most importantly, significance tests have a single null
hypothesis, while equivalence tests have two.

37. It is much more difficult to show equivalence than significance: the number
of samples in equivalence tests is normally much higher.
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2.2 Sample size for proportions
Many research studies aim at identifying the proportion of a population that responds
to a given treatment, that has a certain phenotype or that have a given characteristic. As
we did with means, experiments with proportions can be performed with one group (we
analyze the proportion within a single group) or two groups (we analyze the difference
in proportions between two groups). The mathematics associated to proportions are
more difficult than those associated to means. We will only show their complexity
in its simplest form as a way to grasp the main ideas related to proportions. Many
computer programs implement the formulas required for sample size calculations with
proportions, and knowing the exact design formulas is not needed in general. We
will also give some approximated formulas so that researchers can have an order of
magnitude of the sample size required.

It is important to distinguish proportions from other quantities that can also be
expressed as percentages. Proportions represent probabilities of events. An animal can
be infected with a probability of 50%, or equivalently, in a large population of animals,
the proportion of them that can get an infection is 50%. If the area of a skin lesion
in an animal increases by 50%, this latter 50% does not have the same nature as the
proportion of 50%. The first one refers to a probability, while the second one refers to
a variation expressed as a percentage. Proportions are bounded between 0 and 100%,
while variations are not.

2.2.1 Hypothesis test on one small proportion
• Example 25: We are developing a vaccine against a pathogen. We are only in-

terested in vaccines for which the probability of infection when directly exposed
to the pathogen is below 1%. How many individuals do we need to show that a
given vaccine is useful?
In this example, the hypothesis test we need is

H0 : p≥ 0.01
Ha : p < 0.01

where p is the probability of infection when directly exposed to the pathogen.

This test is of the form
H0 : p≥ pU
Ha : p < pU

where pU is an upper bound of the probability of infection. The infection of each
animal is modelled by a Bernouilli distribution. It is infected with probability p and
not infected with probability 1− p (Bernouilli is the distribution of a fair coin flip, we
obtain heads with probability p =50% and tail with probability 1− p =50%). If we
have a collection of N independent Bernouilli events, the number of infections follow
a Binomial distribution of parameters N and p.

The Bernouilli and Binomial distributions are said to be discrete distributions, as
opposed to continuous distributions. Discrete distributions describe the probability of
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variables that take discrete values (e.g. infected/not infected, number of infections
equal to 0, 1, 2, ...); while continuous distributions describe the probability of variables
that take continuous variables (e.g., the systolic blood pressure of mice can take any
value between 110 and 130 mmHg). Discrete probability distribution assign a probabil-
ity to each of the possible outcomes of the experiment. In the example of the vaccine,
the probability of observing x infections among the N mice is

Pr{Xinfections = x}= N!
x!(N− x)!

px(1− p)N−x

where x! is the factorial of the number x (x! = x · (x−1) · (x−2) · ... ·2 ·1, for instance,
4! = 4 · 3 · 2 · 1 = 24). If we use N = 300 mice and the true probability of infection is
p = 0.01, then Fig. 2.3 shows the probability of observing 0, 1, 2, ... infections. The
expected number of infections is

E{Xinfections}= N p

That is, in our example we expect to see 300 · 0.01 = 3 infected animals if the true
probability of infection after being vaccinated is p = 0.01. In Fig. 2.3 we can see
that X = 3 is the most probable result, with a probability around 22.5%. Interestingly,
observing just 2 infections has a probability of 22.4%. We understand this due to
the random nature of our observations, and observing 2 or 3 infections in 300 if the
probability of infection is 1% seems to be very logical. Observing X = 0 infections
would happen with probability 4.9%, and observing X = 15 or more would only happen
in 1% of the cases (if we observe 15 or more infections, it would be very unlikely that
the true probability of infection is p =1% and we would expect that it is a number
closer to p =5%, because 300 ·0.05 = 15).

Fig. 2.3 shows the distribution under the null hypothesis for p = 1%. But the null
hypothesis include any value with p ≥ 1%. For instance, Fig. 2.4 shows a possible
alternative distribution (p = 0.1%) and another possible null hypothesis (p = 4%)

As we did with the hypotheses for the mean, we need to understand how the data
will be analyzed. In this problem, we will use N animals, and we will reject the null
hypothesis (H0 : p ≥ pU ), if the probability of observing a number of infections as
extreme as x0 (our actual observations when we do the experiment) is lower than a
given threshold, α (typically, α = 0.05). Extreme values of the null hypothesis in this
case are small values. For instance, if the true probability of infection is p = 4%, then
observing only 5 infections or less is only 1.86% (see Fig. 2.4). Note that pU , in our
example pU = 1%, is the value of the null hypothesis that produces the lowest value,
and consequently is the worse case. When we perform the experiment, we will reject
the null hypothesis if

x0

∑
x=0

Pr{Xinfections = x}=
x0

∑
x=0

N!
x!(N− x)!

px
U (1− pU )

N−x < α (2.17)

Note that this equation has two unknowns: N, the sample size we are trying to calculate,
and x0, the number of infections we observe when the experiment is performed. But
we have not performed the experiment yet! This design equation already highlights
several interesting ideas about the design of the sample size for proportions:
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Figure 2.3: Probability of observing x = 0,1,2, ... infections in N = 300 animals when
the probability of being infected is p = 0.01.
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Figure 2.4: Probability of observing x = 0,1,2, ... infections in N = 300 animals when
the probability of being infected is p = 0.1% (red) and p = 4% (blue).
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Important remarks

38. N depends on a free parameter, x0, that is chosen by the user at the moment
of design. Different choices of the free parameter results in different sample
sizes. In this example, the smallest sample size is attained for x0 = 0.

39. Making the choice x0 = 0 does not imply that we are foreseeing that the
number of infections will be 0 before performing the experiment. It means
that if we perform the experiment and observe x0 = 0 infections, then we
will reject the null hypothesis, with a Type I error smaller than α .

For x0 = 0, the equation above simplifies to

(1− pU )
N < α

and solving for N

N >
log(α)

log(1− pU )
(2.18)

for α = 0.05 and small pU (such that log(1− pU ) ≈ −pU ), this equation can be ap-
proximated by

N >
3

pU

that is the famous rule of 3 used in Epidemiology.

• Example 25 (continued): In our example we would need

N >
log(0.05)
log(0.99)

= 298.07

that is, we need N = 299 mice. If we perform the experiment of exposing each
one of them to the pathogen and none is infected (x0 = 0) we will reject the
null hypothesis and assume that the true state of affairs is that the probability of
infection is smaller than pU = 1%. If we observe one or more infections, then
we cannot reject the null hypothesis, and our vaccine will not be interesting.

Important remarks

40. Proving that an event is very rare, pU is very low, requires a lot of samples,
and the number of samples grows with the inverse of the probability of the
event, which can easily grow very quickly as pU approaches 0.

We can easily turn a problem with a large proportion into a problem of a low pro-
portion by simply changing the event we look for.

• Example 26: We want to show that more than 99% of the animals in our animal
facility are correctly labelled in their cages. Our test would be of the form

H0 : p < 0.99
Ha : p≥ 0.99
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Instead of having an upper bound of the probability (as in the case of infections),
we have a lower bound. In principle, we have not developed the theory for
handling these situations, but we can easily do by changing the event we look
for. Instead of looking for correctly labeled mice, we may look for mislabeled
mice. Then, the test would turn into

H0 : p≥ 0.01
Ha : p < 0.01

Important remarks

41. We can turn superiority tests into inferiority tests or viceversa simply by
looking at a different event.

2.2.2 Confidence interval for one proportion
Sometimes we are interested in determining a proportion with a given precision.

• Example 27: We are interested in determining the proportion of animals that will
develop cancer when they are directly exposed to a given carcinogen. We want
to report a confidence interval rather than a point estimate, and we want that our
confidence interval is at most 5% wide (for instance, if this proportion is 15%,
we want the 95% confidence interval to be between 12.5 and 17.5%). How many
animals do we need to expose to achieve this precision?

An important observation when addressing this problem is that solving for the sample
size in this problem requires an a priori estimate of the proportion we are looking
for. It may sound counter-intuitive that we need an estimate of the proportion before
performing an experiment whose goal is to estimate it. However, the uncertainty about
a proportion increases as the proportion approaches 50%, and in this way, we may
achieve the same precision with fewer animals if the proportion we look for is closer
to the extremes (0% or 100%). In the example of the carcinogen, let us assume that we
expect the proportion we want to estimate to be around 15%.

Let us assume that when we perform the experiment we observe x0 cancers in N
animals. The estimate of the proportion will be

p̂ =
x0

N

and the 95% confidence limit will be of the form [pL, pU ] (lower and upper bound,
respectively) such that the probability of observing values as extreme as x0 is α/2 for
pL and for pU :

N
∑

x=x0

N!
x!(N−x)! px

L(1− pL)
N−x = α

2
x0
∑

x=0

N!
x!(N−x)! px

U (1− pU )
N−x = α

2

(2.19)
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We have now two unknowns (x0 and N) with two equations and we must find values
such that pU − pL < ∆p, being ∆p the desired width of the confidence interval (in our
example, ∆p = 5%). Obviously, this is not an easy task, and we may try to find some
alternative procedure that results in a more easy approach. Such a procedure is offered
by approximations. The Binomial distribution of parameters N and p can be safely
approximated by a Gaussian of mean µ = N p and variance σ2 = N p(1− p) if N p > 5
and N(1− p)> 5 (see the binomial distribution for H0 in Fig. 2.4). In this case, we may
design the sample size using the standard sample size design for the Gaussian means.
Without entering into the mathematical details, the solution of this problem is

N >

 z1− α
2

∆p/2√
p(1−p)


2

(2.20)

This formula resembles Eq. 1.15: a numerator that depends on the confidence level
and a denominator that is a normalized effect size.

Important remarks

42. Designing the sample size for discrete variables can be rather cumbersome
mathematically, but in some situations we may find alternative, approxi-
mated, procedures that provide a useful answer for the problem at hand.

43. However, we should not forget that these approximations are just approxi-
mations. They provide an order of magnitude and not a precise answer.

44. Additionally, the sample size calculation requires an initial guess of the
proportion we are looking for.

• Example 27 (continued): Now it is very easy to calculate the sample size with
the approximate formula:

N >

 z1− 0.05
2

0.05/2√
0.15·0.85

2

=

(
1.96
0.025
0.357

)2

= 783.7

That is, we need to expose 784 animals to the carcinogen to have such a precise
confidence interval (the exact solution is 822, we see that the approximated solu-
tion is in the same order of magnitude, but this time fell a bit short). The reason
for this large number is that the effect size, 0.05/2 = 0.025 is relative small com-
pared to the standard deviation of the estimate of the proportion, 0.357. If we
cannot afford such a large number of animals, we will have to sacrifice precision.
If the maximum number of animals we can afford is 100, then the precision will
drop down to ∆p = 14%

N >

 z1− 0.05
2

0.14/2√
0.15·0.85

2

=

(
1.96
0.025
0.357

)2

= 99.9
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That is, if the proportion of animals with cancer is, as expected, p = 15%, then
the 95% confidence interval will extend from pL = 8% to pU = 22%.

We should now verify that the conditions for the approximation hold

N p = 100 ·0.15 = 15 > 5
N(1− p) = 100 ·0.85 = 85 > 5

If they do not hold, then the sample size calculated by the approximated proce-
dure will not be close to the true sample size.

If we do not want to make any assumption about the expected proportion, we
may make the design in the worse case, for which the uncertainty is maximum,
that is p = 0.5, but the sample size quickly grows as shown by the following
calculation:

N >

 z1− 0.05
2

0.14/2√
0.5·0.5

2

=

(
1.96
0.025

0.5

)2

= 195.9

Important remarks

45. There is a trade-off between sample size and precision of the confidence
interval. More precise confidence intervals, smaller ∆p, require more sam-
ples; conversely, experiments with a low number of samples result in less
precise confidence intervals for the proportion.

46. It is easier to be precise in the confidence interval of proportions as they go
away from the region of maximum uncertainty, p = 50%. The number of
samples for these proportions will be smaller than for proportions close to
50%.

2.2.3 Hypothesis test on one proportion
• Example 28: The infection rate of a given pathogen is 5% when adult animals

are directly exposed to it. We suspect that the infection rate of newborns is
higher. How many newborns do we need to study to test this hypothesis with a
95% confidence level and if we want to have a statistical power of 90% if the
infection rate goes above 10%?

Our test is of the form
H0 : p≤ 0.05
Ha : p > 0.05

As in all tests, there will be a distribution associated to the null hypothesis and
another one to the alternative hypothesis. There will be a threshold, x0, beyond which
we will reject the null hypothesis for being very unlikely (with a Type I error rate,
that is, the null hypothesis is actually true, but with the evidence collected we reject
it, which in the example is 5%). Fig. 2.5 shows this situation. The area of the H0
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distribution to the right of x0 is α = 0.05, while the area of Ha to the left of x0 is
β = 0.1 (the Type II error). Our task is to find N and x0 that fulfill these constraints

N
∑

x=x0

N!
x!(N−x)! px

0(1− p0)
N−x < α

x0
∑

x=0

N!
x!(N−x)! px

a(1− pa)
N−x < β

(2.21)

where p0 is the upper limit of the null hypothesis (p0 = 0.05 in our example) and pa
is the probability at which we want to have a given statistical power (pa = 0.1 in our
example).

0 5 10 15 20 25 30 35

X

0

0.05

0.1

0.15

P
ro

b
a
b
ili

ty

H
0

H
a

Figure 2.5: Probability of observing x = 0,1,2, ... infections in N = 233 animals when
the probability of being infected is p = 5% (blue) and p = 10% (red).

However, this sample size design does not lend itself to easy calculations. As we
did in the previous section, we may use approximate methods. If the binomials can be
approximated by Gaussians (this can be done if N p > 5 and N(1− p) > 5)), then we
may use a Gaussian sample size calculation formula

N ≥

(
z1−α

√
p0(1− p0)+ z1−β

√
pa(1− pa)

pa− p0

)2

(2.22)

that is much better suited for hand calculations.
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• Example 28 (continued): The approximated method gives for this case

N ≥

(
z0.95
√

0.05 ·0.95+ z0.90
√

0.1 ·0.9
0.1−0.05

)2

= 221

The exact method gives N = 233 and x0 = 18, meaning that when we perform
the experiment, if we observe less than 18 infections, we cannot reject the hy-
pothesis that the probability of infection is smaller or equal 5%. If we observe
18 infections or more, then we reject that hypothesis and, as suspected, the in-
fection rate in newborns is larger than in adults. The Gaussian approach has the
disadvantage that it does not give the threshold x0 in advance. However, this is a
minor drawback since all the statistical software for analyzing the results of the
experiment will calculate it, probably internally, and report the p-value of our
observations.

Important remarks

47. Hypothesis tests with proportions operate in the same way as with the mean:
there is a distribution associated to the null hypothesis, another one with
the alternative hypothesis, and there is a threshold that is used to take the
decision to reject the null hypothesis or not. The sample size is calculated
such that the area of the Type I and II errors are the ones specified at the
design, α and β . Unlike the designs for the mean, the threshold itself is
part of the design problem and, if the sample size is calculated in an exact
way, it must be also calculated along with the N.

2.2.4 Confidence interval for the difference of two proportions
• Example 29: For the example above, let us say that we want to construct a 95%

confidence interval on the difference between the two proportions: the proportion
of infected adults and the proportion of infected newborns:

pL < pnewborn− padults < pU

For doing so, we will study two groups (adults and newborns) and estimate the
proportion of infections in each of the groups. We foresee that pnewborn is around
10% and padults around 5%. Since both proportions are rather close, we want the
confidence interval to be very precise such that pU − pL < 5%.

In this problem, the statistical variable of interest is

∆p = p1− p2

Let us call the interval width as ∆

∆ = pU − pL
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∆ is our main design parameter and it represents how precise we want to be around
the observed difference. If the Gaussian approximation of the binomial can be applied
(N p > 5 and N(1− p)> 5), then the sample size design formulas are

N1 =

(
z1− α

2
∆/2√

p1(1−p1)+p2(1−p2)R

)2

N2 =

 z1− α
2

∆/2√
p1(1−p1)

1
R +p2(1−p2)

2 (2.23)

where R = N1/N2 is a ratio between the size of the two groups. This ratio is very
convenient if it is easier to obtain animals in one of the groups than in the other (e.g. it
is easier to have access to adults than newborns). From this sample size design formula
we can reinforce concepts we already have

Important remarks

48. Counterintuitively, for determining the sample size we need to assume the
proportion of infections in both groups, p1 and p2, before doing the exper-
iment! This is a problem of most sample size calculations working with
proportions, and there is no workaround. The reason is that the mean and
the variance of the underlying distribution, the Binomial, depends on the
proportion (for instance, the Gaussian distribution does not have this prop-
erty: the variance of the Gaussian does not depend on its mean). In practice,
it means that before doing the experiment we need to foresee based on pre-
vious experiments or the literature, which are reasonable estimates for these
proportions and use them in the sample design. When we actually perform
the experiment, we will see how correct or incorrect we were about our
initial guess, and how correct or incorrect our sample size actually is.

49. The sample size grows with the inverse of the precision, ∆. As ∆ approaches
0, the number of samples for the experiment rockets.

50. Very high or very low proportions have lower uncertainty than proportions
around p = 50% (the term

√
p1(1− p1)+ p2(1− p2) is smaller for p1 and

p2 close to 0 or 1 than for p1 and p2 close to 0.5).

• Example 29 (continued): Continuing with the example and assuming that we
will study the same number of animals on both groups we require

N1 = N2 =

 z0.975
0.05/2√

0.05·0.95+0.1·0.9

2

= 846

That is, we require 846 animals per group. Although, p1 and p2 are close to
0, the required precision, ∆ = 0.05, is relatively high resulting in a very large
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number of animals. On the other side, since p1 and p2 are expected to be so
close to each other, having a smaller precision (for instance, ∆ = 0.15 results in
only 94 animals per group) would probably make the results of the experiment
useless, because the confidence interval would probably include 0, leaving us
with the uncertainty if there is really a difference between the infection rate in
adults and newborns.

Important remarks

51. Calculating the sample size before performing the experiment allows us to
take the decision of embarking into the experiment (and enrolling at least
846 animals per group) or not (because we cannot afford so many animals
and the scientific knowledge gain from fewer animals does not justify the
experiment).

2.2.5 Hypothesis test on the difference of two proportions
• Example 30: Following the last two examples, we are interested in testing if

there is a difference in the infection rate of a pathogen in adults and newborns.
We expect the infection rate in newborns to be higher than the one in adults
(which is expected to be around 5%). If the difference is larger than 5% (that
is, the infection rate in newborns raises above 10%), we want to be able to see it
with a statistical power of 90%. The confidence level is set to the standard 95%.

Our statistical test is of the form

H0 : pnewborn ≤ padults
Ha : pnewborn > padults

We may extend the sample design formula for confidence intervals in Eq. 2.23 to
hypothesis tests

N1 = N2 =

(
z1−α+z1−β

∆√
p1(1−p1)+p2(1−p2)

)2

(2.24)

where we have assumed the same number of samples in both groups (R = 1). As
a technical note, there are many possible designs for this research problem, this one
is called Z-test unpooled variance. The other designs differ in the assumptions, the
calculations and the results, although all of them should result in a similar sample size.
Note an important difference between the design for the confidence interval and the
design for the superiority test: ∆/2 in the confidence interval design (Eq. 2.23) has
turned into ∆ for the superiority test (Eq. 2.24). This results in a large reduction of the
sample size.

• Example 30 (continued): The required sample size for this example would be

N1 = N2 =

(
z0.95 + z0.9

0.05√
0.05·0.95+0.1·0.9

)2

= 472
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Important remarks

51. In Examples 28, 29, and 30, we have seen three different flavours of the
same problem: 1) comparing the proportion of a group to a reference (Ex-
ample 28), 2) computing a confidence interval for the difference of two
groups (Example 29), and 3) showing that the proportion of a group is larger
than the proportion in another group (Example 30). The sample size varies
wildly (N =221, 846, and 472, respectively). This highlights, once again,
the need to plan the experiment in advance and decide exactly which is the
goal of our experiment.

2.2.6 Hypothesis test on the difference of two paired proportions
• Example 31: We are interested in knowing if a drug has an effect in a particular

symptom of a disease. For doing so, we will check a number of diseased animals
and check whether the had the symptom or not before treatment with the drug.
Then, we will administrate the drug and check whether the symptom is present
or not. Before administering the treatment, we expect that 50% of the animals
have the symptom. We want to have a statistical power of 90% if the presence of
the symptom drops to 20%. The statistical confidence of the test is set to 95%.
How many animals do we need for this test?

After performing the experiment we can organize the observations in a table de-
pending on whether the animals have the symptom or not before and after treatment:

After
Absent=0 Present=1

Before Absent=0 n00 n01
Present=1 n10 n11

where the ni j are counts of individuals. The total count of individuals is

N = n00 +n01 +n10 +n11

There is a fundamental difference between this contingency table and a standard contin-
gency table: the animals before and after treatment are the same. This is the equivalent
for proportions of paired measurements. This situation also happens if we measure
the absence/presence of a feature in two different locations of the same animal, or the
absence/presence of a feature in an animal and its sibling. The same individual serves
as its own control or, at least, there is a matched control (as in the case of siblings).
The standard tools for contingency tables (like the χ2-test) do not apply because those
tools are designed for independent samples, and not multiple measures on the same in-
dividual. The appropriate tool is McNemar’s test that determines if the row and column
marginal distributions are equal. Technically, the test is

H0 : p01 = p10
Ha : p01 6= p10
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where p01 = n01/N and p10 = n10/N. Note that p01 and p10 are the discordant frequen-
cies (they had symptoms before but not after, or viceversa). So McNemar’s test checks
whether the proportion of discordant events is the same in both directions.

The number of animals for the experiment can approximately be calculated with
the help of two proxy variables: the total proportion of discordant events and the odds
ratio between both kinds of discordant events

pD = p10 + p01
OR = p10/p01

Then,

N =

(
z1− α

2
(OR+1)+ z1−β

√
(OR+1)2− (OR−1)2 pD

(OR−1)
√

pD

)2

(2.25)

• Example 31 (continued): We must translate our previous expectations into pro-
portions in each one of the cells. The following table shows this decomposition

After
Absent=0 Present=1

Before Absent=0 p00=40% p01=10% 50%
Present=1 p10=40% p11=10% 50%

80% 20%

For the sample size calculation we have:

pD = 0.4+0.1 = 0.5
OR = 0.4/0.1 = 4

N =

(
z0.975(4+1)+z0.9

√
(4+1)2−(4−1)20.5

(4−1)
√

0.5

)2

= 55

The exact design formula (not shown here) gives N = 59.

Important remarks

52. As usual in the sample size design with proportions, we need to make use
of the expected proportions in each of the cases before doing the experi-
ment. This is a bit unnatural to researchers, but there is no other way of
making the design, and it is better having a rough guess of the number of
samples to show a given effect than taking a fixed number, e.g N = 30, for
discovering later (post-mortem analysis) that we have fallen too short or
large the number of samples required for our purposesused too few or too
many animals.

53. The term (OR− 1)
√

pD plays the role of the effect size. As this term ap-
proaches to 0 (because the two discordant proportions are very similar and
OR≈ 1, or because there are very few discordant events, pD ≈ 0), the num-
ber of samples required for our experiment grows very quickly. This is
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logical because in these two cases, it will be very difficult to show that
p01 6= p10.

2.2.7 Hypothesis test on the difference of multiple proportions

• Example 32: We want to verify if there is a relationship between the incidence of
a given pathology and genotype and sex. We will study four genotypes (G1, G2,
G3, and G4) that we will assume equiprobable. If there is no relationship, then
we should observe 50% of male and female diseased animals at all genotypes.
If there is, then in some of the genotypes we may observe a deviation from this
50%. We want to have a statistical power of 90% if the deviation is larger than
10%. We want to have a statistical confidence of 95%. How many diseased
animals do we need to observe to test this hypothesis?

This kind of studies are addressed through a contigency table, in the example above of
diseased animals. When we perform the experiment we record in this table how many
animals we have observed of each kind

Genotype
G1 G2 G3 G4

Sex Male=1 n11 n12 n13 n14
Female=2 n20 n21 n23 n24

At the moment of experiment design we cannot input the number of animals observed
because the experiment has not started yet. Instead, we will input the expected proba-
bilities at each of the cells. If there is no higher or lower incidence of the disease with
sex and/or genotype, all cells should have the same probability as shown below.

Genotype
G1 G2 G3 G4

Sex Male=1 p0
11 = 0.125 p0

12 = 0.125 p0
13 = 0.125 p0

14 = 0.125
Female=2 p0

21 = 0.125 p0
22 = 0.125 p0

23 = 0.125 p0
24 = 0.125

We will refer to these probabilities as p0
i j, the i and j refer to the cell and 0 to the

fact that this is our a priori assumption, and it will be the distribution under the null
hypothesis. Note that the probability in each of the cells is 0.125 = 0.5 · 0.25, 0.5
because this is the a priori probability of male and female, 0.25 because each of the 4
genotypes is equiprobable, and the product because we assume that sex and genotype
are independent (they would not be independent if for a given genotype, more males
are born than females or viceversa, and this is different to what happens in the species
in general).

If in any of the groups the probablity of diseased males and females is unbalanced
(e.g. males suffer more frequently the disease than females), then we would observe a
different distribution of probabilities. Just for illustrating the idea, let us assume that
this happens in Genotype 1, and that the deviation is 10%. Then the expected table of
probabilities would be



98 CHAPTER 2. SAMPLE SIZE CALCULATIONS

Genotype
G1 G2 G3 G4

Sex Male=1 pa
11 = 0.6 ·0.25 = 0.15 pa

12 = 0.125 pa
13 = 0.125 pa

14 = 0.125
Female=2 pa

21 = 0.4 ·0.25 = 0.1 pa
22 = 0.125 pa

23 = 0.125 pa
24 = 0.125

We have labelled this probability distribution as a because it is associated to the al-
ternative hypothesis. Remember that at this specific distribution we wanted to have a
statistical power of 90%. We may compute the difference between the two distributions
(null and alternative) as

w =

√√√√∑
i j

(p0
i j− pa

i j)
2

p0
i j

We have named the difference as w and it is the effect size. In the example above,
w = 0.1. Then, we need some equation that allows as to find the sample size. This
equation is given, as usual, by a threshold such that from this threshold to the side
of the alternative hypothesis, the null hypothesis has a probability α; and from this
threshold to the side of the null hypothesis, the alternative hypothesis has a probability
β . The test we will do to analyze this data is a χ2, and the sample size design equation
is

χ
2
1− α

2 ,0,d f = χ
2
β ,Nw2,d f (2.26)

where d f = (R− 1)(C− 1) is the number of degrees of freedom of the χ2 and it is
calculated as a function of the number of rows, R, and columns, C, of the contingency
table (in our example, d f = (2− 1)(4− 1) = 3), and the parameter Nw2 is the non-
centrality parameter of the χ2.

• Example 32 (continued): In our example, w = 0.1, α = 0.05 and β = 0.1, and
the sample design equation is

χ
2
0.975,0,3 = χ

2
0.1,N·0.01,3

The solution is N = 1,418. The reason for such a high number is that the ef-
fect size is very small. Once again, we realize of the importance of designing
the experiment in advance and adjusting our expectations to the sample size, or
adjusting the sample size to our requirements.

2.2.8 Hypothesis test on the equivalence of one proportion
• Example 33: We are exploring a new administration route for a drug. Normally,

p = 60% of the animals respond to the drug. How many animals do we need to
study to show that the new route is equivalent to the previous one? We want to
have a power of 90% when the number of responders is p1 = 50% or p2 = 70%.

As was shown in Sec. 2.1.8, equivalence tests are translated into two tests and
they normally require more samples than standard significance tests. In the case of
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proportions, this is also the case. The equivalence test can be written as

H0 : p≤ p0L or p≥ p0U
Ha : p0L < p < p0U

p0L and p0U are the lower and upper bounds such that the proportion is still considered
to be the same as the nominal value. This test is translated into two one-sided tests
(TOST, see Fig. 2.6).

H0L : p≤ p0L
HaL : p0L < p

and
H0U : p≥ p0U
HaU : p < p0U

If both null hypotheses are rejected, then we would accept the alternative hypothesis
and, in this way, we would have shown that the proportion is within the specified limits
(p0L and p0U ).

Figure 2.6: Top: Representation of the two null hypotheses for the equivalence of two
proportions. Bottom: Representation of the alternative hypothesis.

H0 is rejected if the number of observed samples is in the region x1 < x < x2 with

N
∑

x=x1

b(x;N, p0L)< α

x2−1
∑

x=0
b(x;N, p0U )< α

and the power of the test
x2
∑

x=x1

b(x;N, p)< 1−β
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where b(x;N, p) is the probability of observing x successes when N samples are drawn
from a binomial distribution, and the probability of success is p. We need to find
numbers x1, x2 and N satisfying the equations above.

These equations can be solved numerically with a computer. An approximate solu-
tion of the number of samples is obtained if the three binomials can be approximated
by Gaussians and p = p0L+p0U

2 , then we can solve for N as

N ≥

 z1−α + z
1− β

2
p0U−p0L√

(p0L+p0U )(2−p0L−p0U )

2

(2.27)

• Example 33 (continued): The exact solution requires N = 255 samples. We
would reject the null hypothesis if the number of respondents is between x1 =
142 and x2 = 165. The approximate solution gives

N ≥

 z0.95 + z0.95
0.7−0.5√

(0.5+0.7)(2−0.5−0.7)

2

= 260

Important remarks

54. From the design, we get the number of samples N, and two limits, x1 and
x2, such that we can decide when the experiment is done whether we should
reject the null hypothesis or not.

2.2.9 Hypothesis test on the equivalence of two proportions
• Example 34: We can solve the same problem as in Example 33, but estimating

the proportion from two populations: one with the standard administration route
and another one with the alternative route.

An appropriate hypothesis test is

H0 : |p1− p2| ≥ ∆

Ha : |p1− p2|< ∆

where ∆ is the maximum difference between the proportions in the two groups, p1 and
p2, such that both groups are still considered to have the same proportion. As in the
previous case, we can solve the problem with two one-sided tests (TOST), for which
an exact solution exist based on binomial counting (as in the previous case). In this
section we will not give the formulas, which are more complicated than in the previous
section, but they have the same flavour.

If the binomials associated to the different options can be approximated by Gaus-
sians, then ∆̂p = p1− p2 is approximately normal with variance

σ
2
∆̂p

=
p1(1− p1)

N1
+

p2(1− p2)

N2
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In the equivalence case, p1 is supposed to be equal to p2 (and referred to as p), and the
optimal allocation size gives N1 = N2 = N so that

σ
2
∆̂p

=
2p(1− p)

N

The sample size for a given power 1−β is

N ≥

 z1−α + z
1− β

2
∆√

2p(1−p)

2

(2.28)

where ∆ is the maximum deviation for which the two proportions are still considered
to be equivalent (that is, |p1− p2|< ∆)

• Example 34 (continued): The exact solution requires N = 520 samples per group.
The approximate solution gives

N ≥

 z0.95 + z0.95
0.1√

2·0.6(1−0.6)

2

= 520

Important remarks

55. If we compare the sample size for an experiment with just one proportion
(Example 33 or two proportions (the example above), we see that the size
for two proportions is much larger. The reason is that with two proportions
there is much more “uncertainty” involved since we need to estimate the
difference in proportion for two groups, instead of just one.

2.3 Sample size for regression
Regression is a statistical procedure to estimate the relationship between random vari-
ables. In its simplest form, let us consider a random variable Y , called the dependent
or predicted variable, and another random variable X , called the independent variable
or the predictor. Then, we can find a linear relationship between the two:

Y = b0 +b1X (2.29)

An important observation is that X is supposed to be a random variable and cannot be
controlled by the experimenter. For instance, the weight and the length of the mice can
both be measured by the experimenter, but he cannot influence any of the two. Regres-
sion in this case determines if there exists a linear relationship between the weight (Y )
and length (X). We can extend this model to p predictors

Y = b0 +b1X1 +b2X2 + ...+bpXp
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This is different to an experiment in which the researcher checks on the effect of differ-
ent growth hormone doses on the weight of the mice. He tries different hormone doses
(X) and measures the observed weights (Y ) for each of the dose levels. The assump-
tion is that for each hormone level (X), there corresponds a “unique and unobservable”
weight value (b0 + b1X) that is “corrupted” by measurement errors and the intrinsic
variability associated to each individual animal (E)

Y = b0 +b1X +E (2.30)

In this model, X is not a random variable, but deterministic and totally specified by the
experimenter. In this model, the randomness in the observations (Y ) is only caused by
the observation errors (E). Fig. 2.7 illustrates the case of random and deterministic
predictors. Both problems are statistically called a regression problem, and the sample
design formula follows the same principles in both cases.

Consider a pair of observations (Xi,Yi) for a given animal. The predicted value, Ŷi
(line in Fig. 2.7), for this predictor, Xi, is

Ŷi = b0 +b1Xi

and the vertical distance between the predicted value and the true observation (circles
in Fig. 2.7) is called the residual, εi

εi = Yi− Ŷi

Note that this residual is well defined for the case of random predictors as well as for
deterministic predictors. Least squares is one of the most widespread regression tech-
niques, although more sophisticated goal functions exist addressing different properties
of the data. The goal in least squares is to minimize the square of the vertical distance
between the observations and the predicted model.

Pearson correlation coefficient is associated to a linear regression model as the one
in Eq. 2.29. In this way, it would be incorrect to calculate the correlation between the
animal weight and the hormone dose (whose model is Eq. 2.30). Regression analysis
can handle both cases under a number of assumptions:

1. The observed samples are representative of the whole population. For the case
of weight and length (random predictor), the meaning of this assumption is clear.
For the case of weight and dose (deterministic predictor), it means that the doses
administered during the experiment are representative of the doses of interest
(e.g. we can artificially manipulate the slope b1 by adding too large doses).

2. For the model with deterministic predictors, it is assumed that error is zero mean.

3. The predictor is measured without noise. If our experiment violates this assump-
tion we should use errors-in-variables or total least squares models, instead of
least squares. The interested reader is referred to Fox (2015) for a more detailed
explanation of these models.

4. If there are several predictors (e.g., Y = b0 + b1X1 + b2X2 + b3X3...), they are
linearly independent (that is, none of them can be expressed as a linear combi-
nation of the rest; technically, we cannot find ai coefficients such that a1X1 +
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a2X2 +a3X3 + ...= 0). Linear dependence indicates redundancy in the informa-
tion brought by the predictors. We do not need one (or some) of them, since the
information brought by the redundant variables is already contained in the rest.
Partial least-squares is a technique that removes the linear independence of the
predictors.

5. Regression residuals are uncorrelated to the predictors. If this is not the case, it
probably indicates that our regression model does not truly represent the under-
lying relationship between the predictor and the predicted variable (for instance,
we have assumed a linear relationship Y = b0 + b1X when the true relationship
is of the form Y = b1

√
X).

6. The variance of the residuals is constant across the predictor (see Fig. 2.7). This
assumption is technically known as homoscedasticity, and when it is not fulfilled
the data is said to be heterocedastic (see Fig. 2.8). Weighted Least Squares is a
technique that has been specifically designed for heterocedastic data.

As we have presented it now, this kind of regression assumes that the predicted
variable, Y , is continuous. This is, probably, the most common kind of regression.
In particular, we have only presented linear regression. Non-linear regression also
assumes continuous Y . However, there exist other regression variants: like the logistic
regression (Y is a probability, see Sec. 2.3.3), the Cox regression (Y is a survival
rate, see Sec. 2.3.4), and Poisson regression (Y is a count rate, see Sec. 2.3.5). These
regressions are much more specialized and have more restricted applications. However,
there are problems for which these are the right tools, and any other kind of analysis is
much less powerful or, simply, incorrect.

Interestingly, we can extend the regression tools to handle categorical predictors,
or even a mixture of continuous and categorical predictors. This is called generalized
regression (Generalized Linear Models are a particular case of the generalized regres-
sion). The sample size design for these more advanced problems is out of the scope of
this chapter. The interested reader is referred to Dobson and Barnett (2008).

2.3.1 Linear regression: Confidence interval on the slope of a re-
gression coefficient

• Example 35: We are interested in the effect of a given drug on the Forced
Expiratory Volume (FEV) of a lung disease mouse model. FEV is defined as the
expired air volume during 0.1 seconds, and it is expected to be around 1 mL. We
expect that a new drug we are developing helps to increase the lung capacity of
the animals with a maximum change of 0.5 mL if we give a maximum dose of
20 mg/kg. We want to determine a 95% confidence interval on the slope, whose
maximum half width is of size 0.005. We expect the standard deviation of the
regression residuals to be around 0.066 mL. How many animals do we need for
this experiment?

As the Y observations are realizations of a random variable, and consequently this
makes the estimated coefficients of the regression (b̂0, b̂1, ...) to be also random vari-
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Figure 2.7: Top: Regression example in which both Y and X are random variables.
Bottom: Regression example in which Y is random, but X is deterministic
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Figure 2.8: Example of heteroscedasticity, the variance of the residuals is different for
different values of the predictor X .

ables having their own statistical distribution. Assuming that the residuals are nor-
mally distributed with zero mean, then the regression coefficients are also normally
distributed. The confidence interval of level 1−α for a coefficient associated to a
predictor is given by [

b̂1− t1− α
2 ,N−p−1sb̂1

, b̂1 + t1− α
2 ,N−p−1sb̂1

]
(2.31)

where p is the number of predictors of the regression (for b0 + b1X the number of
predictors is p = 1). That is, it is a symmetric confidence interval centered on our es-
timate and whose width is given by a percentile of the central Student’s t distribution
(as expected for means calculated from Gaussian data) with N− p−1 degrees of free-
dom, and the sample standard deviation of the corresponding coefficient. This sample
standard deviation is given by

sb̂1
=

sε/
√

N−1
sX

where
sε =

√
1

N−p−1 ∑
i

ε2
i

sX =
√

1
N−1 ∑

i
(Xi− X̄)2

being X̄ the mean of the Xi observations. If X is a Gaussian random variable, then a
good estimate of sX is

sX = σX
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that is, the standard deviation of the underlying Gaussian. If X is uniformly distributed
between Xm and XM , then an estimate of sX is

sX =
XM−Xm√

12

Finally, if X is deterministic and linearly distributed between Xm and XM with NX steps,
then the exact value of sX is

sX =
XM−Xm√

12

√
NX (NX +1)
NX −1

From these equations we draw some interesting conclusions:

Important remarks

56. As expected, as the number of samples grows, the uncertainty around b̂1
decreases, because the term sε/

√
N−1 decreases.

57. Before doing the experiment we need a lot of previous knowledge about the
result: 1) we need a guess of the sample standard deviation of the residuals,
sε ; and 2) we need an estimate of the sample standard deviation of the
predictor, sX . If the predictor is deterministic, we can have an exact value of
sX because, as researchers, we are fixing these values; but if the predictor is
random, then we need some guess of this statistical parameter before doing
the experiment.

58. In any case, the sample size is calculated in a situation requiring many
assumptions about the results of an experiment that has not been performed
yet, and the specific number has to be taken as an order of magnitude rather
than a precise calculation.

The sample size, N, is found by assuming that the semi-length of the confidence interval
is smaller than the specified half-width, ∆

t1− α
2 ,N−p−1

sε/
√

N−1
sX

< ∆ (2.32)

• Example 35 (continued): For the example above, we guess that sε = 0.066 (we
may have found an estimate of this value in previous experiments from our lab-
oratory, or from figures in papers of similar experiments). We will test doses
from 2 to 20 mg/kg in steps of 2 (2, 4, 6, ..., 20; 10 doses in total). The sample
standard deviation of these doses is

sX =
20−2√

12

√
10 ·11

9
= 6.06

With these estimates, we calculate the sample size to be

t0.975,N−2
0.066/

√
N−1

6.06
< 0.005⇒ N = 22
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We have 10 different doses, so we may perform 2 measurements at each dose
level, and 2 more extra samples at any of the doses (preferably the first and last
one, because they increase the precision of the estimate of the b1 coefficient).

A rough estimate of the b1 coefficient before doing the experiment can be calcu-
lated because we expect an increase of the FEV in 0.5 mL when the dose is 20
mg/kg, this yields an a priori estimate of

b̂1 = 0.5/20 = 0.025

This means that the half-width of the confidence interval will be about one fifth
of the estimated slope, and this is achieved with about 22 samples.

2.3.2 Linear regression: Hypothesis test on the regression coeffi-
cients

• Example 36: Following with the Example 35, we plan an hypothesis test to check
if the regression coefficient, which is expected to be relatively small (around
b̂1 = 0.025), could actually be 0. If this is the case, then our drug would not be
having any effect on the FEV.

H0 : b1 = 0
Ha : b1 6= 0

If the coefficient is larger than 0.005, we want to have a statistical power of 90%.
How many animals do we need to test this hypothesis?

For a single predictor, this design is based on a Snedecor’s F distribution. Under the
null hypothesis, the regression should not explain more variability than the mean of the
samples. Then, we must find a size such that the Type I error probability is α and the
Type II error probability is β .

F1−α,1,N−2 = Fβ ,φ ,1,N−2 (2.33)

where F1−α,1,N−2 is the 1−α percentile of a central Snedecor’s F with 1 and N− 2
degrees of freedom, and Fβ ,φ ,1,N−2 is a non-central Snedecor’s F with 1 and N − 2
degrees of freedom and non-centrality parameter

φ = N
(

sX ba
1

sε

)2

being ba
1 the coefficient of the alternative hypothesis for which we already want to

have a specific power, sX the standard deviation of the predictor X , and sε the standard
deviation of the residuals (obviously, at the time of design an educated guess of these
two parameters must be used).

The same idea can be extended to the linear multiple regression, only that the spe-
cific formulas are more complicated. We are primarily concerned here, not so much
with the formulas, but with the consequences that derive from them.
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Important remarks

59. The sample size for testing the significance of a regression coefficient de-
creases if the standard deviation of the residuals, sε , decreases. This result
is logical: if the observed data is better fitted by the regression line, then we
have less uncertainty about the slope of this line.

60. The sample size also decreases if the standard deviation of the predictor,
sX , increases. This is also logical: if we study the relationship between Y
and X for a wider range of X , it will be easier to detect the line that relates
the two variables.

61. The sample size also increases if the number of predictors, p, grows, be-
cause we need to estimate more parameters and this decreases the degrees
of freedom available from a fixed sample size.

• Example 36 (continued): For the example above, the non-centrality parameter is

φ = N
(

6.06 ·0.005
0.066

)2

= 0.21N

We simply need to find the N that satisfies

F0.95,1,N−2 = F0.1,0.21N,1,N−2⇒ N = 42

As expected, the sample size for this experiment is larger than for the previous
one, because we are putting a constraint on the statistical power required at a
distance ba

1 = 0.005.

2.3.3 Logistic regression: Hypothesis test on the regression coeffi-
cients

Logistic regression addresses the problem of predicting the probability of an event.
For instance, let Y be the event of having a cardiovascular disease in mice (Y = 1 if
the animal has the disease, and Y = 0 if it does not). We want to study the relationship
between the probability of suffering the disease and the animal weight, X . We expect
this probability to be low for animals with normal weight (20-30 g) and to increase as
the body weight increases (see Fig. 2.9). Logistic regression is a way of representing
this dependence. This technique expresses the probability of Y = 1 as a function of the
predictor using the so-called logistic function

Pr{Y = 1}= eb0+b1X

1+ eb0+b1X

For instance, the function represented in Fig. 2.9 is

Pr{Y = 1}= e−10.26+0.27X

1+ e−10.26+0.27X
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Note that this function is simulated and it does not represent a real probability of car-
diovascular disease, but it serves to illustrate our argument. For simplicity of notation,
let us call p = Pr{Y = 1}. The logit of p is defined as

logit(p) =
p

1− p

that is, the logarithm of the odds of disease vs. non-disease. If p is defined as a logistic
function, then the logit of p becomes

logit(p) = b0 +b1X (2.34)

• Example 37: We are interested in checking if there is a relationship between the
body weight of a mouse and the probability of suffering a cardiovascular disease.
For doing so, we will perform a logistic regression as the one in Eq. 2.34. We
will perform a test of the form

H0 : b1 = 0
Ha : b1 6= 0

If we cannot reject the null hypothesis, then we cannot exclude the possibility
that body weight does not have any effect on the probability of suffering a car-
diovascular disease. If the odds ratio increases above 3 per standard deviation,
we want to have a statistical power of 90%. How many animals do we need to
test this hypothesis?

Under the null hypothesis, the logit of p0 is

logit(p0) = b0

because under the null hypothesis there is no relation between body weight and proba-
bility of cardiovascular disease. Under the alternative hypothesis, the logit of pa is

logit(pa) = b0 +b1X

We may compute the difference between the two

logit(pa)− logit(p0) = b1X

This is also the expression of the logarithm of the odds ratio

logit(pa)−logit(p0)= log
(

pa

1− pa

)
−log

(
p0

1− p0

)
= log

(
pa/(1− pa)

p0/(1− p0)

)
= log(OR)

Consequently,
OR = eb1X

So testing if b1 = 0 is the same as testing if the odds ratio is equal to 1. In order
to compute a sample size, we need to further assume that X is normalized to have
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Figure 2.9: Top: Probability of having a cardiovascular disease (Y = 1) as a function
of the mouse body weight in grams. Bottom: Same probability represented as logit.



2.3. SAMPLE SIZE FOR REGRESSION 111

0 mean and standard deviation 1 (note that we can always normalize our variables,
and in practice, this normalization is not a constraint). Then, eb1 is the increase in
odds ratio of the disease for every increase of X in one standard deviation. Under
the null hypothesis and if X is normalized, it can be shown that the estimate of b1,
b̂1 is approximately distributed as a Gaussian with zero mean and standard deviation

1√
pµX (1−pµX )

Consequently, we can design the number of samples as

N >

 z1− α
2
+ z1−β

ba
1

1√
pµX (1−pµX )


2

(2.35)

where ba
1 is the effect size we want to detect with a given statistical power (see the

example below), and pµX is the expected probability of disease at the mean of the
predictor, X .

• Example 37 (continued): We want to have a power of 90% if the odds ratio goes
above 3 when the weight is one standard deviation above the mean. This means

eba
1 = 3⇒ ba

1 = 1.1

Our animals will have a mean weight of 25 g. with a standard deviation of 2
g. At 25 g., we expect that only 3% of the animals suffer from a cardiovascular
disease. The sample size for this experiment would be

N >

 z0.975 + z0.9
1.1

1√
0.03·0.97


2

⇒ N = 299

That is with N = 299 we will be able to check if there is an increase in odds ratio
as small as 3 when the weight is increased by one standard deviation. Remember
that the odds ratio is defined as

OR =
pa/(1− pa)

p0/(1− p0)

Then
pa =

p0OR
p0(OR−1)+1

=
0.03 ·3

0.03(3−1)+1
= 0.085

That is, the probability of suffering the cardiovascular disease has to grow from
3% at 25 g. to above 8.5% at 27 g. (one standard deviation of weight) if we want
to be able to detect it with a statistical power of 90% and a statistical confidence
of 95%. For this detection we need N = 299 mice whose weight is normally
distributed with mean 25 g. and standard deviation 2 g.
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Important remarks

62. This example highlights an important ethical concern of animal research:
before doing an experiment we should evaluate the cost, harmful proce-
dures and scientific knowledge gained from the experiment, and decide
whether the experiment is worthy to be carried out. Many results of animal
disease models are supposed to be extrapolated to humans, although they
do not always correlate so well with human results. In this example, we
need many animals to gain relatively little knowledge, which we are unsure
of being able to extrapolate to humans. The same experiment with humans
would have been much cheaper (we still need to observe N = 299 humans,
but the maintenance cost of the experiment is zero as opposed to the main-
tenance of the research animals) and the results are directly obtained for
humans (they do not have to be extrapolated). In this case, there are no
harmful procedures on the animals, although there are many experiments in
which there are.

The logistic regression can be performed with several predictors and the sample
size formula would be identical simply taking into account the inflation of Type I er-
rors due to the multiple testing on the different coefficients (see Sec. 1.5). We can
also perform a logistic regression with non Gaussian predictors or deterministic pre-
dictors (for instance, a drug dose). If b1 is positive, then the probability of the event
will increase with larger values of the predictor. If b1 is negative, then the probability
of the event will decrease with larger values of the predictor. Unfortunately, the sample
size formula only exists for Gaussian predictors. For the rest of cases, we may resort
to a simulation. We would fix the curve (or slope) of the alternative hypothesis, then
we would simulate the appearance or not of the event in N animals according to this
probability distribution. We would then perform the hypothesis test, as if we were an-
alyzing real data, and compute the statistical power and confidence of our simulations
by repeating this simulated experiment many times. The procedure is computationally
costly, but it would allow us computing the sample size for any possible predictor.

Important remarks

63. Simulation of the experiment is an alternative to the calculation of the sam-
ple size using formulas. Simulation is valid for any kind of predictor (de-
terministic or random) and any kind of statistical distribution, while the
sample size formulas we are giving in this chapter are only valid under the
conditions for which they were derived. However, simulation requires some
programming skills, unless some software performing these simulations is
available.

2.3.4 Cox regression: Hypothesis test on the regression coefficients
Survival analysis is a statistical technique that tries to explain the expected duration of
time until an event of interest happens. The technique takes its name from the expected
duration of an individual until death. However, the event does not need to be death,
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but any other event of interest can be defined: time to cure, time to first visit of a room
in a maze, time to first relapse, ... For convenience, we will keep the standard nomen-
clature related to death and survival. Cox regression (after its creator, the statistician
David Cox) is a technique that tries to explain the survival time as a function of some
predictors like the dose of a drug, the concentration of some hormone in blood, or the
kind of received treatment. It is also called proportional hazards regression.

Before getting into the details of sample size for Cox regression, let us briefly
introduce the main concepts of survival analysis. Let us define the random variable T
as the time of death. The function S(t) is defined as the probability of dying after a
time t

S(t) = Pr{T > t}

Once the survival function is defined, we may define the hazard function, λ (t). Sup-
pose that an individual has survived until time t, the hazard function indicates the prob-
ability that it will not survive after an infinitesimally small time, dt. It can be calculated
as

λ (t) =−S′(t)
S(t)

where S′(t) is the derivative S(t) with respect to t. The hazard function can be under-
stood as a kind of instantaneous probability of death. This probability may vary over
time or be fixed. If it varies over time, it may be higher early in time and then decrease
(this is, for example, the case of diseases affecting youngsters more than adults); or it
may be lower early in time and then increase (this is the case of diseases affecting more
the elderly). Constant hazards are related to external causes (like accidents, pathogens,
...) whose probability is not affected by the survival time. See Fig. 2.10 for an example
of the three kinds of hazards, and their corresponding survival functions. Note that
the hazard of external causes is constant, while the hazard of infant diseases is larger
for younger animals, and the hazard of elder diseases is larger for elder animals. Note
that, as expected, if a population is affected by infant mortality, the survival function
is lower in the early days. Once the reason of infant mortality decreases because an-
imals are older, then this survival function passes to occupy the upper position. The
opposite happens when the cause of mortality affect more the elderly. Interestingly, a
constant hazard results in an exponentially decaying survival function. Note also that
the cause of mortality may not affect the mean survival time, which in the three exam-
ples is µ = 500 days. Note also that at t = 500, the survival probability is not 50%,
that is the mean survival time is not the time at which 50% of the animals still survive.
Interestingly, for a constant hazard the mean survival time is

µ =
1
λ

Presume that we will perform an experiment in which we will observe the animals
for 1,000 days and annotate their time of death. After 1,000 days some of the animals
may still be alive (in the examples of Fig. 2.10 between 5 and 25% of the animals
are still alive depending on the nature of the cause of death). But we planned the
experiment for 1,000 days, and we stop it. The remaining animals for which we did
not observe their death time, are said to be censored from the experiment. The same
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Figure 2.10: Top: hazard function for external causes (constant), for higher infant mor-
tality, and higher mortality in the elderly. Bottom: Corresponding survival functions.
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would happen if another researcher accidentally takes one of our animals on the 300th

day, so that it disappears from our experiment. This animal, for which we did not
observe its death time, is said to be censored (although for a different reason than the
end of the experiment).

Cox regression relates a number of predictors to the hazard function. In particular,
the hazard function is supposed to be of the form

λ (t) = λ0(t)eb1X1+b2X2+...+bpXp

That is, the hazard is a baseline hazard, λ0(t), times an exponential that depends on
a linear combination of the predictors. The predictors can be continuous (e.g., drug
dose) or discrete (e.g., receiving treatment or not). Note that the baseline hazard may
change over time, it depends on t. The assumption of this model is that the predictors
affect the baseline hazard in a multiplicative way, that is why it is called proportional
hazards. We can manipulate the hazard expression to

log
(

λ (t)
λ0(t)

)
= b1X1 +b2X2 + ...+bpXp

which has the more familiar expression of a linear regression, only that the left hand
side is the logarithm of the ratio between the true hazard and the baseline hazard.

• Example 38: We are interested in knowing if the time mice spend “training” in
a wheel helps them to better solve a maze. For doing so, we will measure the
training time of each animal, and measure the time they take to escape from
a simple maze. The event of interest is the maze escape (not death), and the
survival time is the time they take to solve it. Our predictor, X1, is the training
time, and the Cox regression model

log
(

λ (t)
λ0(t)

)
= b1X1

The average training time is 5 minutes with a standard deviation of 1.5 minutes.
To know if there is a relationship between training and maze solving we can test
the hypothesis:

H0 : b1 = 0
Ha : b1 6= 0

We want to have a statistical power of 90% if the hazard increases by a factor 1.5
per extra trained minute. The statistical confidence of the test will be 95%. We
plan to stop the experiment after 150 seconds. If the animal has not found the
exit of the maze within this time, the animal will be taken out. We expect that
10% of the animals will not be able to solve the maze in this time.

We can calculate the sample size with a design formula very similar to the one in
Eq. 2.35

D >

 z1− α
2
+ z1−β

ba
1

1
σX1


2
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ba
1 is the coefficient at which we already want to have a statistical power of 90% (see

the example below), and σX1 is the standard deviation of the predictor. This sample
design calculates the required number observed events, D. But as we saw in Fig. 2.10,
at the end of the experiment time limit (150 seconds in the example), some of the
animals may still have not found the exit. Let us call, this probability S(tlimit). Then,
the number of animals required is increased to account for this failure probability.

N =
D

1−S(tlimit)
>

1
1−S(tlimit)

 z1− α
2
+ z1−β

ba
1

1
σX1


2

(2.36)

• Example 38 (continued): In the example of the mice in the wheel, we expected
10% of the animals not to be able to solve the maze in less than 150 s. (these are
the censored animals). So at tlimit = 150 s. we have S(150) = 0.1. We wanted
to have a statistical power of 90% if the regression coefficient is such that the
hazard ratio increases by a factor 1.5 for every minute of extra training. The
increase in hazard ratio is given by

eba
1X1 =

(
eba

1

)X1

that is, for every minute of training, the hazard ratio is multiplied by eba
1 , meaning

that
eba

1 = 1.5⇒ ba
1 = 0.41

We can now calculate the number of samples

N >
1

1−0.1

 z0.975 + z0.90
0.41

1
1.5

2

⇒ N = 32

Note that in our example we have used for simplicity the two-sided sample de-
sign formula (we have used z1− α

2
instead of z1−α , so that with N = 32 we will be

able to detect increases of the hazard ratio by a factor 1.5, but also decreases by
a factor 1.5. If we are only interested in the increase side, then our test becomes
one-sided and the sample size decreases to N = 26.

Important remarks

64. As happened with the linear regression, the sample size also decreases if
the standard deviation of the predictor, sX1 , increases. This is logical: if we
study the survival time for a wider range of X1, it will be easier to detect the
relationship between both variables.

65. If many individuals still survive at the end of our study (in the example,
many mice cannot solve the maze in 150 s.), we will need more individuals
to have a number of observations large enough so that we can estimate
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the relationship between survival time and the predictors with the required
statistical confidence and power.

2.3.5 Poisson regression: Hypothesis test on the regression coeffi-
cients

The result of many experiments is expressed as a count: how many young are born to a
mother in a litter? how many prizes an animal can find in a maze during a fixed period
of time? how many times an animal visits a given room in a maze during a fixed period
of time? Poisson regression addresses the problem of verifying if these counts depend
on some controllable predictors like the treatment given to the mothers having litters,
the training time of mice or the presence or absence of an abuse drug in the visited
room.

As we did in the previous section, let us briefly introduce the main ideas around
count data. Let us call Y the events we are counting (e.g., number of young in the
litter, number of prizes or visits). Y will take values 0, 1, 2, ... When we perform an
experiment of this kind with N animals, our result will be a count. The i-th animal will
give a single count yi (e.g., a specific mother had yi = 7 young in the litter, a specific
mouse found yi = 3 prizes in 60 s.). To analyze the data, let us count the number of
animals with the same count which we will refer to as ny (for instance, n5 = 7 mothers
out of N = 40 had Y = 5 young in their litter). Then, we can estimate the frequency of
observing any number of young as

p̂y =
ny

N
In our example, the observed frequency of having 5 young in a litter is 7/40=17.5%.
This frequency must be an approximation of the true underlying probability of having
5 young in a litter (see Fig. 2.11).

p̂y ≈ Pr{Y = y}

The sequence { p̂0, p̂1, p̂2, ...} gives an empirical estimate of the underlying distribution.
As N grows, the empirical approaches more the true underlying distribution.

In order to make the analysis and experiment design tractable, we need to model
the observed frequencies by some discrete distribution. The most common are:

• Binomial distribution: This distribution was already introduced in Sec. 2.2 when
we calculated the sample size for proportion experiments. This distribution de-
scribes the probability of observing y events in N trials when the probability of
each event is independent of the occurrence of other events and the probability
of each event occurring is p. For instance, consider a cell culture with N bacteria
observed for 1 minute. Let us call p to the probability of any of the cells acquir-
ing a mutation during this time. These events are supposed to be independent,
that is, the fact of a cell having a mutation does not cause or preclude another
cell of acquiring another mutation. The probability of observing y mutated cells
would be given by

Pr{Y = y}= N!
y!(N− y)!

py(1− p)N−y
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Figure 2.11: Empirical probability of observing y = 0,1,2, ... young in a litter.

When dealing with proportions, we have seen that the binomial distribution gives
raise to rather impractical expressions involving summations. This is partic-
ularly problematic for large N (e.g., there can be between N = 109− 1010 E.
coli cells per mL.). Additionally, sometimes we are interested in the cell cul-
ture as a whole (we cannot count the exact number of cells in the sample, like
N = 3,895,206,312 bacteria in my sample). It is more convenient to define a
mutation rate per billion of cells, for instance

λ = N p

being N = 109. This would give us a mutation rate per unit of amount (1 bil-
lion cells) and time (1 minute). Like this, we have already paved the way for
introducing the Poisson distribution.

• Poisson distribution: This distribution expresses the probability of observing y
events in fixed interval of time, space or amount, if these events occur at a con-
stant rate and they are independent of any other event. In the example above
of a cell culture and the count of cells acquiring a mutation, we would need to
assume that the mutation rate is constant over time (there are not periods with
larger or smaller mutation rates). Then, the number of mutations observed over
a fixed period of time and a number of cells, N can be described by a Poisson
distribution. If λ is the event rate per unit time and unit amount of cells (in the
example above 1 minute and 1 billion cells), then the probability of observing y
events during a period T and N billion cells is

Pr{Y = y}= e−λNT (λNT )y

y!
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λ can also represent the event rate per unit area, then in a fixed area A the prob-
ability of observing y events would be the same as in the previous expression
simply substituting NT by A. In general, we talk of T , N and A as unit of ex-
posure. However, knowing N, T and A are not strictly necessary for the use
of the Poisson distribution. For instance, we may analyze the litter size data in
Fig. 2.11, and find a suitable rate, λ , that describes this data. In this example,
λ = 5 and it is the average rate of young per litter. The probability of observing
y newborns in a litter would be

Pr{Y = y}= e−λ λ y

y!

Note that we cannot use the binomial distribution to analyze the newborns per
litter data because N is unclear. This data is not generated by N embryos, each
one with a probability p of being born and, then, observing y newborns (suc-
cesses) out of the N trials. Although we have introduced the Poisson as a natural
continuation of the binomial, it can also be used to describe the probability of
events of a different nature than the binomial distribution.

The formula above is the general expression of the Poisson distribution of pa-
rameter λ . We see that the expression above with N and T is equivalent to this
latter one by defining λ ′ = λNT , that is λ ′ is the event rate in a particular sample
with N billion cells and observed for T minutes, while λ is the event rate per unit
of time and amount. The mean and variance of a Poisson of parameter λ would
be both λ .

• Negative binomial distribution: This distribution calculates the probability of ob-
serving y independent successes before r failures are observed. The probability
of success of each trial is p (e.g., in a coin flip sequence, the probability of ob-
serving y heads before r = 3 tails are observed). The probability of observing y
events is

Pr{Y = y}= (y+ r−1)!
y!(r−1)!

py(1− p)r

The main advantage of this distribution with respect to the Poisson is that it can
describe events of the same nature as the Poisson (like the number of newborns
in a litter), and it has two parameters (p and r). The mean and the variance of
Y are different (as opposed to the Poisson, in which the mean and variance are
equal), and we can find the p and r parameters that reproduce the empirical dis-
tribution observed in the data. In this situation, in which the mean and variance
are different, it is said that the count data is overdispersed, and the negative bi-
nomial is used to model read counts in DNA-seq and RNA-seq experiments for
this reason.

Important remarks

66. Apart from the specific formulas of probability of each one of the distri-
butions, we now know that we have three tools (binomial, Poisson, and
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negative binomial) to model count data. Each one of them has their domain
of application and they model data generated under particular assumptions.

67. Real data does not need to follow any of these models, in the same way as
real measurement errors or any continuous variable of interest do not need
to be Gaussian. However, making the assumption that the experimental data
follows a particular, known distribution allows us to design the sample size,
and to analyze the data.

68. Non-parametric discrete data analysis techniques exist, in the same way as
they exist for continuous data. These techniques allow analyzing the data
without making the assumption that the counts follow any known distri-
bution. As in the case of non-parametric techniques for continuous data,
non-parametric techniques are less powerful than their parametric counter-
parts. If the data really follows one of the known distributions, we would
be losing statistical power by employing a non-parametric technique.

We can now address the problem solved by Poisson regression: does the count rate
depend on some predictors? Poisson regression assumes that the count rate can be
expressed as

λ = eb0+b1X1+b2X2+...+bpXp

or what is the same

log(λ ) = b0 +b1X1 +b2X2 + ...+bpXp

• Example 39: We are interested in knowing if female mice receiving a particular
treatment give birth to fewer newborns per litter. To do this, we will choose a
number of female mice, randomly assign them to the treatment or control groups
(with probability 50%), and observing the number of newborns in each one of
the groups. Then, we will fit the model

log(λ ) = b0 +b1X1

The baseline count rate is λ = 5, that is, without the treatment, mouse mothers
normally have a number of youngsters as shown in Fig. 2.11. To know if there
is a relationship between the treatment and the number of newborns, we can test
the hypothesis:

H0 : b1 ≥ 0
Ha : b1 < 0

We want to have a statistical power of 90% if the count rate decreases to one half
of the baseline count rate. The statistical confidence of the test will be 95%.

In this example, the predictor X1 takes a binary value: X1 = 0 if the mouse does not
receive the treatment, and X1 = 1 if it receives it. The sample size formula is

N >

 z1− α
2

√
Var{b1|H0}+ z1−β

√
Var{b1|Ha}

ba
1

1√
Teb0


2

(2.37)
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where Var{b1|H0} and Var{b1|Ha} is the variance of b1 under the null and alterna-
tive hypotheses, respectively; T is the total time of observation (or total area, or total
amount, that is, since the λ is a rate per unit time, area or amount, T in this formula
accounts for the fact that we may be analyzing a wider sample); and note that eb0 is the
baseline count rate. The variance of b1 under the two hypotheses are

Var{b1|H0} Var{b1|Ha}

X1 is Gaussian 1
σ2

X1

1
σ2

X1

e−b1µX1+
b2

1σ2
X1

2

X1 is Binomial 1
p(1−p)

1
1−p +

1
peb1

Important remarks

69. If the time of observation increases, T grows, the number of samples, N,
decreases. The same happens if the baseline count rate increases. This
effect is logical because short observation times or small count rates lead to
very variable observations of the number of events.

70. If the variance of a Gaussian predictor, σ2
X1

, increases, the number of sam-
ples decreases. We have already seen this behavior in other regressions,
when we study the relationship between a predicted variable and its predic-
tors, wide range of the predictors allow a better identification of the rela-
tionship.

71. If a binary predictor is equally likely, p approaches 0.5 and the number
of samples decreases. In the opposite direction, when one of the values,
X1 = 0 or X1 = 1, is very unlikely to occur, it is more difficult to determine
the relationship between the predicted variable and its predictor.

• Example 39 (continued): Our predictor is binary, and since each animal has a
probability of 50% of being in the control or treatment group, we have p = 0.5.
In this example, the count rate is for the whole experiment (not per unit time or
per unit amount), so that T = 1. The baseline count rate is λ0 = 5 = eb0 . Finally,
we want to have a statistical power of 90%, if the count rate with the treatment
drops by a factor 0.5. We note that for X1 = 1 we have

λa = eb0+b1 = λ0eba
1 ⇒ λa

λ0
= eba

1

In our particular case,

λa

λ0
= 0.5 = eba

1 ⇒ ba
1 =−0.6931

We will use the one-sided version of the sample size design formula

N >

 z0.95

√
1

0.5(1−0.5) + z0.9

√
1

1−0.5 +
1

0.5e−0.6931

−0.6931
1√
1·5


2

⇒ N = 18
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2.4 Sample size for Poisson counts
Poisson distribution is the natural choice for the count of discrete events when the prob-
ability of each event is independent and very low. In the following we will show how
the Poisson distribution arises as the limit when the probability of the events go to zero,
but the overall average of the count remains constant. In many research laboratories,
radioactive substances are used as a way to visualize the location or the presence of
several compounds (radiolabelling). For a given amount of radioactive material, let us
assume that we observe µ disintegrations in 1 hour. We now divide the observation
time, 1 hour, into N small pieces of width ∆t. If the pieces are small enough, then the
probability of observing two or more disintegrations in the same time slot will be zero.
For these small time slots, we assume that the probability of observing one disintegra-
tion, p, is very small. Additionally, we will assume that observations are independent
such that the observation of one event does not depend on the time passed from the
previous observation. We can calculate the probability of observing k events in the N
time slots with the help of a binomial distribution

Pr{X = k}=
(

N
k

)
pk(1− p)N−k

According to the binomial distribution, the expected number of events is N p, but we
know that this must be µ , so that

p =
µ

N
As the slot width ∆t goes to zero, the number of slots N goes to infinity, but their prod-
uct is constant and equal to 1 hour. For the same reason, the probability of observing
an event at any of the time slots, p, goes to zero, but the overall mean N p remains con-
stant and equal to µ . The Poisson limit states that the probability of observing exactly
k events in 1 hour can be calculated as

Pr{X = k}= lim
N→∞

(
N
k

)(
µ

N

)k(
1− µ

N

)N−k
=

e−µ µk

k!

µ is the average number of events observed in 1 hour, that is a fixed period of time,
T . It is customary to define an average number of events per unit time, λ , and then
calculate the expected number of events in a period T as

µ = λT ⇒ Pr{X = k}= e−λT (λT )k

k!

Although we have introduced the Poisson distribution in a time setting, it can also
represent spatial events (for instance, the number of radioactive detections in a detector
of surface A).

Some observations in Biology are known to follow a Poisson distribution, for in-
stance the number of mutations per DNA nucleotide after a given amount of radiation,
the number of deaths per day in a given age population (assuming deaths are inde-
pendent from each other, for example, they are not related to an infectious contagious
disease), or the number of cases of adverse effects observed for a drug. There are some
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other experiments that are also modelled as a Poisson like the number of times an an-
imal visits a maze, the number of macrophages in a microscopy field, the number of
receptors in cell membrane, etc. The advantage of making this assumption is that it
allows us to handle count data in a much better way than statistical tools not designed
to handle count variables (like the standard hypothesis tests designed for Gaussian vari-
ables or regression tools). The main drawback of Poisson modelling is that it assumes
independence of the events, and this assumption may be violated by our system (for in-
stance, mice may learn in the maze example and they visit the room more frequently (or
less frequently) the room as expected by a random, independent visit pattern; or several
macrophages may gather called by chemiotaxis). In these situations, other statistical
distributions may be used for the modelling as the negative binomial or quasi-Poisson
distributions. Still, the sample sizes calculated for the Poisson distribution constitute a
good starting point for more complicated distributions.

2.4.1 Hypothesis test for a single population

• Example 40: We are developing a new drug for veterinarian use and we want
to determine if an adverse effect is common (>1%) or not. How many animals
do we need to observe to ascertain this question? We want to have a statistical
power of 90% if the proportion of adverse effect is larger than 2%. The statistical
confidence level is set to the standard 95%.

We need an hypothesis test of the form

H0 : λ < λ0
Ha : λ ≥ λ0

λ can be understood as the probability of adverse effects per animal, and λ0 would be
the lower limit to be considered a common effect.

As in all other discrete cases, the exact design formulas imply complicated sum-
mations. We must find k (critical threshold of the number of observed adverse effects
to reject the null hypothesis) and N (the sample size) such that

Pr(0≤ X ≤ k;Nλ0)≥ 1−α

Pr(0≤ X ≤ k;Nλa)≤ β
(2.38)

where X is the number of observed adverse effects (which follows a Poisson distribu-
tion), λ0 is the rate at the null hypothesis, and λa is the alternative rate at which we
already want to have a specified power. Dealing with these summations is difficult,
although it can be done with a computer. If the product Nλ is large, then we can
use the square-root method that exploits the fact that the square root of X is normally
distributed

√
X ∼ N(

√
Nλ ,0.25)
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From here, we may deduce

N ≥

 z1−α + z1−β
√

λa−
√

λ0√
0.25


2

(2.39)

• Example 40 (continued): In the example above we must find k and N such that

Pr(0≤ X ≤ k;0.01N)≥ 0.95
Pr(0≤ X ≤ k;0.02N)≤ 0.1

The exact solution is N = 1,296 and k = 19, that is, we must give the drug to
N = 1,296 animals. If more than k = 19 have adverse effects, then we must reject
the null hypothesis and declare that the adverse effect is common (its incidence
is larger than 1%). The approximate method gives

N ≥

 z0.95 + z0.9√
0.02−

√
0.01√

0.25

2

= 1,248

2.4.2 Hypothesis test for two populations
• Example 41: We want to determine the best way of maintaining an animal house

with a low incidence of a given infection. For doing so, we will observe two an-
imal houses: one follows the procedure 1, while the other follows the procedure
2. The base proportion of infected animals should be around 1%, and we would
like to have a statistical power of 90% if the infection rate deviates from each
other more than 0.5%.

We need an hypothesis test of the form

H0 : λ1 = λ2
Ha : λ1 6= λ2

The exact solution is given by a binomial method whose details fall outside the scope
of this book, but it follows similar expressions than the exact method of the previous
section. If we can use the square-root approximation (Nλ1 and Nλ2 are large), then

√
λ2−

√
λ1

1
2

√
2
N

∼ N(0,1)

The optimal number of samples per group is given by

N =

 z1− α
2
+z1−β

√
λ2−
√

λ1
1
2
√

2

2

(2.40)
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For an superiority/inferiority test

H0 : λ1 ≥ λ2
Ha : λ1 < λ2

We exploit that √
λ2−

√
λ1

1
2

√
1

N1
+ 1

N2

∼ N(0,1)

The optimal number of samples is given by

N1 =

 z1−α+z1−β√
λ2−
√

λ1
1
2
√

1+R

2

N2 =
N1
R with R = λ2

λ1
(2.41)

As the expected rate in Group 2 is larger than in Group 1, we need fewer samples in
Group 2 than in Group 1 (N2 < N1).

• Example 41 (continued): We will perform two designs one for positive devia-
tions of Group 2 with respect to Group 1, and another one for negative devia-
tions:

N =

 z0.975+z0.9√
0.015−

√
0.01

1
2
√

2

2

= 10,420

N =

 z0.975+z0.9√
0.005−

√
0.01

1
2
√

2

2

= 6,125

We see that the most restrictive case is when λ2 is larger than λ1. Consequently,
we need to observe N = 10,420 in each animal house.

Important remarks

72. Poisson distribution is also called the distribution of rare events. Conse-
quently, working with it implies very large sample size, simply because the
number of observations is very low (the expected value is Nλ , which also
happens to be its variance).

2.5 Sample size for the variance
The following set of procedures aim at designing the sample size for situations in which
very little is known about the experiment. Note that in many other sample size designs,
the variance of the observations is a key parameter (this is the case of all sample size
designs for the mean and for regression). However, there are experimental situations
in which even this variance is unknown. The following sample size calculations will
allow us to design an experiment by which we will gain some insight into the variability
we should expect from our observations.
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2.5.1 Confidence interval for the standard deviation
For instance, let us assume this is the first time, ever in history, that the expression level
of a given gene is studied. How many individuals should we study to determine the
standard deviation with a confidence interval whose two-sided width is smaller than a
given desired precision. When we perform the experiment, we will be able to calculate
the sample standard deviation, σ̂ as

x̄ = 1
N

N
∑

i=1
xi

σ̂ =

√
1

N−1

N
∑

i=1
(xi− x̄)2

Then, we will construct a two-sided 1−α confidence interval (e.g., 95% confidence
interval) as σ̂

√
N−1

χ2
1− α

2 ,N−1

, σ̂

√
N−1

χ2
α
2 ,N−1


The confidence interval for the ratio σ

σ̂
is√ N−1

χ2
1− α

2 ,N−1

,

√
N−1

χ2
α
2 ,N−1


whose width is by design to be smaller than δ , so the sample size design equation must
be √

N−1
χ2

α
2 ,N−1

−
√

N−1
χ2

1− α
2 ,N−1

≤ δ (2.42)

that must be solved numerically.

• Example 42: We want to determine a 95% confidence interval for the standard
deviation of the gene expression level of a given gene with a two-sided precision
less than δ = 1. Then, we need N = 12 samples. With this number of samples
the 95% confidence interval for the σ

σ̂
ratio is

(0.71,1.70)

That is, the true standard deviation could be as small as 0.71σ̂ or as large as
1.70σ̂ . Having more precision in our confidence interval rapidly increases the
sample size. For instance, to have only a 10% of two-sided width, the sample
size would grow up to N = 774 individuals. Then, the confidence interval would
be

(0.95,1.05)
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Important remarks

73. A large precision for the variance or standard deviation rapidly increases the
number of samples. For small sample sizes, we need to accept a relatively
large uncertainty about the true underlying variability of our population.

2.5.2 Hypothesis test for one variance
• Example 43: We regularly monitor the precision of the optical densitometer of

our laboratory. Historically, the standard deviation of the measurements has been
σ = 0.05 (arbitrary units). How many samples do we need to detect an increase
of variance larger than 50% of the nominal variance with a statistical power of
90% and a confidence of 95%?

In this setting we will perform an hypothesis test (see Fig. 2.12:

H0 : σ2 ≤ 0.052

Ha : σ2 > 0.052

The sample size can be calculated by analyzing the equation of the critical value beyond
which we would reject the null hypothesis

1
N−1

σ
2
0 χ

2
1−α,N−1 ≤

1
N−1

σ
2
a χ

2
β ,N−1

That is, the sample size design formula is given by the smallest N satisfying

χ2
1−α,N−1

χ2
β ,N−1

≤ σ2
a

σ2
0

(2.43)

An approximate solution when N is large is given by the Gaussian approximation

N >
1
2

(
z1−α + z1−β

log σa
σ0

)2

(2.44)

• Example 43 (continued): With this data we have σ2
a /σ2

0 = 1.5, then we must find
N such that

χ2
0.95,N−1

χ2
0.1,N−1

≤ 1.5

whose solution is N = 105 samples. The approximated design also gives the
same result

N >
1
2

(
z0.95 + z0.9

log
√

1.5

)2

= 105
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Figure 2.12: Example of hypothesis test for a one sample variance. The two distri-
butions show the expected values of the sample variance, s2 = σ̂2, if the null (H0) or
the alternative (Ha) hypotheses are true. The shaded areas represent the probability of
Type I (red) and Type II (blue) errors.

The design formula for a test checking the decrease of the variance is given by

χ2
α,N−1

χ2
1−β ,N−1

≥ σ2
a

σ2
0

(2.45)

For a test checking the change of the variance (two-sided, that is, either increase or
decrease), we would have the maximum N from

χ2
1− α

2 ,N−1

χ2
β ,N−1

≤ σ2
a

σ2
0

and
χ2

α
2 ,N−1

χ2
1−β ,N−1

≥ σ2
a

σ2
0

(2.46)

2.5.3 Hypothesis test for two variances
• Example 44: We are buying a new optical densitometer that claims to be more

precise than our old model. How many samples do we need to take from each
densitometer to test if this claim is true? We want to have a statistical power of
90% if the new variance is 50% smaller than the old one.

Now the hypothesis test is given by comparing the variance of both samples. In the
following test we refer to the variance of the old equipment as σ2

1 and to the variance
of the new equipment as σ2

2
H0 : σ2

1 ≤ σ2
2

Ha : σ2
1 > σ2

2
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Under the null hypothesis the statistic

F =
s2

1/σ2
1

s2
2/σ2

2

is distributed as a Snedecor’s F with N1− 1 and N2− 1 degrees of freedom. If the
two groups have the same size, N1 = N2 = N, then the sample size is the smallest N
satisfying

F1−α,N−1,N−1

Fβ ,N−1,N−1
≤ σ2

1

σ2
2

(2.47)

When N is large, this can be approximated by the Gaussian design

N =

(
z1−α + z1−β

log σ1
σ2

)2

(2.48)

• Example 44 (continued): In this example, we must find N such that

F0.95,N−1,N−1

F0.1,N−1,N−1
≤ 1

0.5

whose solution is N = 74. The approximate formula gives

N =

 z0.95 + z0.9

log
√

1
0.5

2

= 72

2.6 Sample size for correlations

2.6.1 Confidence interval for correlation
• Example 45: We are interested in detecting a weak correlation between aldos-

terone (an steroid hormone produced by the adrenal gland) concentration in
blood plasma and blood pressure.We expect the correlation to be around 0.25.
How many individuals do we need to study to determine the correlation with a
precision of 0.05 and a level of confidence of 95%.

We are looking for a confidence interval of the form [ρL,ρU ] where L and U refer to the
lower and upper bounds respectively. As with other sample design formulas, for the
correlation we need to foresee beforehand which will be approximately the result of
the experiment. So that in our case, if we expect the correlation to be around 0.25, the
lower and upper bounds will be [0.2,0.3]. With this information we can use Fisher’s Z
transform that is distributed approximately as a Gaussian

Z = tanh−1(ρ̂) =
1
2

log
1+ ρ̂

1− ρ̂
∼ N

(
tanh−1(ρ),

1
N−3

)
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In this way, we transform the confidence interval problem on ρ into a confidence inter-
val problem for Z

Pr{ρL < ρ < ρU}= 1−α = Pr{ZL < Z < ZU}

We already know its solution which is

ZL = 1
2 log 1+ρL

1−ρL
= 1

2 log 1+ρ

1−ρ
− z1− α

2
1√

N−3
ZU = 1

2 log 1+ρU
1−ρU

= 1
2 log 1+ρ

1−ρ
+ z1− α

2
1√

N−3

If we now subtract the first equation from the second, we have the sample size design
formula

ZU −ZL = 2z1− α
2

1√
N−3

⇒ N =

( 2z1− α
2

ZU −ZL

)2

+3 (2.49)

• Example 45 (continued): In our example

ZL = 1
2 log 1+(0.25−0.05)

1−(0.25−0.05) = 0.2027

ZU = 1
2 log 1+(0.25+0.05)

1−(0.25+0.05) = 0.3095
∆Z = ZU −ZL = 0.1068

N =
(

2z0.975
0.1068

)2
+3 = 1,351

Important remarks

74. The sample size needed for low correlations is very large precisely because
the correlation is so low that it requires many samples to be sure that the
detected small correlation is not by chance. For large correlations this is not
the case: with relatively few animals, the large correlation quickly becomes
apparent.

2.6.2 Hypothesis test on one sample correlation
• Example 46: We suspect that the correlation between the length and weight of

an animal is smaller than 0.9. How many individuals do we need to inspect to
show so if we want to have a test power of 90% if the correlation is actually 0.8?

We are making a test of the form:

H0 : ρ ≥ ρ0
Ha : ρ < ρ0

This is a test with a single sample (we are not comparing the correlation between length
and weight in two groups). Then, we simply have to extend the formula of the previous
section to include the statistical power

N =

(
z1−α + z1−β

Z0−Za

)2

+3 (2.50)
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where Z0 is the Fisher’s Z transform of ρ0 and Za is the Fisher’s Z transform of the
correlation for which we already want to have a given statistical power.

• Example 46 (continued): In our example

Z0 = 1
2 log 1+0.9

1−0.9 = 1.4722
Za = 1

2 log 1+0.8
1−0.8 = 1.0986

N =
( z0.95+z0.9

1.4722−1.0986

)2
+3 = 65

2.6.3 Hypothesis test for the correlations in two samples
• Example 47: The correlation between length and weight in the general popula-

tion is about 0.8 (Group 1). We wonder if this same correlation holds among
diabetes type II animal models (Group 2) because these animals tend to be fat-
ter. How many control and diseased animals do we need to study to check if the
correlation is lower in diabetes type II animals? We want a power of 90% if the
correlation drops below 0.7.

We are making a test of the form:

H0 : ρ1 ≤ ρ2
Ha : ρ1 > ρ2

We now have two populations (control and diseased animals). After transforming the
observed correlations we will finally compare the difference between both:

∆Z = Z1−Z2

and the test can be reformulated as

H0 : ∆Z ≥ 0
Ha : ∆Z < 0

The variance of ∆Z is
σ

2
∆Z =

1
N1−3

+
1

N2−3
. If N1 = N2, then the sample design formula is given by

∆Z = (z1−α + z1−β )σ∆Z

that is

N =

(
z1−α + z1−β

∆Z√
2

)2

+3 (2.51)

• Example 47 (continued): In the example above

Z1 = 1
2 log 1+0.8

1−0.8 = 1.0986
Z2 = 1

2 log 1+0.7
1−0.7 = 0.8673

∆Z = 0.2313

N =

(
z0.95+z0.9

0.2313√
2

)2

+3 = 324
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2.6.4 Hypothesis test for multiple correlation in one sample
• Example 48: We are interested in predicting the time to recover from pneumonia

in mice when two drugs are administered in combination. How many samples
do we need to do so if we want to have a power of 90% if there is a multiple
correlation coefficient larger than 0.7?

The multiple correlation coefficient is used to determine how well a given variable, Y ,
can be predicted from a linear combination of other variables, X1,X2, .... For instance,
in the example above, we could predict the time to recover, T , as a linear combination
of the daily dose drugs A and B, DA and DB, respectively, and the age of the animal in
months, Age

T = µ +βADA +βBDB +βageAge

The multiple correlation coefficient is the square root of the coefficient of determina-
tion, R2, that is the fraction of the total sums of squares explained by the model

R2 =
SSmodel

SStotal
= 1− SSε

SStotal

The sum of squares corresponding to the residuals has been noted as SSε . Our hypoth-
esis test is

H0 : R2 = 0
Ha : R2 > 0

We construct the F statistic

F =
SSmodel/d fmodel

SSε/d fε

Under H0 it is distributed as a Snedecor’s F with d fmodel = p and d fε = N − p− 1
degrees of freedom, where N is the number of samples, and p the number of predictor
variables in the model. Under Ha it is distributed as Fφ ,p,N−p−1 where φ = N R2

1−R2 is
the non-centrality parameter. Consequently, we need to find N such that

F1−α,p,N−p−1 = F
β ,N R2

1−R2 ,p,N−p−1
(2.52)

• Example 48 (continued): In the example above, we have p = 3 predictor vari-
ables and we need to find N such that

F0.95,3,N−4 = F
0.1,N 0.72

1−0.72 ,3,N−4

That is N = 20.

Important remarks

75. When applicable, regression is a relatively powerful statistical tool because
it may have a high explanatory power at a very low cost in terms of de-
grees of freedom (the number of predictors). For a few predictors, very low
sample sizes are required.
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2.6.5 Confidence interval for the Intraclass Correlation (ICC)

• Example 49: In animal research, a qualified professional must evaluate the pain
state of animals and, in general, their welfare. The professional must rate the
severity of the procedures and the state of the animals either from their behaviour
or their facial expression. Different professionals may diverge in their evaluation.
Let us assume that they rate the severity of the animal state from 0 (normal state)
to 10 (extremely painful). We want to determine the coherence of the evaluation
of the veterinarians from four animal facilities. This is measured by the ICC.
For doing so, N animals will be evaluated by the four veterinarians. How many
animals must be evaluated in order to construct a 95% confidence interval whose
half width is 0.1? We expect the intraclass correlation to be around 0.8.

We must first define the intraclass correlation, ICC. It is normally defined in an ANOVA
setting. Let yi j denote the rate of animal i given by the veterinarian j. We will assume
that these rates can be modelled as

yi j = µ +αi + τ j + εi j

The ICC is defined as

ICC =
σ2

τ

σ2
τ +σ2

ε

• ICC is close to 1 when there are small differences within raters (σ2
τ � σ2

ε ).

• ICC is close to 0 when there are large differences within raters (σ2
τ � σ2

ε ).

Let us call r to the number of raters, then the transformation

Z =
1
2

log
1+(r−1)ICC

1− ICC

is approximately normally distributed with zero mean and variance

σ
2
Z =

{
1

N−3/2 r = 2
r

2(r−1)(N−2) r > 2

Now, we can construct our sample size design formula

N ≥



(
2z1− α

2
∆Z

)2

+ 3
2 r = 2 2z1− α

2
∆Z√ r

2(r−1)

2

+2 r > 2
(2.53)
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• Example 49 (continued): In our example, we have r = 4 raters, assuming that
the ICC will be around 0.8, then the lower and upper bounds will be around 0.7
and 0.9 respectively.

ZU = 1
2 log 1+3·0.9

1−0.9 = 1.8055
ZL = 1

2 log 1+3·0.7
1−0.7 = 1.1677

∆Z = ZU −ZL = 0.6378

N ≥

(
2z0.975
0.6378√

4
2·3

)2

+2 = 28

The ICC plays an important role in the sample size calculation of other parameters,
for instance the mean, because it reduces the variance within group artificially giving a
false impression of low variability. For example, in Sec. 2.1.4 we discussed the sample
size calculated for studying the effect of a new drug on the intraocular pressure of a
mouse model of glaucoma. For the design, we used the fact that the standard deviation
of the intraocular pressure was around 2.2 mmHg. We wanted to detect changes in
the intraocular pressure of 0.5 mmHg. The sample size calculation was based on the
formula

Pr
{

tλ ,N−1 < t1− α
2 ,0,N−1

}
< β

with λ = ∆

σ̂

√
N The result in that case was N = 333 meaning that 333 animals would

be used in the experiment. The intraocular pressure of the two eyes of each one of them
would be measured. One of the eyes will receive the new drug, while the other will
not.

The problem of this experiment is that if the same researcher makes all the mea-
surements, then the independence between samples may be compromised. Actually,
the independence may be compromised by many other factors. For instance, if we start
at 9AM and start measuring animals, the observations may be correlated due to the
time of the day at which the measurement is performed (it might be that the intraocular
pressure varies along the day), the level of tiredness of the researcher, his growing skill
in measuring the pressure as more animals have been measured, etc. Also, if all animals
come from the same animal facility, this may also introduce some correlation between
measurements. All these effects result in an ICC, that is within the group of animals
measured in a single place there is a small correlation which makes the variance to
be apparently smaller than it should if the measurements were truly independent. The
observed variance, σ2

obs, would be

σ
2
obs = σ

2(1− ICC)

where σ2 is the variance that would be observed in the absence of correlation (this is
the one that we have normally used along the book). In the limit, note that if all samples
are perfectly correlated, ICC = 1, then the observed variance drops to 0. Correlation
between samples taken in the same laboratory is a major concern in multicentric stud-
ies.

In these circumstances, in order to have the same statistical power and confidence
we should increase the sample size to account for the apparent decrease of variance.
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For the intraocular pressure example, we should modify the centrality parameter to

λ =
∆

σ̂√
1−ICC

√
N

and solve the sample size again. Approximately we should have

Ncorrelated ≈ N
1

1− ICC

where Ncorrelated refers to the sample size needed in the presence of correlated samples,
and N in the absence of sample correlations.

In the example, we have given of N = 333 mice to measure a decrease of 0.5 mmHg.
in intraocular pressure, if the ICC=0.1, we should increase the sample size to N = 370.

The same happens with multicentric experiments (sometimes called cluster ran-
domized control trials). The concern is that measurements within the same center are
not independent and they have some correlation (ICC).

Important remarks

76. If samples are not independent, and this can be measured through the intr-
aclass correlation, the sample size of any of the experiments must be larger
in order to compensate for the apparent reduction of variability.

• Example 50: We are developing a new diet for laboratory animals that should
keep the cholesterol levels in blood around a concentration of 250 mg/dL with
a standard deviation of 30 mg/dL. We want to have a statistical power of 90%
for detecting deviations of 25 mg/dL. How many animals do we need to test for
verifying this hypothesis?

The hypothesis is of the form

H0 : µ = 250
Ha : µ 6= 250

This kind of problems was analyzed in Sec. 2.1.2, and we would have obtained a
sample size of N = 18, that is, we need to check the cholesterol level of N = 18
animals to take decision of whether our new diet is performing according to its
specifications.

However, our experiment is carried out in K = 4 different laboratories, and we
expect an intra-class correlation of ICC = 0.1 between samples from the same
laboratory. How many animals per laboratory should we study to have the same
statistical power as if the experiment were performed with independent animals?

We know that the variance of the estimate of the mean is reduced as the number of
samples grow as

σ
2
µ̂
=

σ2
X

N
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If there are K centers, with NK samples in each center, it should be N = KNK . Addi-
tionally, if there is intra-class correlation, the variance of the mean estimate is modified
to

σ
2
µ̂
=

σ2
X

N
(1+(NK−1)ICC)

The multiplicative factor 1+(NK−1)ICC is called the Variance Inflation Factor (VIF).
To have the same confidence level and power as in a completely random study we
would need

1
N

=
1

KNK
(1+(NK−1)ICC)⇒ NK = N

1− ICC
K−N · ICC

(2.54)

• Example 50 (continued): In our example K = 4, then number of animals per
center with an ICC = 0.1 would be

NK = 18
1−0.1

4−18 ·0.1
⇒ NK = 8

That is, we will need KNK = 4 · 8 = 32 animals, 8 per center, rather than the
N = 18 required for completely independent animals.

2.6.6 Hypothesis test for Cohen’s κ

• Example 51: We are interested in the consistency of criteria among veterinari-
ans of two different centers. For testing the coherence in their evaluations, two
veterinarians from two centers are asked to assess the severity of different pro-
cedures. A procedure can be assessed as mild, moderate, severe or non-recovery
(4 labels in total). We want to check if the concordance as measured by Cohen’s
κ is larger than 0.8

H0 : κ ≤ 0.8
Ha : κ > 0.8

How many procedures should they evaluate if we want to have a statistical power
of 90% if κ goes above 0.9.

Cohen’s κ is a possible way of measuring the association between categorical variables.
Note that Pearson’s correlation would be incorrectly applied in this case, since it was
developed for continuous variables. Let K be the number of categories (in our example
above K = 4). Let N be the number of procedures to evaluate by both veterinarians.
Let pi j denote the proportion of cases in which the first veterinarian assigned a label i
and the second a label j. Let po denote the observed proportion of agreement

po =
K

∑
i=1

pii

Let pe denote the expected proportion of agreement by chance

pe =
K

∑
i=1

pi·p·i
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where pi· =
K
∑
j=1

pi j and p· j =
K
∑

i=1
pi j. The empirical Cohen’s κ is defined as

κ̂ =
po− pe

1− pe

For a test of the kind
H0 : κ ≤ κ0
HA : κ > κ0

the variance of the estimate of κ is approximately

σ
2
κ̂
≈ po(1− po)

N(1− pe)2 =
[κ̂(1− pe)+ pe][1− (κ̂(1− pe)+ pe)]

N(1− pe)2 =
f (κ̂)
N

where we have made used of

po = κ̂(1− pe)+ pe

and we have defined

f (κ̂) =
[κ̂(1− pe)+ pe][1− (κ̂(1− pe)+ pe)]

(1− pe)2

The number of samples can be solved from the standard equation for Gaussian variables
with known variance

κ0 + z1−α σκ̂0 = κ1− z1−β σκ̂a

From where

N ≥

(
z1−α

√
f (κ0)+ z1−β

√
f (κa)

κa−κ0

)2

(2.55)

• Example 51 (continued): Let us assume that the probability of both verterinari-
ans of assessing a procedure as mild is 0.5, moderate is 0.3, severe is 0.15, and
non-reconvery 0.05. Then

pe = 0.52 +0.32 +0.152 +0.052 = 0.365
f (κ0) =

[0.8(1−0.365)+0.365][1−(0.8(1−0.365)+0.365)]
(1−0.365)2 = 0.2750

f (κ1) =
[0.9(1−0.365)+0.365][1−(0.9(1−0.365)+0.365)]

(1−0.365)2 = 0.1475

N ≥
(

z0.95
√

0.2750+z0.9
√

0.1475
0.9−0.8

)2
⇒ N = 184

That is, N = 184 different procedures need to be evaluated by both veterinarians.

If we want to estimate Cohen’s κ with a confidence interval of length ∆ (between
minimum and maximum) and a confidence level 1−α , then we must use

N ≥

(
2z1− α

2

√
f (κ0)

∆

)2

(2.56)

where κ0 is an approximate, expected value of Cohen’s κ once we perform the experi-
ment.
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Important remarks

77. As happened with other sample size calculations related to proportions, the
sample size formula for the Cohen’s κ also requires that before doing the
experiment we have some clue of which the results will be approximately.
In particular, which will be the expected frequency of each one of the cate-
gories.

2.7 Sample size for survival analysis

Survival analysis is a statistical technique that models the time elapsed until an event
occurs. One of the events of interest that originally drove the development of the tech-
nique was death (and, therefore, its name “survival”). However, the event may be any
other one like time to stop a habit, or time to first visit. In Sec. 2.3.4 we briefly in-
troduced the main concepts associated to survival analysis, and the interested reader is
referred to that section before going into the details of the sample size calculations.

2.7.1 Confidence interval for the mean survival time

• Example 52: We are developing a new antitumoral therapy. Animals start re-
ceiving the treatment at a given dose when the tumor has grown to a given size.
Then, we measure the time to the disappearance of the tumor. Some of the tu-
mors do not respond to the treatment. We will observe the animals for 6 months
and we expect that after this time, 85% of the tumors have disappeared. How
many animals do we need to study if we want to construct a 95% confidence
interval for the mean time to disappearance whose half width is only 20% of the
nominal value?

The event of interest is in this case the disappearance of the tumor. if we have N
animals, let us refer to the time to disappearance in the animal i as ti. We can have two
stopping criteria:

1. By maximum observation time: If our experiment reaches a maximum time, tmax,
e.g., six months.

2. By maximum number of events: If our experiment reaches a maximum number
of events, rmax, e.g., 10 disappeared tumors.

In any case, let us assume that we have been observing a time tobs and that within this
time r tumors have disappeared. For the tumors that did not disappear we will have a
“censored” measurement ti = tobs. We estimate the mean survival time (understood as
mean time until the event) as

µ̂ =
1
r

N

∑
i=1

ti (2.57)
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Exponential survival

For an exponential survival, the survival function is given by

S(t) = Pr{T > t}= e−
t
µ

where µ is the mean survival time. Under this model, the instantaneous hazard is
constant and equal to

λ (t) =
1
µ

The mean survival time for this model is

MST = µ

For the exponential survival, it can be shown that the 1−α confidence interval for the
mean survival time is

Pr

{
2rµ̂

χ2
1− α

2 ,ν

< µ <
2rµ̂

χ2
α
2 ,ν

}
= 1−α

where ν = 2r if the test is terminated after rmax events, or ν = 2(r + 1) if the test is
terminated after a fixed time tmax.

This interval is asymmetric: the lower bound is closer to µ than the upper bound.
In this way, we can reorganize the upper bound, µU , so that we calculate its width as a
fraction of the nominal value µ̂

µU

µ̂
=

2r
χ2

α
2 ,2(r+1)

If we want this width to be smaller than a given value 1+∆, then we need a number of
events r such that

2r
χ2

α
2 ,2(r+1)

< 1+∆ (2.58)

Weibull survival

Exponential survival assumes a constant hazard along the animal life, or the duration
of the experiment. As we saw in Sec. 2.3.4, there are situations in which the hazard is
larger at the early or late parts of the experiment. Weibull survival generalizes expo-
nential survival and can adapt to any of these situations. The survival function is in this
case

S(t) = Pr{T > t}= e−
(

t
µ

)β

The corresponding hazard is

λ (t) =
β

µ

(
t
µ

)β−1
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For β = 1, Weibull survival is exactly the same as the exponential survival. For β < 1,
hazard decreases over time (infant mortality); while for β > 1, hazard increases over
time (mortality in the elderly). See Fig. 2.10 for a representation of these curves. The
mean survival time corresponding to this model is

MST = µΓ

(
1+

1
β

)
where Γ is the gamma function (a generalization of the factorial, for integer values x,
we have Γ(1+x) = x!). The Mean Survival Time is now determined by two parameters
µ (a scale parameter, the larger µ , the larger the MST) and β (a shape parameter). It
now makes sense to determine confidence intervals for both parameters. It can be
shown that for the scale parameter we have

Pr

{
µ̂

(
1−

z1− α
2√

r

) 1
β

< µ < µ̂

(
1+

z1− α
2√

r

) 1
β

}
= 1−α

while for the shape parameter we have

Pr

{
β̂

(
1−
√

6
π

z1− α
2√

r

)
< β < β̂

(
1+

√
6

π

z1− α
2√

r

)}
= 1−α

We can calculate the number of required number of events r by fixing the desired half-
width ∆ either in the determination of µ or β

(
1+

z1− α
2√

r

) 1
β

= 1+∆ ⇒ r =
( z1− α

2

(1+∆)β −1

)2

1+
√

6
π

z1− α
2√

r = 1+∆ ⇒ r = 6
( z1− α

2

π∆

)2
(2.59)

Gaussian survival

Some variables have a “delayed” hazard that causes the event to be concentrated around
a particular time (e.g., expiration dates of food, the probability that a product is spoiled
is negligible at the beginning of its life). We expect the event to occur around a time
µ with a standard deviation σ . This can be modelled with a Gaussian survival curve.
The survival and hazard functions are given by

S(t) = 1−F
( t−µ

σ

)
λ (t) =

f( t−µ

σ )
1−F( t−µ

σ )

where F(x) and f (x) are the cumulative and probability density functions of the stan-
dardized Gaussian, respectively.

An approximate confidence interval for the location parameter is the standard one
for a Gaussian

Pr
{

µ̂− z1− α
2

σ̂√
N

< µ < µ̂ + z1− α
2

σ̂√
N

}
= 1−α
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σ̂ is the standard sample estimate of the time to the event of interest. If we want the
half-width to be ∆, then the number of animals required is

N =

( z1− α
2

∆/σ

)2

(2.60)

The experiment must be carried out until all animals have experienced the event of
interest.

Number of animals

Except for the Gaussian case, these formulas tell us the number of events required,
but not the number of animals required. Not all tumors respond to the treatment and,
consequently, we will need more animals than r. In particular, if Smax tumors have not
disappeared after a time tmax, we need

N =
r

1−Smax
(2.61)

• Example 52 (continued): In our example we wanted a precision of ∆ = 0.2 Ex-
ponential survival
In our case, the desired width is 20%, which implies

2r
χ2

0.025,2(r+1)
= 1.2⇒ r = 115

N = 115
1−0.15 = 136

That is we will use N = 136 animals with tumors. After 6 months of treatment,
we expect that 85% of them have disappeared. With the number of disappear-
ances we will be able to construct a confidence interval whose maximum devia-
tion from the nominal mean survival time, µ̂ is 20%.

Weibull survival
Let us assume now that our drug accumulates in the tumor so that it is more
effective as time passes. This implies that the shape parameter β > 1. From
previous studies, it is not unreasonable to assume β ≥ 1.5 (the most conservative
design, larger number of samples, is obtained for the lower bound, that is β =
1.5). If we design for the confidence interval of the scale parameter, then the
required sample size would be

r =
(

z0.975
(1+0.2)1.5−1

)2
= 39

N = 39
1−0.15 = 46

We see that the sample size drastically changes if we assume that the drug is
more effective as it accumulates in the tumor.

• Example 53: We are interested in the mean time at which young male mice
surpass a weight of 12 grams (an adult mouse can weigh over 25 grams). This
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should happen about day 21, with a standard deviation of about 2 days. We want
to determine a 95% confidence interval with a maximum half-width of 1 day.
How many animals do we need for this?

Normal survival
In this example we have ∆ = 1 and σ = 2. The sample size, would be

N =

(
z0.975

1/2

)2

= 16

All animals must be followed until they all surpass the 12 grams of weight.

Important remarks

78. As is the case in many of the sample size calculations involving proportions,
the sample size for the mean survival time requires a prior guess of the
proportion of animals for which the event has not been observed at the end
of the experiment. For Weibull survival we must also assume a prior value
for the survival shape parameter β .

2.7.2 Confidence interval for survival time percentile
• Example 54: Following Example 52, we are interested in constructing a confi-

dence interval for the time at which 25% of the tumors have disappeared. We
want that the maximum half-width of the interval is 20% of its central value.
How many animals do we need for this? Let us assume that we expect the tu-
mors to disappear after 3 months of treatment on average. We plan to conduct
our experiment for about 2 months, but the experiment will be terminated by a
given number of tumors disappearing, not by maximum time.

For fully understanding the following paragraphs, we recommend the reader to be
familiar with the different survival models described in the previous section.

Exponential survival

We would normally perform our survival experiment and estimate the mean survival
time, µ̂ as indicated in Eq. 2.57. Let us call Sp the “surviving tumors” at the percentile
time of interest, tp. In our example, Sp = 75%. For an exponential survival model (see
previous section), our estimate of the corresponding time tp to reach this situation is
given by

Sp = e−
tp
µ ⇒ tp = µ(− log(Sp))⇒ t̂p = µ̂(− log(Sp))

For the exponential survival it can be shown that

Pr

{
t̂p

2r
χ2

1− α
2 ,ν

< tp < t̂p
2r

χ2
α
2 ,ν

}
= 1−α
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where ν = 2r if the test is terminated after r events and ν = 2(r+1) if it is terminated
by maximum time.

This problem is formally identical to the one of the previous section interchanging
µ by tp. As we reasoned in the previous section, the number of required events is

2r
χ2

α
2 ,ν

< 1+∆ (2.62)

where ∆ is the half-width, in our example ∆ = 0.2.

Weibull survival

The calculations needed if the survival follows a Weibull model are formally identical
to those followed above for the exponential survival, only that the expressions slightly
change

Sp = e−
(

tp
µ

)β

⇒ tp = µ(− log(Sp))
1
β ⇒ t̂p = µ̂(− log(Sp))

1
β

and the confidence interval

Pr

t̂p

(
2r

χ2
1− α

2 ,ν

) 1
β

< tp < t̂p

(
2r

χ2
α
2 ,ν

) 1
β

= 1−α

where ν = 2r if the test is terminated after r events and ν = 2(r+1) if it is terminated
by maximum time. The required number of observations must fulfill(

2r
χ2

α
2 ,ν

) 1
β

< 1+∆ (2.63)

Gaussian survival

As for the previous distributions, let us refer to the time as tp the time percentile for
which the survival rate is Sp. Let us define z1−Sp as the 1−Sp percentile of the Gaus-
sian. An approximate confidence interval for the time percentile is

Pr

{
t̂p− z1− α

2
σ̂

√
1
N

(
1+

1
2

z2
1−Sp

)
< tp < t̂p + z1− α

2
σ̂

√
1
N

(
1+

1
2

z2
1−Sp

)}
= 1−α

If we want the half-width to be ∆, then the number of animals required is

N =

( z1− α
2

∆/σ

)2(
1+

1
2

z2
1−Sp

)
(2.64)

For the Gaussian survival, the experiment must be carried out until all animals have
experienced the event of interest. Once the experiment is performed, we will estimate
the sample mean and standard deviation of the time to the event. Then, the estimate of
tp will be

t̂p = µ̂ + z1−Sp σ̂
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Number of animals

To calculate the number of animals for the exponential and Weibull survivals we will
use a different reasoning, that could also have been followed in the previous section.
Let us assume that we have a prior guess of the survival distribution (µ0 for the expo-
nential survival, and µ0 and β0 for Weibull survival). Then, if we start with N animals,
we expect this number of failures to occur at a time tr given by

S(tr) = 1− r
N

= e−
tr
µ0

or

S(tr) = 1− r
N

= e−
(

tr
µ0

)β0

Assume that we want to wait about a fixed tr, then the number of required animals
will be

N =
r

1− e−
tr
µ0

N =
r

1− e−
(

tr
µ0

)β0

(2.65)

• Example 54 (continued): In our example we desire a precision of ∆ = 0.2.

Exponential survival
If the Mean Survival Time is 3 months, then µ0 = 3. We plan to conduct our
experiment for about tr = 2 months. Then, the required number of disappearing
tumors is

2r
χ2

0.025,2r
= 1.2⇒ r = 127

N = 127

1−e−
2
3
= 262

That is we will use N = 262 animals with tumors. After 2 months of treatment,
we expect that e−

2
3 = 51.3% of them have disappeared. In any case, we will wait

until r = 127 tumors have disappeared. Then, we will estimate the time at which
25% of the tumors have disappeared as

t̂p =−µ̂ log(0.75)

If we were not too wrong about our initial guess of the mean survival time, it
should be about

t̂p ≈−µ0 log(0.75) =−3log(0.75) = 0.86 months

The confidence interval will be in any case(
t̂p

2r
χ2

1− α
2 ,2r

, t̂p
2r

χ2
α
2 ,2r

)
= (0.8466t̂p,1.1995t̂p)
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Weibull survival
Let us assume that our drug it is more effective as it accumulates in the tumor.
Previous studies have shown that we may assume β ≥ 1.5. We will do the design
in the worse case, β = 1.5. If the Mean Survival Time is 3 months, then we can
calculate a first estimate of the scale parameter µ0 as (see the introduction of the
Weibull survival in the previous section)

3 = µ0Γ

(
1+

1
1.5

)
⇒ µ0 = 3.32

Then, the sample size can be calculated by

(
2r

χ2
0.025,2r

) 1
1.5

< 1.2⇒ r = 59

N = 59

1−e−(
2

3.32 )
1.5 = 158

Again, we observe that the sample sizes for an exponential survival (constant
hazard) and Weibull survival (increasing hazard, in this example) are rather dif-
ferent. Additionally, if we are right about our initial estimates of the survival
parameters, our expected value for the time at which 25% of the tumors have
disappeared would be about

t̂p = 3.32(− log(0.75))
1

1.5 = 1.44 months

As expected, since the drug is more effective by accumulation, we would expect
the early percentile times (we are studying the 25% percentile) to be larger than
for the exponential case. The drug appears to be initially slower.

• Example 55: We are interested in the time at which 95% of young male mice
surpass a weight of 12 grams (an adult mouse can weigh over 25 grams). The
average time at which half of the population surpasses this weight is about day
21, with a standard deviation of about 2 days. We want to determine a 95%
confidence interval with a half-width of 1 day. How many animals do we need
for this?

Normal survival
In this example we have ∆ = 1 and σ = 2. The sample size, would be

N =

(
z0.975

1/2

)2(
1+

1
2

z2
0.95

)
= 37

All animals must be followed until they all surpass the 12 grams of weight. If we
were right about our prior, µ = 21 and σ = 2, then our estimate should be close
to

t̂p = 21+ z0.952 = 21+1.64 ·2 = 24 days
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2.7.3 Confidence interval for survival rate
• Example 56: Following the example in the previous two sections, we are in-

terested in constructing a confidence interval for the proportion of tumors that
have not disappeared after 6 months of treatment. We expect the mean time of
disappearance to be about 3 months. We want to construct a confidence inter-
val whose full width is 10% (for instance, if the final survival is about 15%, a
possible confidence interval could be from 10 to 20%).

The sample size for the survival rate at a given time is based on the confidence
interval for the scale parameter µ of the survival model as was presented in Sec. 2.7.1.
Assume that the scale parameter confidence interval is (µL,µU ). Then, the confidence
interval for the survival rate is defined by the survival rates corresponding to the lower
and upper limits of the scale parameter.

Exponential survival

The confidence interval for the scale parameter is

(µL,µU ) =

(
2rµ̂

χ2
1− α

2 ,ν

,
2rµ̂

χ2
α
2 ,ν

)

where ν = 2r if the test is terminated after rmax events, or ν = 2(r + 1) if the test
is terminated after a fixed time tmax. The corresponding confidence interval for the
survival rate would be

(SL,SU ) =
(

e−
t

µL ,e−
t

µU

)
The number of required events, r, determines the confidence interval of the scale pa-
rameter, and in their turn, the width of the confidence interval of the survival rate. For
the calculation of the sample size, we can fix the maximum width of this confidence
interval

e−
tχ2

α
2 ,ν

2rµ̂ − e−
tχ2

1− α
2 ,ν

2rµ̂ < ∆ (2.66)

Weibull survival

In this case, we need to assume that the shape parameter is known, β0. The confidence
interval for the scale parameter is(

µ̂

(
1−

z1− α
2√

r

) 1
β0
, µ̂

(
1+

z1− α
2√

r

) 1
β0

)

The corresponding confidence interval for the survival rate would be

(SL,SU ) =

(
e−
(

t
µL

)β0

,e−
(

t
µU

)β0
)
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and the sample size design formula

e

−
(

t
µ̂

)β0 1

1−
z1− α

2√
r − e

−
(

t
µ̂

)β0 1

1+
z1− α

2√
r < ∆ (2.67)

Gaussian survival

An approximate confidence interval for the survival rate is

Pr

{
Ŝ(t)− z1− α

2
f (ẑ)

√
1
N

(
1+

1
2

ẑ2

)
< S(t)< Ŝ(t)+ z1− α

2
f (ẑ)

√
1
N

(
1+

1
2

ẑ2

)}
= 1−α

where ẑ= t−µ̂

σ̂
and f (x) is the probability density function of the standardized Gaussian

function. If we want the half-width to be ∆, then the number of animals required is

N =

( z1− α
2

∆/ f (ẑ)

)2(
1+

1
2

ẑ2
)

(2.68)

The experiment must be carried out until all animals have experienced the event of
interest.

Number of animals

As usual, the number of animals for the exponential and Weibull survivals is given by

N =
r

1−S
(2.69)

where S is the expected survival at the end of the experiment.

• Example 56 (continued): In our example we desire a precision of ∆ = 0.1. The
Mean Survival Time is about 3 months, and the experimental time t = 6 months.

Exponential survival
From the MST we estimate µ0 = 3. We will stop the experiment exactly after 6
months, so the number of degrees of freedom for the χ2 is ν = 2(r+1). Then,
we must find r such that

e−
6χ2

0.025,2(r+1)
2r·3 − e−

6χ2
0.975,2(r+1)

2r·3 < 0.1⇒ r = 111

Then, the number of animals is

N =
111

1− e−
6
3
= 129

Weibull survival
Following the examples above, let us assume that β = 1.5, that is, the drug is



148 CHAPTER 2. SAMPLE SIZE CALCULATIONS

more effective as it accumulates. In Example 54 we showed that the estimate for
µ0 was µ0 = 3.32. Then we must find r such that

e
−( 6

3.32 )
1.5 1

1− z0.975√
r − e

−
(

6
ˆ3.32

)1.5 1
1+

z0.975√
r < 0.1⇒ r = 31

The number of animals needed is

N =
31

1− e−(
6

3.32 )
1.5 = 34

• Example 57: We are interested in the proportion of young males that have not
surpassed a weight of 12 grams after 24 days (this would be delayed animals).
The average time at which half of the population surpasses this weight is about
day 21, with a standard deviation of about 2 days. We want to determine a 95%
confidence interval with a half-width of 5%. How many animals do we need for
this?

Normal survival
In this example we have ∆ = 0.05 and σ = 2. We are interested at the survival
rate at day t = 24. If we are right about our initial estimates of the mean and
standard deviation, then the corresponding ẑ would be close to

ẑ =
24−21

2
= 1.5

The sample size, would be

N =

(
z0.975

0.05/ f (1.5)

)2(
1+

1
2

1.52
)
= 55

All animals must be followed until they all surpass the 12 grams of weight. If we
were right about our prior, µ = 21 and σ = 2, then our estimate should be close
to

Ŝ(24) = 1−F(1.5) = 6.7%

2.7.4 Hypothesis test for one sample mean survival time

For a definition of the survival models presented in this chapter, the reader is referred
to Sec. 2.7.1

• Example 58: We are interested in the duration of some intradermal electronic
implants in animals. These implants deteriorate over time due to biodegradation
of the implant material. We want to show that the mean duration is larger than
3 years. How many animals do we need to test for 6 months and how should
we carry the experiment? After 6 months of experiment, the implants will be
recovered and their state (deteriorated or not) will be determined.
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Reliability demonstration tests are performed by testing N (to be calculated) units
for a prespecified time tmax, or by testing N prespecified units for a time tmax (to be
calculated). The test responds to the general scheme

H0 : MST ≤MST0
HA : MST > MST0

where MST is the mean survival time.
If H0 is true, H0 is rejected if

R

∑
r=0

b(r;N, tmax)< α

where N is the number of tested individuals, tmax is the time of observation, R is the
maximum allowed number of failing individuals, and b(r;N, tmax) is the binomial prob-
ability

b(r;N, tmax) =

(
N
r

)
(1−S(tmax))

r(S(tmax))
N−r (2.70)

S(tmax) is the probability of surviving at tmax if µ = µ0.
If we fix two of the three parameters (N, tmax,R), the other one can be solved

through the rejection equation

R

∑
r=0

b(r;N, tmax)< α (2.71)

It is customary to fix R = 0 to obtain a minimum sample size, N. Then

SN(tmax) = α ⇒ N >
log(α)

log(S(tmax))
(2.72)

The following table is useful to calculate tmax as a function of S(tmax) or viceversa.

Exponential tmax =−µ0 log(S(tmax)) S(tmax) = e−tmax/µ0

Weibull tmax = µ0(− log(S(tmax))
1/β0 S(tmax) = e−(tmax/µ0)

β0

Normal tmax = µ0 + zmaxσ S(tmax) = 1−F(zmax)

zmax =
tmax−µ0

σ

• Example 58 (continued): In our example, µ0 = 3 years, and tmax = 0.5 years.

Exponential survival
For exponential survival, if the MST is 3 years, then µ0 = 3 years. We can
calculate the expected survival at 6 months, if the mean survival time is 3 years

S(0.5) = e−
0.5
3 = 85%

The number of required animals is calculated from Eq. 2.72

N =
log(0.05)
log(0.85)

= 18
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That is, we will put an implant to 18 animals. After 6 months, we will recover
the implants, if none of them (R = 0) are deteriorated, we reject the hypothesis
that the mean survival time of the implants is less than 3 years.

Weibull survival
Let us assume that the deterioration is progressive so that the hazard of failure
of the implant grows over time. From previous studies, we have determined
that β0 = 1.5 represents the increase of hazard of failure as time progresses. If
the MST is 3 years, then the scale parameter of the Weibull distribution can be
calculated by

MST = µ0Γ(1+β0)⇒ µ0 =
3

Γ(2.5)
= 2.26 years

Then, the expected survival after 6 months will be

S(0.5) = e−(
0.5
2.26 )

1.5
= 90%

The number of animals is now

N =
log(0.05)
log(0.90)

= 29

We would carry out the experiment in exactly the same way as for the exponential
survival.

• Example 59: In the previous example, we want to reduce the number of animals
to just N = 10. After how much time should we recover the implants to see if
they are deteriorated?

Exponential survival
From Eq. 2.72 at the end of the study period, the survival rate must be

S10(tmax) = 0.05⇒ S(tmax) = 74%

From the table relating tmax and S(tmax) we obtain that we need to study these
animals for

tmax =−3log(0.74) = 0.90 years = 329 days

That is, we will put an implant to 10 animals. After 329 days, we will recover
the implants, if none of them (R = 0) are deteriorated, we reject the hypothesis
that the mean survival time of the implants is less than 3 years.

Weibull survival
The survival rate at tmax is the same as in the exponential case. And we only need
to calculate tmax from the table equations:

tmax = 2.26(− log(0.74))1/1.5 = 1.01 years = 370 days

We would carry out the experiment in exactly the same way as for the exponential
survival.
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2.7.5 Hypothesis test for one sample survival rate
• Example 60: Following the Example 58, we want to give a guarantee time for

the implants. We want to show that 90% of the implants work after 6 months.
How many implants do we need to perform if we are going to monitor them for
3 months?

Reliability demonstration tests are performed by testing N (to be calculated) units for
a prespecified time tmax or by testing N prespecified units for a time tmax (to be calcu-
lated). The test responds to the general scheme

H0 : S(t0)≤ S0
Ha : S(t0)> S0

We need to distinguish between the time of experimentation tmax (in our example 3
months) and the time we are interested in for the test t0 (in our example 6 months).
The following table helps us to translate survivals at t0 (S(t0)) into survivals at tmax
(S(tmax)). It also gives us expressions to calculate tmax if we fix t0, S(t0) and S(tmax).

Exponential tmax = t0
log(S(tmax))
log(S(t0))

S(tmax) = (S(t0))tmax/t0

Weibull tmax = t0
(

log(S(tmax))
log(S(t0))

)1/β

S(tmax) = (S(t0))(tmax/t0)β

Normal tmax = t0 +(z0 + zmax)σ S(tmax) = 1−F(zmax)

z0 = z1−S(t0);zmax = z0 +
tmax−t0

σ

Then, the goal is to construct a confidence interval of the form

Pr{Smax < S(tmax)< 1}= 1−α

If H0 is true, H0 is rejected if

R

∑
r=0

b(r;N, tmax)< α

A in the previous section, R is the number failures observed during the experiment, and
b(r;N, tmax) is the binomial probability of observing exactly r failures in N individuals
at time tmax when the probability of survival is Smax (see Eq. 2.70). Given two of the
variables (R,N, tmax) we can solve for the other. The minimum N is obtained for R = 0,
so that the sample size design formula is given by

SN
max < α ⇒ N >

log(α)

log(Smax)
(2.73)

• Example 60 (continued): In our example t0 = 0.5 years, S0 = 90%, and tmax =
0.25 years.

Exponential survival
We now translate the threshold survival for t0 into a threshold survival for tmax

Smax = (0.9)0.25/0.5 = 0.9487
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Then, we require

N =
log(0.05)

log(0.9487)
= 57

That is, we perform N = 57 implants. If in 3 months we do not observe any
deterioration, then we reject the hypothesis that the survival rate at 6 months is
smaller than 0.9.

Weibull survival
For a Weibull survival with an expected β = 1.5, we would have

Smax = (0.9)(0.25/0.5)1.5
= 0.9634

Then, we require

N =
log(0.05)

log(0.9634)
= 81

• Example 61: If we think that N = 57 or N = 81 are too many mice, we can
extend the period of the experiment. Let us say that we are willing to use N = 15
animals. Then, we can adapt the experimentation time tmax as follows. The
threshold at which we would reject the null hypothesis would be given by

S15
max = 0.05⇒ Smax = 0.8190

Using the formulas in the table, we now look for the time at which this threshold
is attained

Exponential survival

tmax = 0.5
log(0.8190)

log(0.9)
= 0.95 years = 346 days

That is, we perform N = 15 implants. If in 346 days we do not observe any
deterioration, then we reject the hypothesis that the survival rate at 6 months is
smaller than 0.9.

Weibull survival
For a Weibull survival with an expected β = 1.5, we would have

tmax = 0.5
(

log(0.8190)
log(0.9)

)1/1.5

= 0.77 years = 280 days

For a short period of experimentation, tmax = 3 months, we need more animals
for the Weibull survival. However, for longer periods, as the Weibull (with β > 1)
accumulates failures more quickly than the exponential survival, we need fewer
days or animals compared to the exponential case.
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2.7.6 Hypothesis test for two samples with exponential survival

• Example 62: We are developing a new analgesic. To test it, we have two groups
of animals: one will receive the drug (treatment group), while the other one will
not (control group). We will place animals in a hot plate, and they normally
jump out of the plate, so that the mean survival time (MST) in the plate is about
4 seconds. Our hypothesis is that the animals with the drug will stay longer
(to avoid burns, we take the animals out of the plate if they stay more than 10
seconds). We want to have a statistical power of 90% if the MST increases to 6
seconds or more. How many animals do we need in each of the groups?

Our test is now of the form
H0 : µ1 ≤ µ2
Ha : µ1 > µ2

The test uses the statistic

F =
µ̂1

µ̂2

where

µ̂i =
1
ri

Ni

∑
j=1

ti j

ri and Ni are the number of events (animals jumping out) and samples of the i-th treat-
ment, and ti j is the time-to-event (or the observation time, 10 seconds in our example,
if a given individual does not jump out) of the j-th sample of the i-th treatment. F is
follows a Snedecor’s F distribution with 2r1 and 2r2 degrees of freedom. If the event
(jumping out) occurred in all animals, then the number of samples can be calculated
from the following equation

µ1Fβ ,2N,2N = µ2F1−α,2N,2N (2.74)

where Fβ ,2N,2N is the β percentile of the Snedecor’s F with 2N and 2N degrees of
freedom, analogously for F1−α,2N,2N .

• Example 62 (continued): We can calculate the sample size by solving the equa-
tion

6F0.1,2N,2N = 4F0.95,2N,2N ⇒ N = 105

If we expect that some animals still survive, they have not jumped out and we will
have to take them out, at the end of the experiment, 10 seconds in our example, then we
should modify the design equation to account for the surviving rates in the two groups,
S1 and S2.

µ1Fβ ,2N(1−S1),2N(1−S2) = µ2F1−α,2N(1−S1),2N(1−S2) (2.75)

Additionally, since the survival is exponential, we have S1 = S2e−
µ2
µ1 .
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• Example 62 (continued): With tmax = 10 seconds, we expect some animals that
have not jumped out

S1 = e−
10
4 = 8.2%

S2 = e−
10
6 = 18.9%

6F0.1,2N·0.92,2N·0.81 = 4F0.95,2N·0.92,2N·0.81⇒ N = 122

2.7.7 Hypothesis test for two samples with log-rank test
If we do not want to assume a particular distribution for the survival time, we may
perform a log-rank test (also called Mantel-Cox test)

H0 : λ1(t)≥ λ2(t)
Ha : λ1(t)< λ2(t)

For this test, the log-hazard ratio is calculated

r(t) =
log(S2(t))
log(S1(t))

The log-rank test assumes that this ratio is constant over time, this is called the propor-
tional hazards assumption. For the sample size, we exploit the fact that the sampling
distribution of log(r) is asymptotically normal with variance

σ
2
log(r) =

1
N1(1−S1(tmax))

+
1

N2(1−S2(tmax))

where N1 and N2 are the number of animals in the two groups, and tmax is the time of
experimentation. The sample size can be calculated from the equation

z1−α

√
1

N1(1−S0
1(tmax))

+
1

N2(1−S0
2(tmax))

= log(ra)− z1−β

√
1

N1(1−Sa
1(tmax))

+
1

N2(1−Sa
2(tmax))

(2.76)
where S0

i and Sa
i refer to the survival in the group i under the null and alternative

hypotheses, respectively; ra is the ratio between the survivals under the alternative
hypothesis at time tmax and for the value for which the statistical power is specified. If
we assume N1 = N2, there are two possible solutions that, in their turn, make different
assumptions about the mathematical problem

Schoenfeld’s method: Assumes S0
i (tmax) = Sa

i (tmax), then

N =

 z1−α + z1−β

log(ra)√
1

1−S1(tmax)
+ 1

1−S2(tmax)


2

(2.77)
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Lachin’s method: Assumes exponential survivals

N =

 z1−α + z1−β

1−ra
1+ra

1√
2−S1(tmax)−S2(tmax)


2

(2.78)

• Example 63: Following with Example 62, if we do not want to explicitly assume
any particular distribution of the survival time, we may use the sample size de-
signs presented in this section. Let us assume that we expect in the control group
about 10% of the animals reaching the limit of 10 seconds, and about 20% of the
animals in the group with the analgesic drug. Then

ra =
log(0.1)
log(0.2)

= 1.4307

Schoenfeld’s method

N =

 z0.95 + z0.9
log(1.4307)√

1
0.9+

1
0.8


2

= 158

Lachin’s method

N =

 z0.95 + z0.9
1−1.4307
1+1.4307

1√
2−0.1−0.2


2

= 161

Important remarks

79. As expected, the design for the log-rank test results in a larger number of
samples due to its non-parametric nature.

2.8 Sample size for pilot experiments
When very little is known about the statistical behavior of the variables of interest, it
is recommended to look for similar experiments in the literature to learn the basic sta-
tistical description of what should be expected (for instance, the mean and variance of
the control group). However, there are occasions in which we cannot find experiments
similar to ours, and we need to perform a pilot experiment to get some information
from a few animals. Pilot experiments are normally recommended for other purposes
(logistics, check viability, ... see Chap. 1). In this section we will see how to design
and use pilot studies to gain statistical information for further design.
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2.8.1 Pilot experiments for the variance and mean
• Example 64: We are interested in a particular gene that has never been studied

before, and there is no information about its expression level in a particular tis-
sue. We are interested in designing a drug that reduces its expression level to a
half of its normal expression level. How should we design the experiment and
how many animals do we need? The gene expression level will be measured by
RNA-seq.

Our final goal is a comparison between the mean of two groups: control and treat-
ment, and we want to find a reduction of at least 50% in the mean. But we do not
know which is the mean of the control, nor its variance, so we cannot make at this
stage any sample size calculation. Instead, we will first perform a pilot study with a
small number of untreated animals (say N = 10) to know the mean and variance of
the gene expression level in the control group. With the knowledge gained in the pilot
experiment we will calculate the sample size required for the main experiment.

When we perform an experiment with N animals, we will be able to estimate the
mean and variance of the underlying populations, µ̂ and σ̂2, respectively. These esti-
mates will have an associated confidence interval that are given by

σ2 ∈

[
σ̂2 N−1

χ2
1− α

2 ,N−1
, σ̂2 N−1

χ2
α
2 ,N−1

]
µ ∈

[
µ̂− t1− α

2 ,N−1
σ̂√
N
, µ̂ + t1− α

2 ,N−1
σ̂√
N

] (2.79)

• Example 64 (continued): In RNA-seq the observed gene expression is expressed
as the logarithm in base 2 of the number of reads. For the sake of illustration, let
us assume that for the N = 10 animals in our experiment we have the estimates

σ̂2 = 0.25
µ̂ = 10

Then, the corresponding 99% confidence intervals are

σ2 ∈
[

0.25 9
χ2

0.995,9
,0.25 9

χ2
0.005,9

]
= [0.10,1.30]

µ ∈
[
10− t0.995,9

0.5√
10
,10+ t0.995,9

0.5√
10

]
= [9.49,10.51]

Reducing the expression level to one half, in logarithmic base 2 units is looking
for an effect size of

∆ = log2(0.5) =−1

We can now make two sample size designs: one for the best case (minimum
variance) and another one for the worse one (maximum variance). We now need
to make a design for the difference of the means of two groups (Eq. 2.11). If
the drug is successful, the mean of the treated group will decrease, and most
likely the variance too. But we do not know by which factor, so we adopt the
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conservative approach of keeping the same variance. We use the typical values
of 90% of statistical power and 95% of statistical confidence.

Nbest = 6
Nworse = 46

In the best case, we would have needed only N1 = N2 = 3 animals per group
(N = 6 animals in total). In the worse case, we will need N1 = N2 = 23 animals
per group. There is an almost 8-fold difference between the number of animals
in the best and worse cases. Being conservative, we should go for the worse
case design and employ N = 46 animals in the main experiment). To reduce
the difference to only a 3-fold difference, we would need N = 30 animals in
the pilot experiment, whose size is no longer considered appropriate for a pilot
experiment.

Important remarks

80. Performing a pilot experiment in the previous example only gave an approx-
imate number of animals for the main experiment. The difference between
the best and worse case is very large and we did not gain much statistical
information for the next stage. For this reason, pilot experiments, only to
learn statistical knowledge of the underlying distribution, are discouraged
and, almost the same uncertainty is obtained from the standard literature.
In the example above, we could have taken the average variance of gene
expression in a large number of genes.

2.8.2 Pilot experiments for proportions
• Example 65: We are developing a new therapy for a disease. The treatment is

absolutely new, with no prior reference and we do not know the proportion of
respondents. In a pilot study, we will treat 20 animals, and estimate the propor-
tion of respondents. Then, we will use this knowledge to design a wider study to
construct a confidence with a maximum width of 10% with a 95% of confidence
level. How many animals do we need for this experiment?

We saw in Eq. 2.19 the exact method and, then, approximate methods to design the
sample size for constructing confidence intervals. At the end of the main experiment,
the confidence interval will be of the form

p ∈ [pL, pU ]

Our specification is that the maximum width needs to be smaller than 10%, that is,

pU − pL < 0.1

• Example 65 (continued): In the pilot experiment with N = 20 animals, x0 = 3 of
them responded. This gives us an estimate of the proportion of respondents

p̂ =
3

20
= 0.15
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But its 99% confidence interval (see the section on confidence intervals for pro-
portions around Eq. 2.19) is

p ∈ [0.018,0.450]

Note that the 95% confidence level is for the confidence interval contructed in the
main experiment. For the pilot experiment, we may be more restrictive. With this
information we may now design the main experiment. The best case is provided
by the smallest proportion, and the worse case is given by the largest proportion.
The sample size is calculated according to the formula in Eq. 2.19).

Nbest = 52
Nworse = 398

Again we find an almost 8-fold difference in the sample size. If we want to
reduce the difference to a 3-fold difference, the number of animals in the pilot
study would need to increase numbers up to N = 80, which is no longer consid-
ered a pilot study.

2.9 Adaptive sample size

In all the sections of this chapter we have assumed that we design the experiment, cal-
culate the sample size (which is fixed), and then the experiment is carried out. Once
we collect all the measurements, we analyze the resulting data, and take the conse-
quent decisions. This is certainly one of the most common procedures in science and
research with animals. However, modern research has shown that we may intermix
data acquisition and decision taking. This is particularly important for long or expen-
sive experiments, like clinical trials. We may stop the experiment if we clearly see that
there is no difference between the control and treatment groups. Beside the economi-
cal benefits, there is the benefit of not giving a useless treatment to a patient or to an
animal.

The data analysis of this kind of experiments is more complicated than the standard
hypothesis testing or the construction of standard confidence intervals. In an extremely
simplified manner, we could say that there are planned hypothesis tests along the exper-
iment. These tests are like the normal ones, but with a confidence level that is different
from the one we would use at the end of the experiment (typically 95%). In the follow-
ing sections we present some of the simplest examples of adaptive sample size designs.
For further details on this kind of designs, the interested reader is referred to Wass-
mer and Brannath (2018). In general, these experimental designs are called sequential
designs or methods.

As such, these methods belong to the data analysis domain. However, they have a
huge impact in the effective sample size of the experiment, and that is why they have
been included in this section.
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2.9.1 Hypothesis test for the superiority of a proportion

• Example 66: We are testing a new drug and we are interested in testing if it
produces a sufficiently high response. We plan to do a two-stage experiment.
In the first stage we will test the new drug in a few animals, if there is enough
evidence that the drug is working, then we will go on to the second stage with
more animals. How many animals should we have in the first stage and how
many responding if we want to go on to the second stage if p > pa = 0.25, and
we will stop the experiment if p < p0 = 0.05?

The theory corresponding to this two-stage design was developed in Simon (1989).
The inference test is of the form

H0 : p≤ p0
Ha : p > p0

(2.80)

where p is the proportion of animals responding to the treatment, and p0 is some thresh-
old below which it is not worthy to go on analyzing this drug. We want to have a
statistical power of 1−β if p is larger than a value pa

First stage analysis:
Let N1 be the number of animals in the first stage. Let us denote as R1 the maximum
number of animals responding in the first stage, under which we will not proceed to the
second stage (if R1 or fewer animals respond, then we will not continue). Let us assume
that the true proportion of responding animals is p1. We will terminate the experiment
in the first stage with a Probability of Early Termination after stage 1 (PET )

PET = Pr{r1 ≤ R1}=
R1

∑
r1=0

b(r1; pa,N1)

where b(r1; pa,N1) is the probability of observing r1 responses with a Binomial distri-
bution with parameters pa and N1. On the contrary, we will continue with the experi-
ment if p = p0 with probability

PC1 =
N1

∑
r1=R1+1

b(r1; p0,N1)

We want to design R1 and N1 such that PET < β and PC1 < α .
Final analysis:

If we decide to go to the second stage, then we will study N2 animals more. Let us
denote as R the total number of respondents including stages 1 and 2 under which we
will reject the null hypothesis. The total probability (including stages 1 and 2) of not
being able to reject the null hypothesis when the alternative is true with p = pa is

PT = PET +
min(N1,R)

∑
r1=R1+1

b(r1; p1,N1)

(
R−r1

∑
r2=0

b(r2; p1,N2)

)
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The total probability (including stages 1 and 2) of rejecting the null hypothesis when
this is true is (for p = p0)

PC = PC1

(
N1+N2

∑
R′=R+1

min(N1,R′)

∑
r1=0

b(r1; p0,N1)b(R′− r1; p0,N2)

)
We want to design R and N2 such that PT < β and PC < α .

We may minimize the average number of animals

min N1 +(1−PET )N2 subject to PET,PT < β ;PC1,PC < α (2.81)

or minimize the maximum number of animals (minimax)

min N1 +N2 subject to PET,PT < β ;PC1,PC < α (2.82)

The solution of these problems is given by enumeration (we explore all possible R1,N1,R,
and N2 satisfying the equations above for specific p0, pa, α and β ). The following table
shows the resulting thresholds R1 and R and sample sizes N1 and N for different values
of p0 and pa. The table has been calculated for α = 0.05 and β = 0.1.

Min. Average Minimax
p0 pa R1 N1 R N = N1 +N2 R1 N1 R N = N1 +N2

0.05 0.25 0 9 3 30 0 15 3 25
0.10 0.30 2 18 6 35 2 22 6 33
0.20 0.40 4 19 15 54 5 24 13 45
0.30 0.50 8 24 24 63 7 24 21 53
0.40 0.60 11 25 32 66 12 29 27 54
0.50 0.70 13 24 36 61 14 27 32 53
0.60 0.80 12 19 37 53 15 26 32 45
0.70 0.90 11 15 29 36 13 18 26 32

The minimax design may be preferred if the animal accrual rate is low. If animal
accrual is not a problem, then the minimum average design should be favored.

• Example 66 (continued): Looking at the table above in the column of minimum
average, in the first stage we will use N1 = 9 animals. If none of them, R1 = 0,
respond to the drug, we will stop the experiment because the drug seems to be
useless. If one or more respond, then we will go to the second stage. In the
second stage we will use N2 = 21 animals (N1 +N2 = 30). If the total number
of respondents including the two stages is less or equal R = 3, then we cannot
reject the null hypothesis (H0 : p < 0.05).

If the null hypothesis is true, for p = p0 = 0.05, the probability of early termina-
tion in the first stage is 63% (that is, 63% of the experiments for which p = 0.05
are terminated after only 9 animals), and the average number of animals is 16.8.
The same quantities for the minimax design are 46% and 20.4. In this way, we
see a clear advantage of the minimum average design over the minimax design.



2.9. ADAPTIVE SAMPLE SIZE 161

We can extend this idea to multiple stages instead of just two. At each stage, we
decide whether to go on with the experiment, or whether to stop it (Fleming, 1982).
In Eq. 2.22 we presented the sample size required for a test like the one introduced
at the beginning of this section (Eq. 2.80). This sample size assumes that the test is
performed only once after collecting the information from the N animals. Dividing
the experiment into multiple stages allows stopping the experiment not only because
of low response (evidence that the true p is smaller than p0), but also because of high
response (evidence that the true p is larger than pa).

If we divide the experiment into K stages with N1, N2, ..., NK animals in each stage,
then let us denote the number of respondents up to stage k as Rk. We will also stop
the experiment because of low response if Rk ≤ R0

k . In this case, we cannot reject H0.
We will stop the experiment because of high response if Rk ≥ Ra

k . These limits can be
calculated by

R0
k =

⌈
k
∑

i=1
Ni p0 + z1−α

(
k
∑

i=1
Ni p0(1− p0)

)2
⌉
+1

p̃0 =
((N p0)

1/2+(1−p0)
1/2z1−α)

2

N+z2
1−α

Ra
k =

⌈
k
∑

i=1
Ni p̃0− z1−α

(
k
∑

i=1
Ni p̃0(1− p̃0)

)2
⌉
+1

where dxe is the round up of x. The following table shows some designs with three
stages for α = 0.05 and β = 0.1. Some more designs are shown in Fleming (1982).

p0 pa R0
1 Ra

1 N1 R0
2 Ra

2 N1 +N2 R0
3 Ra

3 N1 +N2 +N3
0.05 0.20 -1 4 15 2 5 30 4 5 40
0.10 0.30 0 5 15 3 6 25 6 7 35
0.20 0.40 2 10 20 9 13 35 15 16 50
0.30 0.50 5 12 20 12 17 35 20 21 50

• Example 66 (continued): Following with the same example, with p0 = 0.05 and
pa = 0.20, in the first stage we would test the drug on N1 = 15 animals. If
there are more than Ra

1 = 4 responses, we would reject the null hypothesis and
stop the experiment because there is already enough evidence of the effectivity
of the drug. If not, we continue to Stage 2, with N2 = 15 more animals. If
between Stages 1 and 2 there has been R0

2 = 2 responses or less, we would stop
the experiment and we cannot reject the null hypothesis (the drug is useless).
If there has been Ra

2 = 5 responses or more, we would stop the experiment and
reject the null hypothesis (declare the drug effective). If the number of responses
is 3 or 4 (between the two stages), we would continue to Stage 3, with N3 = 10
more animals. If there are in total R0

3 = 4 responses or less, we cannot reject the
null hypothesis. If there are Ra

3 = 5 responses or more, we would reject the null
hypothesis.
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Important remarks

81. Inner wedge tests are extremely efficient to reduce the sample size. From
the beginning of the experiment we can stop it if there is enough evidence
of the effectivity of the treatment (this feature is shared with all sequential
designs). From the middle of the experiment, approximately, we can also
stop it if we consider that we will not be able to reject the null hypothesis.

2.9.2 Hypothesis test on the difference of the mean of two samples
• Example 67: We are developing a new drug for lowering LDL cholesterol con-

centration in blood. We would like to detect a decrease of 10 mg/dL in the
cholesterol level between the new drug and the reference one. The standard de-
viation of the population is 20 mg/dL. We would like to divide the experiment
in 5 sequential experiments (each one uses all the data available) and perform 4
interim tests. If at any of the tests there is much evidence in favour of the new
drug, we stop.

We start doing the design as if there were a single final test at the end of the
experiment. For that we need, N = 70 samples per group (see Section 2.1.5).
That is, 70 individuals per group. We would now divide the whole experimental
lot into K = 5 subgroups. After testing each subgroup we perform an interim
hypothesis test. If there is enough evidence for the difference between the two
drugs we stop the experiment.

O’Brien and Fleming (1979) developed the theory for carrying out these interim hy-
pothesis tests without compromising the statistical confidence level and power. The
interim tests (k = 1,2, ...,K) are based on the statistic

Zk =

Nk
∑
j=1

x1 j−
Nk
∑
j=1

x2 j√
Nk(σ

2
1 +σ2

2 )

where xi j is the value of the j-th observation in treatment i, and Nk is the accumulated
number of observations. Under the null hypothesis Zk is distributed as

Zk ∼ N

(
(µ1−µ2)

√
Nk

σ2
1 +σ2

2
,1

)

The procedure is as follows:

• At the interim tests (k = 1,2, ...,K−1)

– If |Zk|>CB(k,α)
√

K/k, then stop and reject H0

– Otherwise, continue to subgroup k+1

• At the final test (k = K)
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– If |ZK |>CB(K,α), then reject H0

– Otherwise, we cannot reject H0

CB(K,α) is a constant that depends on K and α and that takes into account the Type I
error inflation that occurs due to the multiple testing and the use of accumulated data.
The following table gives the value of CB(k,α) for two values of α .

k CB(k,α = 0.01) CB(k,α = 0.05)
1 2.576 1.960
2 2.580 1.977
3 2.595 2.004
4 2.609 2.024
5 2.621 2.040
6 2.631 2.053
7 2.640 2.063
8 2.648 2.072
9 2.654 2.080
10 2.660 2.087

The number of samples per group must also be modified to account for the multiple
tests.

Nsequential = NRB(K,α,β ) (2.83)

where RB(K,α,β ) is a number given in the following table (for other values, consult
Chow et al (2008)[Chap. 8])

k RB(k,α = 0.01,β = 0.1) RB(k,α = 0.05,β = 0.1)
1 1.000 1.000
2 1.001 1.007
3 1.006 1.016
4 1.010 1.022
5 1.014 1.026
6 1.016 1.030
7 1.018 1.032
8 1.020 1.034
9 1.021 1.036

10 1.022 1.037

• Example 67 (continued): We will perform K = 5 sequential tests. For this rea-
son, we need to increase a bit the sample size to account for the multiple testing

Nsequential = 1.026 ·70 = 72

We will have 72/5 = 15 animals per stage. In the first stages, we will be more
stringent, and reject the null hypothesis only if there is a large evidence against
it (see Fig. 2.13). At the end, K = 5, our rejection threshold is also larger, 2.04,
than it would normally be for a single test, z0.975 = 1.96.
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Figure 2.13: Rejection regions for the variable Zk at the different interim tests.

• Example 68: While performing the experiment, it would also be helpful to stop
the trial if we realize that by adding more animals we will not, probably, be able
to prove that the new drug is more effective. In this way, we save costs and
we avoid animals to be unnecessarily treated. How to proceed and how many
animals do we need?

A possible solution to this problem is given by the inner-wedge test, which is also
based on the Zk statistic defined above. The test is parametrized by a constant ∆ that has
to be chosen (normally between -0.5 and 0.5, for ∆ = 0 this test is related to O’Brien
and Fleming’s test, and for ∆ = 0.5 with Pocock’s test). Let us define the constants

ak = (CW1(K,α,β ,∆)+CW2(K,α,β ,∆))
√

k
K −CW2(K,α,β ,∆)

( k
K

)∆−1/2

bk =CW1(K,α,β ,∆)
( k

K

)∆−1/2

The data analysis procedure is as follows:

• At the interim tests (k = 1,2, ...,K−1)

– If |Zk| ≥ bk, then stop and reject H0

– If |Zk|< ak, then stop and H0 cannot be rejected

– Otherwise, continue to subgroup k+1

• At the final test (k = K)

– If |ZK | ≥ bk, then reject H0

– Otherwise, we cannot reject H0

As in the previous case we need to increase the total sample size to

Nsequential = NRW (K,α,β ,∆) (2.84)
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The following table gives the values of the constants CW1, CW2 and RW , for α =
0.05 and β = 0.1

∆ k CW1(k,α,β ,∆) CW2(k,α,β ,∆) RW (k,α,β ,∆)
-0.50 1 1.960 1.282 1.000

2 1.960 1.282 1.000
3 1.952 1.305 1.010
4 1.952 1.316 1.016
5 1.952 1.326 1.023
10 1.958 1.351 1.042

-0.25 1 1.960 1.282 1.000
2 1.957 1.294 1.006
3 1.954 1.325 1.023
4 1.958 1.337 1.033
5 1.960 1.351 1.043
10 1.975 1.379 1.071

0.00 1 1.960 1.282 1.000
2 1.958 1.336 1.032
3 1.971 1.353 1.051
4 1.979 1.381 1.075
5 1.990 1.385 1.084
10 2.013 1.428 1.127

0.25 1 1.960 1.282 1.000
2 2.003 1.398 1.100
3 2.037 1.422 1.139
4 2.058 1.443 1.167
5 2.073 1.477 1.199
10 2.119 1.521 1.261

• Example 68 (continued): We will perform K = 5 sequential tests, and to be able
to compare with the previous case, we will choose ∆= 0. Consequently, we need
to increase the sample size to

Nsequential = 1.084 ·70 = 76

We will have 76/5 = 16 animals per stage. As in the O’Brien and Fleming test,
in the first stages, we will be more stringent. However, now we will be able to
stop the experiment earlier if Zk does not approach the rejection limit (see Fig.
2.14).

2.9.3 Hypothesis test on the difference of two proportions
• Example 69: We say that an animal responds to a LDL cholesterol drug if its

cholesterol level drops more than 30 mg/dL. We know that 30% of the animals
respond to the reference drug. We wonder if at least 40% animals respond to a
new drug. A single stage experiment would require N = 386 animals (see Sec.
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Figure 2.14: Rejection regions for the variable Zk at the different interim tests. If Zk
is in the middle wedge, the experiment is stopped because it does not seem to be very
promising.

2.2.5). How many animals do we need if we plan to perform K = 10 subgroups
and make interim hypothesis tests between stages?

We now define the variable

Zk =

√
Nk(p̂1,k− p̂2,k)√

p̂1,k(1− p̂1,k)+ p̂2,k(1− p̂2,k)

where Nk is the number of accumulated samples up to the k-th interim test and p̂i,k is
the estimate of the proportion of the i-th population (1 or 2) at the k-th interim test.
This variable can be directly used in O’Brien and Fleming’s test or in the Inner Wedge
test of the previous section.

• Example 69 (continued): The smallest increase in sample size is obtained in the
Inner Wedge test with ∆ =−0.5. We will increase, then, the number of animals
to

Nsequential = 1.042 ·386 = 403

We will have 403/10 = 41 animals per stage. This experiment is particularly
large, N = 410 animals, but interestingly from the 5th group (typically, the stop-
ping region of the Inner Wedge is active when half the experiment has been
performed) we will be able to stop the experiment if we see that the response to
the new drug is not significantly larger than to the reference once. Additionally,
we may reject the null hypothesis from the first interim test if the response is
sufficiently strong.
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2.9.4 Sample size reestimation in blind experiments

• Example 70: In Example 63 we were designing an experiment to see the effec-
tivity of an analgesic. Animals will be placed in a hot plate and we will record
the time they take to jump out of it. We will compare a control to a treatment
group using a log-rank test. We calculated the sample size to be N = 158. If
we divide the experiment in 10 subgroups, can we use a sequential design with
interim tests between stages?

Let dk be the total number of failures in both groups (1 and 2) up to the k-th test. Let us
index the failing subjects (in both groups) as i = 1,2, ...,dk. Let ti be the failing time of
the i-th individual, and ri,1 and ri,2 the remaining number of samples in groups 1 and 2
at time ti, respectively. Let δi,2 be 1 if the i-th individual is from Group 2 and 0 if it is
from Group 1. The log-rank statistic at the k-th interim analysis can be written as

Sk =
dk

∑
i=1

(
δi,2−

ri,2

ri,1 + ri,2

)
The observed information variable is defined as

Ik =
dk

∑
i=1

ri,1ri,2

(ri,1 + ri,2)2

The variable

Zk =
Sk

Ik

can be used in the O’Brien and Fleming’s test or the Inner Wedge test.

• Example 70 (continued): We will use an Inner Wedge test with ∆ = −0.5. We
will increase, then, the number of animals to

Nsequential = 1.042 ·158 = 165

We will have 165/10 = 17 animals per stage. Now we can use the standard
procedure for the Inner Wedge test.

2.9.5 Hypothesis test on the difference of two survival curves

• Example 71: We are evaluating the efficacy of a new drug with respect to a
reference drug. We have estimated the sample size to be N = 18 per treatment
and we are performing an interim test (K = 2). We record whether an animal
responds or not to the treatment or control. The study is being performed in a
double blind way, and disclosing at any moment the labels would compromise
the efficacy of the study. How can we, at the interim test, use the collected data
to readjust the sample size with the knowledge collected?
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This is a problem known as “Sample size re-estimation”. The solution depends on each
kind of study being performed. Here the solution for proportions is presented (Chow
et al, 2008)[Chap. 8].

Let denote p1 and p2 the actual proportion of responders in group 1 (treatment) and
2 (control). Let y j denote the response (y j = 1) or not (y j = 0) of the j-th individual
(note that we do not know if it is receiving the treatment or control drug). We assign
it randomly to Stratum A with probability π (with π ∈ (0,0.5)) and to Stratum B with
probability 1−π . We now calculate

pA = Pr{y j = 1| j ∈ Stratum A}= π p1 +(1−π)p2 ≈ 1
NA

∑
j∈Stratum A

y j = p̂A

pB = Pr{y j = 1| j ∈ Stratum B}= (1−π)p1 +π p2 ≈ 1
NB

∑
j∈Stratum B

y j = p̂B

We can solve for p1 and p2 (or its estimates) as

p̂1 =
π p̂A−(1−π)p̂B

2π−1
p̂2 =

π p̂B−(1−π)p̂A
2π−1

Finally, we re-estimate the sample size as explained in Sec. 2.2.5 and reproduced here
for convenience

N =

 z1−α + z1−β

p̂1−p̂2√
p̂1(1−p̂1)+p̂2(1−p̂2)

2

• Example 71 (continued): Assume that we use π = 0.4 and we observe p̂A = 0.6
and p̂B = 0.5. Then,

0.4p1 +0.6p2 = 0.6
0.6p1 +0.4p2 = 0.5

}
⇒ p̂1 = 0.3, p̂2 = 0.8

The re-estimated sample size is

N =

(
z0.95 + z0.9

0.3−0.8√
0.3·0.7+0.8·0.2

)2

= 13

So that we can shorten the study from N = 18 to N = 13 samples per group.

Important remarks

82. Sample size reestimation allows shortening our experiment as evidence ac-
cumulates against the null hypothesis. In the same way, we can prolong the
experiment if we see that our first guess of the variability of the samples fell
short and that we need a larger sample size.



Chapter 3

Design of experiments

The previous section told us how many animals we need to achieve our research goals.
If we do not have this number of animals, the experiment will simply fail to show
what we wanted to show just by lack of statistical power. This section tells us how to
distribute these animals in manageable groups so that we avoid bias and perform our
experiment in statistically optimal conditions. Failing to design the experiment may
compromise our results (for instance, through external biases). However, of the two
statistical issues involved in the design (sample size and experiment design), sample
size is much more important, and that is why researchers are primarily concerned with
it, and are much less familiar with the experiment design. But having a good design will
allow us to have a wider applicability of our results (because we have made experiments
in more conditions) and better estimates of the treatment effects (because by carefully
balancing, or at least designing, the experiment we will reduce the variability of the
comparisons of interest).

As with the sample size calculation, experiment design needs to know how the data
will be analyzed once the experiment is performed. A prominent role in this analysis is
played by linear models, which were already introduced in Sec. 1.3, when we discussed
about blocking. In this chapter we will introduce the concepts associated to linear
models as we need them, so that the theory associated to them is not concentrated in
one single section, but spread along the chapter. We will provide multiple examples so
that researchers can identify their problems in the examples given.

3.1 Basic designs
In this section we will briefly revise the main concepts associated to the design of
experiments by presenting the most basic designs.

3.1.1 Completely randomized design, CRD
This is the most basic design and most likely the most widely used for its simplicity.
It allows the simultaneous comparison of multiple groups, and decomposing the ob-
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served data into different components that can be verified whether or not they have a
statistically significant impact on the observations.

• Example 72: We are testing a new drug against cholesterol levels in blood. Con-
trol animals have a concentration of 250 mg/dL with a standard deviation of 30
mg/dL. We will test two doses of our drug (D1 and D2). We will refer to the con-
trol animals as D0, and they only receive the vehicle of the drug (not the active
compound). We will analyze 10 animals per group.

Design summary. In this kind of design we have multiple groups, each one
receiving a different treatment. Animals are randomly assigned to each one of the
treatments. Typically, the same number of animals are analyzed in each group,
but this is not a strong requirement of the design.

As discussed in Section 1.3, it is important that the experiment is performed
in a randomized manner (not all controls are studied first, then treatment 1, then
treatment 2, ...).

If the treatment is defined by a genetic characteristic (like wild type vs. knock-
out animals), animals cannot be randomly assigned to the treatment group, but the
design is still considered to be completely randomized.

This design is recommended for relatively small experiments where the total
number of individuals is sufficiently small so that they all “fit” in a setting of
homogeneous conditions (same laboratory, same experimenter, same day, same
batch of chemicals, ...) If the experiment span for multiple days, multiple centers,
multiple technicians, ... the day, center, technician, etc. may cause a difference in
the results and it is better to perform a design with blocks (see Sec. 3.1.3).

Once we perform the experiment we may use ANOVA (Analysis of Variance) to
determine if the drug was effective. For doing so, we may distribute the data as shown
in the following table. We have three columns corresponding to the three different
treatments (control and two drug doses). Within each column we have 10 observations
of cholesterol measurements, one from each of the animals in the group. We may refer
to an individual measurement as yi j meaning that it has received the i-th treatment, and
it is the j-th animal within the group. ANOVA is not restricted to the same number
of animals per group, but it is a common practice in research laboratories and, for
simplicity, we will illustrate the technique with the same number of animals per group.

y0,1 y1,1 y2,1
y0,2 y1,2 y2,2
y0,3 y1,3 y2,3
y0,4 y1,4 y2,4
y0,5 y1,5 y2,5
y0,6 y1,6 y2,6
y0,7 y1,7 y2,7
y0,8 y1,8 y2,8
y0,9 y1,9 y2,9
y0,10 y1,10 y2,10
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ANOVA uses a linear model that decomposes the observed data as

yi j = µ +αi + εi j (3.1)

This equation means that the observation of the j-th animal in the i-th group can be
explained as an overall mean, plus something that depends on the treatment received,
plus something that cannot be explained and it is specific to each individual (this latter
term is called the residual). Fig. 3.1 shows a possible result of the experiment. Each
data point is a measurement from one of the animals. We have three groups (control,
and the two doses). Each of the points is a yi j. The figure shows the overall mean (in
black) and the average of each one of the groups. These averages are estimated from
the data. For instance, the overall mean can be estimated as

y.. =
1
N ∑

i j
yi j

N is the total number of individuals in the three groups (in our example, N = 30). The
dot notation implies that we are averaging over the corresponding index. Since we are
averaging in i and j we use two dots for the overall mean. Similarly, we can compute
the average of each one of the groups (represented in red in Fig. 3.1)

yi. =
1
Ni

∑
i

yi j

being Ni the number of individuals in the i-th group. Note that according to the linear
model in Eq. 3.1 we should have the following expected values

E{y..} = µ

E{yi.} = µ +αi

αi is the difference between the overall mean and the mean of each group, and it is the
part attributed to the treatment. It can be estimated as

α̂i = yi.− y.. (3.2)

In the following we will refer to estimates of the different parameters with a hat (as in
α̂i). αi is called the main effect of the treatment (we have one main effect for every
level of the treatment, control, D1, and D2). For instance, for the dataset in Fig. 3.1,
we have

y.. = 205.06
y0. = 246.43 = 205.06+ α̂0⇒ α̂0 = 246.43−205.06 = 41.37
y1. = 201.08 = 205.06+ α̂1⇒ α̂1 = 201.08−205.06 =−3.98
y2. = 167.67 = 205.06+ α̂2⇒ α̂2 = 167.67−205.06 =−37.39

Note that, by construction, the sum of all treatments (and their estimates) add up to 0

α0 +α1 +α2 = 0
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This is a constraint of the ANOVA model, because there can be infinite decompositions
of the observed data compatible with the linear model (y = µ +αi + εi j). For instance,
we could have explained each group using µ = 246.43, and we would have obtained

y0. = 246.43 = 246.43+ α̂0⇒ α̂0 = 246.43−246.43 = 0
y1. = 201.08 = 246.43+ α̂1⇒ α̂1 = 201.08−246.43 =−45.35
y2. = 167.67 = 246.43+ α̂2⇒ α̂2 = 167.67−246.43 =−78.76

This decomposition would look more “human”: if we do not apply any treatment (con-
trol), then we get an average of 246.43; with a small dose, D1, we get a reduction of
45.35; and with a larger dose, D2, we get a larger reduction of 78.76. However, this
is not the way that ANOVA makes the linear decomposition. µ has to be the overall
mean (and not the mean of one of the groups, as in the “human” decomposition). A
consequence of this choice is that the addition of all the effects is zero.

Then, we can explain any of the observations as a function of the overall mean, the
treatment received and the remaining residual. For instance, for a particular individual
we have observed y01 = 189.67. We may explain this observation as

y01 = µ̂ + α̂0 + ε̂01
249.42 = 205.06 + 41.37 + 2.99

That is, the observation 249.42, out of which 205.06 is explained by the overall mean,
then 41.37 is explained by being in the control group, and the remaining 2.99 can
only be explained as a specificity of that measure (including the subject, measurement
errors, etc.). Residuals can be positive or negative, actually their mean is zero.

ANOVA is a technique that tries to determine if there are statistically significant
differences among the treatments. For instance, we would expect that there are signif-
icant differences between the groups in Fig. 3.1 and there are not between the groups
in Fig. 3.2. The reason is that, although it seems that there is a small reduction of the
cholesterol with the dose, we cannot guarantee that these differences are not caused
by random sampling (measurement noise, and differences among individuals and the
particular groups we have sampled). Visually, we expect that the differences in Fig. 3.1
are real (they are caused by the treatment), while we are not so sure about the truth of
the differences in Fig. 3.2.

ANOVA puts a number on this certainty, it is the p-value of the hypothesis test

H0 : α0 = α1 = ...= αp
Ha : ∃i, j|αi 6= α j

That is, the null hypothesis is that there is no difference in the main effects of the differ-
ent groups. The alternative hypothesis is the opposite, there are at least two treatments,
i and j, whose main effects are different. If the p-value is smaller than a given thresh-
old we would reject the null hypothesis (observing this data if there is no difference
in the treatments would be so unlikely that we reject this hypothesis). If the p-value
is not smaller than the threshold, we cannot reject the hypothesis that there is no dif-
ference between the treatments and that the observed differences are just caused by
measurement errors and variability within the observed population.
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Figure 3.1: Example of data analysis by ANOVA. There are three groups (control and
two doses) with 10 observations each. The horizontal black line is the overall mean.
The horizontal red lines are the mean of each of the groups. Each observation is noted
as yi j meaning that it is the j-th observation in the i-th group. The mean of the i-th
group is noted as yi. and the overall mean as y...
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Figure 3.2: Example of data analysis by ANOVA.
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ANOVA calculates this p-value by analyzing the distances between the observa-
tions yi j, their group means yi., and the overall mean y... In particular, it exploits a
property of the sum of squares

∑
i j
(yi j− y..)2 = ∑

i j
(yi.− y..)2 + ∑

i j
(yi j− (µ̂ + α̂i))

2

This expression means that the sum of the squares of the distance from each observation
to the overall mean (black arrow in Fig. 3.1) can be decomposed as the sum of the
squares of the distance from its group mean to the overall mean (green arrow in the
same figure) plus the sum of the squares of the distance from each observation to its
group mean (red arrow). We have calculated the residual as

ε̂i j = yi j− (µ̂ + α̂i)

that is, the sample yi j is predicted to have a value of µ̂ + α̂i for being in the i-th group.
The difference between this prediction and the actual observation is the residual for
that individual.

Note that the total sum of squares (left hand side of the equation) is related to the
total variance of the observations (how different are the observations from the overall
mean), and it will be noted as SST (total sum of squares). The equation above means
that each observation contributes to the total sum of squares with a term that depends on
the group it belongs to (how different is each group mean from the overall mean), plus
a term that depends on the residual (how different is this observation from its group
mean). We can rewrite the decomposition above more clearly as

∑
i j
(yi j− y..)2 = ∑

i j
α̂2

i + ∑
i j

ε̂2
i j

SST = SSα + SSε

(3.3)

Each experiment has an associated number of degrees of freedom. Loosely speak-
ing, degrees of freedom are like “tokens of information”. Every new observations gives
us a new token. As we accumulate observations, we are also accumulating tokens of
information, evidence. If we have an experiment with N animals, then we originally
have N tokens. Now, we spend these tokens in estimating different parameters. Every
parameter costs a token. We need to estimate the overall mean, then this costs a token,
so that the number of degrees of freedom associated to the total sum of squares, SST ,
is no longer N but N−1. We need to estimate the three main effects as we pointed out
in Eq. 3.2. Then, we would need three tokens for this. But we can play a trick; we can
estimate only two of them and remember that they have to add up to zero

∑
i

αi = 0

so that given two of the main effects, we can automatically calculate the other and
save a token. In general if we have T treatment groups, we only need T − 1 degrees
of freedom to calculate the main effects of all the groups. We had N− 1 degrees of
freedom to calculate parameters, we have consumed T − 1, and the remaining N−T
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are left for the residuals. In this way, we have a decomposition of the degrees of
freedom similar to the decomposition of the sum of squares

N−1 = (T −1) + (N−T )
d fT = d fα + d fε

(3.4)

We may now wonder how much each degree of freedom has “bought” in terms of
sum of squares. Regarding the main effects of the treatments, we have spent T − 1
degrees of freedom in explaining SSα . Each degree of freedom is explaining a mean
squares of

MSα =
SSα

T −1
Similarly, each of the degrees of freedom of the residuals is explaining an amount of
variance given by

MSε =
SSε

N−T
We can summarize all this information in the following table, which analyzes the
amount of variance explained by each source of information:

Source Sum of squares Degrees of freedom Mean squares (MS = SS/d f )
Treatments SSα = ∑

i j
α̂2

i T −1 MSα = SSα/(T −1)

Residuals SSε = ∑
i j

ε̂2
i j N−T MSε = SSε/(N−T )

Total SST = ∑
i j
(yi j− y..)2 N−1

ANOVA checks if the mean contribution of each of the degrees of freedom of the treat-
ments “pays” for its calculation, that is, it is significantly different from the contribution
of each of the degrees of freedom of the residuals

f =
MSα

MSε

If the null hypothesis is true (there is no difference between the group means), then the
statistic F is distributed as an Snedecor’s F with T −1 and N−T degrees of freedom.
The p-value is the probability of observing under the null hypothesis an F value at least
as extreme as the one we have observed

p-value = Pr{FT−1,N−T > f}

We reject the null hypothesis if this p-value is below a given threshold (typically, 0.05).
Additionally, the sum of squares decomposition allows the definition of the co-

efficient of determination, normally denoted as R2, that is the proportion of the total
variance that is explained by the predictions. It is defined as

R2 = 1− SSε

SST
(3.5)

This value goes from 0 to 1. R2 = 1 implies a perfect prediction since all residuals
would be zero.
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• Example 72 (continued): The ANOVA table for the data shown in Fig. 3.1 would
be

Source SS d f MS
Treatments 31252 2 15626
Residuals 30600 27 1133

Total 61852 29

The associated f would be f = 15626
1133 = 13.79 and its corresponding p-value

p = 6.18 · 10−5. Consequently, we would reject the null hypothesis and accept
that at least two treatments are different to each other. Post-hoc analysis would
now look for the pair or pairs of treatments that are different from each other.
Showing this second part of the analysis is out of the scope of this chapter since
it would divert us from our main objective, design of experiments. The interested
reader is referred to Doncaster and Davey (2007). The R2 of this ANOVA model
is R2 = 1− 30600/61852 = 0.51 meaning that it explains a little bit more than
50% of the original variability.

If we repeat this analysis for the data in Fig. 3.2, we would have obtained

Source SS d f MS
Treatments 3606 2 1808
Residuals 27205 27 1008

Total 30811 29

The associated f is f = 1808
1008 = 1.79 and the corresponding p-value p = 0.18, so

that we cannot reject the hypothesis that there is no difference between the group
means, and consequently the two dose groups are not significantly different from
the control group. This ANOVA model only explains R2 = 1−27205/30811 =
0.12, that is, 12% of the original variability.

3.1.2 Regression design
Often times we are interested in many different values of a variable. For instance, we
may design an experiment to test 11 levels of a drug in Example 72, from D = 0 mg.
(control), D = 10 mg., D = 20 mg., ..., D = 100 mg. As we saw in the previous section,
we could address this design with an ANOVA design of 11 levels for the treatment
variable

yi j = µ +αi + εi j

However, this would require 10 degrees of freedom for estimating the 11 main effects.
We note that the dose is continuous and that the response must be a function of the
dose, so that we can turn the linear model above into a regression problem with a
generic function, f (x). For instance, we may use a degree 2 polynomial

yi j = f (Di) = β0 +β1Di +β2D2
i + εi j
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where Di is the dose given to the i-th individual. We only need to estimate 3 parameters
(β0, β1 and β2), that is, this model is much cheaper in terms of degrees of freedom (so
that we may use fewer individuals for our experiment). It has two other advantages over
the ANOVA linear model: 1) the regression can predict the cholesterol level for values
in between the doses used in the experiment (for instance, D = 15 mg.); 2) regression
analysis can check whether any of the regression coefficients is significantly different
from 0 (see Eq. 2.31), meaning that we may simplify the model if we see that we have
overparameterized it.

Assuming the regression model has P parameters, and that the model is linear in
these parameters (the β ’s do not participate in a non-linear way), the data analysis table
is given by

Source Sum of squares Degrees of freedom
Regression SSβ = ∑

i j
( f (Di)− y..)2 P−1

Residuals SSε = ∑
i j
(yi j− f (Di))

2 N−P

Total SST = ∑
i j
(yi j− y..)2 N−1

The coefficient of determination, R2, is still well defined as in Eq. 3.5. The Snedecor’s
F test can tell us whether the model is significant or not.

Design summary. We may organize the experiment as in the case of the com-
pletely randomized design (multiple groups of randomly assigned animals, with
all animals in the group receiving the same treatment). However, since the pre-
dictor is a continuous variable we are not constrained to give the same treatment
to all animals. Actually, the experiment gives more information if the treatment is
randomly selected from the range covered from the multiple groups (for instance,
if we plan to test from 0 to 100 mg. of a dose, then selecting a random number in
that range).

As in the case of the completely randomized design, this design assumes that
the only source of variation is the treatment. If the experiment can be affected by
blocking variables, the design can be extended with the addition of block terms
(see the section below treating with covariates).

• Example 73: Fig. 3.3 shows the results of analyzing the effect of 11 dose levels
of a new drug on the cholesterol level in blood (see Example 72). There are 5
individuals per dose level. The data analysis is performed by regression of the
results with a polynomial of degree 2. The fitted polynomial is

y = 228.2−2.567D+0.0145D2

The following table shows the sum of squares decomposition for this case.

Source SS d f MS
Regression 77629 2 38815
Residuals 45967 47 978

Total 123596 49
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We have f = 38815
978 = 39.68, and the associated p-value p = 8 · 10−11, which is

extremely significant. The model explains R2 = 1− 45967/123596 = 63% of
the original variance. Additionally, the confidence intervals for each one of the
regression parameters are

β0 ∈ [207.9,248.5]
β1 ∈ [−3.513,−1.621]
β2 ∈ [0.005391,0.02361]

None of these intervals include the zero value, then, all regression coefficients
are statistically significant.

Note that regression models should only be used within the range of predictors
for which they were constructed. For instance, this polynomial was fitted in the
region D∈ [0,100] mg., and within this region, the predicted values are relatively
accurate (these predicted values are said to be interpolated). Outside this region,
the polynomial may make sensible or absurd predictions (these values are said to
be extrapolated). Extrapolated values are not always necessarily bad, it depends
on the capability of the fitted function to generalize the system behavior outside
the observed region. For instance, this polynomial predicts a cholesterol value of
295 mg/dL for a dose D = 200 mg., which obviously makes no biological sense.
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Figure 3.3: Experiment in which we are testing the effect of 11 different doses of a new
drug on the cholesterol level in blood. The modelling of the response is performed by
regression analysis and the resulting fitted response is shown as a solid, red line.
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3.1.3 Randomized block design, RBD
We introduced blocking in Sec. 1.4 as a very effective way of reducing variance. The
idea is to try to explain the total variability of the observations by other sources.

• Example 74: Following with the previous example, we suspect that there might
be differences in the cholesterol level in blood depending on the mouse sex. We
design the experiment so that we block sex as a nuisance factor. For example,
we plan to carry out the experiment in the following order (randomly generated
by a computer)

Female D2
Male D2

Female Control
Female D1
Male D1

Female D1
Male D1

Female Control
Male Control
Male Control
Male D1

Female Control
Female D1
Female Control
Female D1
Male D1

Female Control
Female D2
Male D2
Male D2

Female D2
Male D2
Male Control
Male D2

Female D2
Female D2
Male D1
Male Control
Male Control

Female D1

It can be seen that each dose level has the same number of males and females.
This is a balanced design.

After performing the experiment, sex seems to have an effect on the results as
seen in Fig. 3.4. We have used the same data as in Fig. 3.2 to illustrate the
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difference between blocking a nuisance factor, and not blocking it. Within each
group, males seem to be systematically above females, and consequently part of
the variability can be explained by the animal sex.
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Figure 3.4: Same data as in Fig. 3.2 with sex labels per group (male in red, female in
blue). For each group we have drawn the sex average with a dashed line.

We need to extend our linear model to include the sex. Sex is now a blocking
variable, also called nuisance factor. The following formula extends Eq. 3.1 with the
effects of a blocking variable:

yi jk = µ +αi + γ j + εi jk (3.6)

Observations have now three indexes: i for the treatment (control, dose 1 or dose 2), j
for the block (male or female), and k for the individual within the treatment and block.
It is important to note that the number of animals in each treatment and block is the
same (in Fig. 3.4 we see there are 10 animals per treatment, and 15 males and 15
females).

Design summary. As in the randomized designs, in this kind of design we have
multiple groups, each one receiving a different treatment. Animals are randomly
assigned to each one of the treatments. However, in these experiments we foresee
that there are nuisance factors that affect our measurements (like performing the
experiment in multiple days, multiple researchers each treating only a part of the
animals, multiple centers, male or female animals, ...). We design the experiment
such that each level of the factors of interest (dose in our example) appears the
same number of times in each of the levels of the nuisance factors (for instance,
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for every dose level we test the same number of males and females. A design
meeting this condition is said to be balanced. This is not a strong requirement,
but it makes the analysis easier. In this section we will assume that each level
of the nuisance factors sees all treatments. If it does not, the design is said to be
incomplete. Incomplete and unbalanced designs will be treated in Sec. 3.1.7.

As we saw in Sec. 1.3, it is important to keep the randomization within each
block (treatments are not applied in the same order).

Randomized Complete Block Design (RCBD) is a special case of these de-
signs in which each block sees each treatment exactly once.

We can estimate the main effects of the treatment in the same way as in the previous
case (Eq. 3.2)

α̂i = yi..− y... (3.7)

We can estimate the block main effects in the same way

γ̂ j = y. j.− y... (3.8)

If there are B levels for the blocking variable, then we need B−1 degrees of freedom
to estimate them, because, in the same way as the treatments, the main effects of the
blocks (and their estimates) also have to add up to 0

∑
j

γ j = 0

We now have a decomposition of the sum of squares given by

∑
i jk
(yi jk− y...)2 = ∑

i jk
α̂2

i + ∑
i jk

γ̂2
j + ∑

i jk
ε̂2

i jk

SST = SSα + SSγ + SSε

(3.9)

The residuals, as in the previous case, is the difference between the actual measure-
ments and the predicted value for having received a given treatment and belonging to a
particular block

ε̂i jk = yi jk− (µ̂ + α̂i + γ̂ j)

Finally, we can now extend the ANOVA table to include the blocking variable

Source Sum of squares Degrees of freedom
Treatments SSα = ∑

i jk
α̂2

i T −1

Blocks SSγ = ∑
i jk

γ̂2
j B−1

Residuals SSε = ∑
i jk

ε̂2
i jk N−T −B+1

Total SST = ∑
i jk
(yi jk− y...)2 N−1

The p-value is calculated in the same way as before, by comparing the mean squares of
the treatment to the mean squares of the residuals. The advantage of adding blocks is
that the treatments will not modify their sum of squares (they still explain the same
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amount of variability as if no block is considered; this is only true for orthogonal
designs, see Sec. 3.1.7, but most experiments with animals are balanced and, con-
sequently, orthogonal), but the variability explained by the block is taken from the
residuals. In this way, the sum of squares of the residuals is reduced (remember the
connection of blocking and the reduction of variance of Sec. 1.4), and it will be easier
to show that the treatment is significant (the associated f value will be higher).

• Example 74 (continued): If we perform the ANOVA analysis on the data of Fig.
3.4 we obtain

µ̂ = 244.88
α̂0 = y0..− y... = 7.42
α̂1 = y1..− y... = 8.08
α̂2 = y2..− y... =−15.50
γ̂0 = y.0.− y... = 10.30
γ̂1 = y.1.− y... =−10.30

In this way, a male mouse without treatment is predicted to have a cholesterol
level of

yi j. = µ̂ + α̂i + γ̂ j = 244.88+7.42+10.30 = 262.6

If we now calculate the sum of squares associated to each one of the terms we
would have

Source SS d f MS
Treatments 3606 2 1808

Sex 3184 1 3184
Residuals 24021 26 923

Total 30811 29

We see that the sum of squares of the treatment has not changed, and the sum
of squares of the block has been taken out of the sum of squares of the residuals
at the cost of a single degree of freedom. We can now calculate the f statistic
associated to the treatments

fα =
1808
923

= 1.96⇒ p-value = 0.16

We can compare the f value in this experiment (1.96), with the f value in the
analysis of the same data without the block (1.79; see Example 72). We have
slightly improved the p-value, from 0.18 to 0.16. However, we cannot reject the
hypothesis that there is no difference between treatments.

In this case, the blocking variable explained only a small portion of the residual
variability (3184 out of the 27205, see Example 72, that is, 11.7% of it), and
that is why blocking in this case did not help much. However, there are cases
in which blocks explain a large portion of the total variance. In these cases,
blocking is very useful. Before doing an experiment we cannot know whether
blocking will be helpful or not. However, if we suspect that a variable (like
sex in our example) could significantly affect the variability of the observations,
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blocking it and including it in the analysis does not do any harm, and it is a sort
of “insurance” just in case we were right about its importance.

Additionally, ANOVA also allows us to analyze the significance of the blocking
variables in the same way as we have done for the treatments

fγ =
3184
923

= 3.46⇒ p-value = 0.07

That is, the block was almost significant (the threshold for statistical significance
is usually set to 0.05), but with this data we cannot reject the hypothesis that
there are no differences in the cholesterol levels of the different sexes. This lack
of significance may indicate a lack of statistical power (i.e., not enough animals
in each of the groups), or a real lack of difference. The distinction between these
two situations is left to the judgment of the researcher, and there is no statistical
tool capable of distinguishing between these two situations.

Important remarks

83. The analysis of the results of an experiment may give four possible situa-
tions.

• Significant p-value, and biologically sensible hypothesis: we designed
an experiment to investigate if there was a difference in the different
groups, and the data proved that we were right.

• Non-significant p-value, and biologically non-sensible hypothesis: this
kind of experiments are more rarely performed. We foresee that there
is no difference in the different groups, and normally we do not carry
out any experiment to show that this is the case. However, if we still
carry out the experiment, and the p-value is not significant, it would
confirm our prior biological intuition.

• Non-significant p-value, and biologically sensible hypothesis: we de-
signed an experiment to examine if there was a difference in the dif-
ferent groups, but the data does not support our intuition.

– If the p-value is almost significant, as in the case of the sex block
in the example, 0.07, this result probably indicates a lack of sam-
ple size (and, consequently, of statistical power). A larger sample
size would most likely resulted in a significant difference.

– If the p-value is far from being significant, for instance, 0.6, then
we should revise our biological knowledge and try to understand
the mechanism that invalidated our prior intuition (we were ex-
pecting differences between groups that were not confirmed by
the data). We should try to identify some nuisance factors that
might have spoiled the experiment.

• Significant p-value, and biologically non-sensible hypothesis: the data
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seems to support differences between the groups that we did not fore-
see beforehand.

– If the p-value is almost non-significant, for instance, 0.04, this re-
sult probably indicates a Type I error (rejecting the null hypothe-
sis when it is true). Most likely, we would have not obtained this
result with a larger sample size.

– If the p-value is extremely significant, like 10−6, then we should
revise our biological knowledge and try to understand the rea-
sons that make the groups so different and that were not iden-
tified before conducting the experiment. You also may suspect
confounding.

We may block the animals according to some continuous variable by defining dif-
ferent groups of the continuous variable as in the following example.

• Example 75: We are interested in the effect of four different diets on the growth
of the animals. We will use in total 48 animals and will give the same diet
to all animals within a pen. We think that the weight of the animals before
performing the experiment may cause a difference in the results. For this reason,
we measure the weight of the animals before the experiment and divide them into
three groups: light, medium, and heavy animals with 16 animals in each of the
groups (this division is easily carried out if we sort the animals by their weight
and assign 16 to each one of the groups). These groups are our blocks, and
within each block we apply the four different treatments by randomly assigning
an animal to one of the four diets and gathering the four animals with the same
diet in a pen. In this way, we will have three blocks of weights, and within each
block, four pens with the four different diets, and four animals per pen.

The block design above should be preferred to one in which animals are ran-
domly assigned to any of the diets because this latter design might, by chance,
assign more heavy animals to one of the diets, making us think that it was the
diet (and not the previous weight) what made the animal to grow.

An incorrect design would assign all light animals to the same diet (that is, within
a block there is no variety of treatments), because we would be confounding the
effect of the block and the effect of the treatment.

Blocking a variable is not always a perfect solution as illustrated by the following
example.

• Example 76: We are studying the effect of an hormone in the weight of animals.
We will have two groups (control, C, and treatment, T ). We have calculated that
we need 4 animals per group and they will be put in two cages. We are thinking
of two designs

Cage 1 Cage 2
Design A CCCC TTTT
Design B CCTT CCTT



3.1. BASIC DESIGNS 185

From the point of view of eliminating possible cage effects, we would favor
Design B over Design A. However, suppose that the hormone does not have
an effect on the metabolism of the animals, but on their behavior. Suppose that
animals receiving the hormone are more aggressive or docile. Then, the effect on
the animal weight is due to the competition between control and treated animals.

Important remarks

84. Linear models assume there is no interaction between different levels of the
same variable. In the previous example of more docile or more aggressive
animals, there is an interaction between the control and treated levels, which
are confounded in the Design B with the cage block.

We can easily extend the linear model to include several blocking factors (for sim-
plicity of notation, we have dropped the subindexes, but the reader must have in mind
that each observation has been given a different treatment and that it belongs to differ-
ent levels in each of the blocking variables)

y = µ +α + γ
(1)+ γ

(2)+ ...+ γ
(p)+ ε (3.10)

The analysis of each of the blocking variables is similar to the sex example given above.
Typical blocking variables in animal research are sex, strain, age group (although age
can be treated as a covariate), the litter the animal is coming from, or its cage. In
multicenter experiments, the center is also a typical blocking variable.

• Example 76 (continued): Actually, the problem of distinguishing the effect of
the hormone treatment on growth with a higher aggresiveness can be solved by
using all possible combinations

Cage 1 Cage 2 Cage 3 Cage 4
Design A+B CCCC TTTT CCTT CCTT

and introducing in the analysis an extra variable that reports the effect of mixing
animals with different treatments

y = µ +α
(treatment)+ γ

(cage)+α
(mixed)+ ε

• Example 77: We are interested in the evolution over time of a constituent of
chicken blood. Our study will span 25 weeks and will involve 9 animals. Every
week we can only sample 6 chickens (not the 9), and we expect batch effects due
to the sampling day (i.e. variations due to the blood analysis over weeks that are
unrelated to the natural time evolution of the blood constituent in the animals).

Multiple blocking can help us to correctly analyze this data. Let µ be an the base
level of that blood constituent. Let αi with i = 1,2, ...,25 be the time variation
over the base level that we are interested in. We may block the different animals
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(γ(chicken)
j , j = 1,2, ...,9) and the sampling day (γ(day)

k , k = 1,2, ...,25). Then, we
would have the observation model

yi jk = µ +αi + γ
(chicken)
j + γ

(day)
k + εi jk

And the estimation of its parameters can be done by Least Squares as shown in
Sec. 3.1.7.

3.1.4 Use of covariates
In Sec. 1.4 we introduced blocking and using covariates as two ways of reducing
the variability of the residuals. Blocking addresses discrete variables that might affect
our measurements (like sex in the example of the previous section). Covariates can
be thought of as blocking for continuous variables. For instance, in the example of
the previous section, assume that we foresee that sex and animal weight, w, may both
affect the level of cholesterol in blood. In general we should annotate along with the
main results all the variables that might have an influence (sex, weight, cage position in
the rack, health status, operators, handlers, ...) for an eventual posterior analysis trying
to understand the variability of the observed data.

We may extend the linear model in Eq. 3.6 to include the body weight. As with the
sex, weight is not a variable we can control, but we can measure it and remove from
the observations the variability introduced by it:

yi jk = µ +αi + γ j +βw(wi jk− w̄)+ εi jk (3.11)

where w̄ is the mean of the weights, and its presence guarantees that the mean of yi jk
is µ . In this model, we are considering the main effects of our treatment (control or
two doses, covered by α), the effect of a blocking variable (sex, γ), and the effect of a
covariate (body weight, βw).

Design summary. The use of covariates does not imply an experiment design
in itself. It can be used with any design and it only requires the measurement of
continuous nuisance factors that could affect our observations.

There are several ways of estimating all the parameters. The following procedure
is called hierarchical ANOVA and it illustrates a useful way of thinking about resid-
uals, sums of squares and progressive explanation of the variance. The hierarchical
procedure iteratively explains parts of the observations. Let us denote the original ob-
servations as

y(0)i jk = yi jk

meaning that the unexplained part of the original observations are the observations
themselves.

The most basic model, called the null model, would be their mean. When we have
explained the mean, there will still be some unexplained part that we will refer to as
y(1)i jk . Then, for every observation, we have

y(0)i jk = µ + y(1)i jk
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The unexplained part is supposed to have zero mean (if it did not have, its mean would
be absorbed into µ). The equation above is valid for all observations, and we may add
all the equations obtaining

∑
i jk

y(0)i jk = Nµ +

�
�
��

0

∑
i jk

y(1)i jk

from where the best estimate of µ is

µ̂ =
1
N ∑

i jk
y(0)i jk = y(0)...

The unexplained part is now
y(1)i jk = y(0)i jk − µ̂

The sum of squares unexplained by this null model is

RSS(µ) = ∑
i jk

(
y(1)i jk

)2

This is called the Residual Sum of Squares because, from the point of view of the
model, the unexplained parts are the residuals. This is exactly the total sum of squares,
SST , that we have computed in the previous sections. We have consumed 1 degree of
freedom to estimate the model because it has only 1 parameter.

We try now to explain the variance induced by the covariates, with the model

y(1)i jk = βw(wi jk− w̄)+ y(2)i jk

The least squares solution for βw is

β̂w =

∑
i jk

y(1)i jk (wi jk− w̄)

∑
i jk
(wi jk− w̄)2 =

∑
i jk
(yi jk−µ)(wi jk− w̄)

∑
i jk
(wi jk− w̄)2

The unexplained part is now

y(2)i jk = y(1)i jk − β̂w(wi jk− w̄)

and the sum of squares unexplained by this first model is

RSS(µ,βw) = ∑
i jk

(
y(2)i jk

)2

and the part explained by βw when µ is given is

SS(βw|µ) = RSS(µ)−RSS(µ,βw)

We have also consumed only 1 degree of freedom to estimate βw.
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We now explain the part corresponding to the blocking variable (in the example,
male and female)

y(2)i jk = γ j + y(3)i jk

Note that γ j takes a different value depending if the animal is male ( j = 0) or female
( j = 1). For each of the two groups, we add all the equations corresponding to that
group

∑
ik

y(2)i jk = N jγ j +

�
�
��

0

∑
ik

y(3)i jk

where N j is the number of animals with the block level j. The best estimate for the
block effect would be

γ̂ j =
1

N j
∑
ik

y(2)i jk = y(2). j. =
1

N j
∑
ik
(yi jk− (µ̂ + β̂wwi jk))

Since all γ j (and their estimates) must fulfill the condition

∑
j

γ j = 0

We need to estimate only B− 1 γ’s, because the last one can be inferred from the
condition above. In this way, we consume B−1 degrees of freedom. The unexplained
part is now

y(3)i jk = y(2)i jk − γ̂ j

and the sum of squares unexplained by the second model is

RSS(µ,βw,γ) = ∑
i jk

(
y(3)i jk

)2

Consequently, the part of the variance explained by the blocks γ j given µ and βw would
be

SS(γ|µ,βw) = RSS(µ,βw)−RSS(µ,β ,γ)

We could go on with this procedure solving for all variables involved in the linear
model. In the last step n, we would still have some unexplained part, these would be
the residuals

ε̂i jk = y(n+1)
i jk

and the sum of squares of these residuals would be the finally unexplained sum of
squares

The ANOVA table for this model would be

Source Sum of squares Degrees of freedom
Covariates SS(βw|µ) = RSS(µ)−RSS(µ,βw) 1

Blocks SS(γ|µ,βw) = RSS(µ,βw)−RSS(µ,βw,γ) B−1
Treatments SS(α|µ,βw,γ) = RSS(µ,βw,γ)−RSS(µ,βw,γ,α) T −1
Residuals RSS(µ,βw,γ,α) N−T −B

Total SST = RSS(µ) N−1
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• Example 78: Let us analyze the data of Fig. 3.4 as we did in Example 74, but
introducing the mouse weight as a covariate that is fitted before blocks and treat-
ments. The new parameter estimates are

µ̂ = 244.88
β̂w = 4.24
α̂0 = 7.04
α̂1 = 6.18
α̂2 = −13.22
γ̂0 = 4.01
γ̂1 = −4.01

You may compare these results, with the ones of Example 74. They are different,
and notably in the estimate of the effect of sex. The ANOVA table is

Source SS d f MS f p-value
Weight 9866 1 9866 13.8 0.001

Treatments 2626 2 1313 1.84 0.179
Sex 482 1 482 0.68 0.419

Residuals 17837 25 713
Total 30811 29

The weight covariate is highly significant, and the sex blocks, that were almost
significant in Example 74, have lost most of its significance. The reason is that
sex is also correlated with weight. As we have estimated the regression with the
weight before sex, then most of the information between sex and cholesterol has
been explained by the relationship between weight and cholesterol.

Important remarks

85. Linear models can be understood as an attempt to progressively explain
variance by adding terms that may have an impact in the variability of the
observations.

86. When we follow a sequential procedure as the one presented in this sec-
tion, the parameter estimates, α,β ,γ depend on the order in which the pa-
rameters are fitted. They do not depend on the order only if the design is
orthogonal (orthogonal designs are introduced later in Sec. 3.1.7).

87. A consequence is that the sum of squares of the ANOVA table must be
understood as sum of squares when the variability explained by the pre-
viously fitted parameters have been removed. This is highlighted by the
notation SS(α|µ,βw,γ), this is the sum of squares explained by the treat-
ments α when the variability explained by the mean, covariates and blocks
has been removed.
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3.1.5 Linear models, sample size and replications

Important remarks

88. Each of the animals in each one of the treatment groups is a replication of
the experiment with a given treatment. There is sometimes a confusion be-
tween researchers that they need to replicate the experiment three times in
order to have statistically significant results. As we saw in Sec. 1.5.2, if the
p-value of an experiment is very low, it does not matter how many times we
repeat the experiment that we will always find significantly different treat-
ments. This is not the case if the p-value is close to the significance thresh-
old. Instead of repeating the experiment three times, we should design the
sample size (see Sec. 2.1.6) such that we have enough power to detect an
effect size of our interest. This is the kind of replication we should be inter-
ested in, rather than replicating the whole experiment. Still, if the p-value
is close to the significance level, we may repeat the experiment one more
time, now increasing the sample size to increase its statistical power, rather
than repeating it two more times with the same sample size.

• Example 78: In this example we illustrate the relationship between sample size
and the analysis of the ANOVA table. Assume, we are comparing a new treat-
ment versus a control, and we only use 3 animals per group. After analyzing the
data we note that treatments only explain 40% of the total sum of the squares.
As illustrated in the following table

Source SS d f MS f p-value
Treatments 2667 1 2667 2.67 0.1778
Residuals 4000 4 1000

Total 6667 5

We might have stopped here and reasoned that if treatments only explain 40% of
the sum of squares, it is logical that they are not statistically significant: there is
more noise (residuals), than signal (treatments), and consequently a low Signal-
to-Noise Ratio.

If we had performed the same experiment with 5 animals per group, we would
now have

Source SS d f MS f p-value
Treatments 5334 1 5334 5.34 0.0497
Residuals 8000 8 1000

Total 13334 9

And our treatments would have been just significant (it is only slightly below
0.05). With 30 animals per group, our treatments are extremely significant:



3.1. BASIC DESIGNS 191

Source SS d f MS f p-value
Treatments 38667 1 38667 38.67 6 ·10−8

Residuals 58000 58 1000
Total 96667 59

Important remarks

89. In the three cases treatment only explains 40% of the sum of squares, but
its significance is not determined by the explained fraction of the sum of
squares, but by the explained fraction per degree of freedom. As the num-
ber of degrees of freedom of the treatments stays fixed, while the one of
the residuals grow, large experiments with many experimental units, can
be very sensitive to small fractions of the sum of squares explained by the
treatments. This is only another way of expressing that large experiments
have a large statistical power (the probability of not rejecting the null hy-
pothesis when it is false, is very low). The reasoning we did in the previous
example of a low Signal-to-Noise Ratio is correct if we think in terms of
Mean Squares, not in terms of Sum of Squares.

90. As we saw in the sections dedicated to the sample size calculation, there is
a relationship between sample size and statistical power. We should design
the sample size in advance before doing the experiment (see Sec. 2.1.6),
and not arbitrarily setting the number of animals per group, and then a
posteriori realizing the reasons why our experiment is just not significant.

91. As a rule of thumb, it is recommended that in laboratory experiments (that
are normally small experiments), there are at least between 10 and 20 de-
grees of freedom for the residuals. Below 10, very likely our experiment
will not have sufficient statistical power to prove any useful hypothesis. Be-
yond 20, our experiment will be a waste of resources for the effect sizes nor-
mally sought in research. This Resource Equation Method may be used as
a simple method to justify sample size in complicated ANOVAs for which
it may be difficult to determine a sample size.

If we reject the ANOVA null hypothesis (none of the treatments is different to the rest),
we will look for at least one pair of treatments that are different from each other (the
post-hoc analysis). In this analysis, we will perform differences between treatment
pairs

∆̂ii′ = α̂i− α̂i′

whose associated variance under the null hypothesis (there is no difference between
treatments i and i′) is

σ
2
∆ii′

= σ
2
ε

(
1
Ni

+
1

Ni′

)
where Ni and Ni′ are the number of animals in the i-th and i′-th treatments.
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Important remarks

92. We see that the number of animals per group will not only help to reject
the hypothesis that the different treatments make no difference among the
groups (ANOVA null hypothesis), but, as expected, it will also help to iden-
tify which treatments are significantly different from each other.

In the following example we explore the danger of dealing with replicates which
are not really experimental units.

• Example 79: We are interested in the effect of an abuse drug in the cognitive
abilities of mice. We have a control group and two drug doses. They are put in a
maze and we measure the time in seconds they take to find the way out.

We study 3 animals per group (identified with labels from A=1 to I=9), and the
following table shows the results

Control Dose 1 Dose 2
A B C D E F G H I
27 43 38 41 30 47 46 34 50

whose ANOVA table is

SS d f MS f p-value
Treatments 81 2 40 40/74=0.54 0.61

Errors 447 6 74

The results are not significant. However, we think that it is a problem of number
of samples, and we repeat the time measurements 4 times with the same mice.

Control Dose 1 Dose 2
A B C D E F G H I
27 43 38 41 30 47 46 34 50
25 43 36 43 35 42 48 37 44
30 46 37 44 31 46 46 38 52
31 44 41 45 35 48 45 35 49

whose ANOVA table is

SS d f MS f p-value
Treatments 288 2 144 144/42=3.43 0.04

Errors 1394 33 42

Now, the results are statistically significant.
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Important remarks

93. However, we have a serious flaw in the experiment; we are essentially mea-
suring the same thing four times. While this will improve measurement
error (and we can see that there is variation in the four measurements per
mouse, which could be averaged to give a better estimate of the true value),
this scheme does not give independent measurements and the theory used to
calculate the p-value does not apply. What we have calculated is not a true
p-value. Repeated measures ANOVA, see Sec. 3.2.6, is a more appropriate
design tool for this experiments in which the animal itself is considered a
block.

3.1.6 Factorial designs, FD

Design summary. We are interested in the effect of many factors on the mea-
surements. These factors are discrete (yes or no, several dose levels, ...). If we
study the same number of animals under every possible combination of the levels
of all factors, the design is said to be balanced. However, this is not a strong re-
quirement of the technique. In this section we will assume a balanced design, and
imbalanced designs will be treated later in Sec. 3.1.7. As will be shown later, all
balanced designs are orthogonal.

• Example 80: Following Example 72, we want to know if there are differences in
the cholesterol reduction of the second dose (D2, see Fig. 3.1), if the drug is taken
fasted or fed, and in combination with a special diet rich in fiber. Additionally,
we want to know if any of the combinations is particularly useful/useless?

The dose will no longer be a treatment, because all animals in our experiment will
receive D2 mg. Now, the two treatments are: 1) the stomach state (fasted or fed), and
2) the fiber diet (yes or no). We can extend the linear model to include two predictors
(in the nomenclature of ANOVA, each predictor is called a factor). We will refer to the
first variable as P and to the second as Q

yi jk = µ +α
(P)
i +α

(Q)
j + εi jk (3.12)

yi jk is the observation of the k-th animal in the group of animals that have received the
i-th treatment in P and the j-th treatment in Q. Each of the combinations of the levels
of the factors is called an experimental treatment (e.g., fasted animals with a fiber rich
diet is called an experimental treatment). As usual, the decomposition is restricted such
that

∑
i

α
(P)
i = ∑

j
α
(Q)
j = 0

. This linear model is called two-way ANOVA, as opposed to Eq. 3.1 that is called
one-way ANOVA. The number of ways is the number of predictor variables that we
have to explain our measurements.
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Suppose we have already performed the experiment, we can organize the means
of the cells as in the following table (assume that each mean has been computed from
n = 5 animals, for example)

P = fed P = fasted
Q = diet 170 170

Q = no diet 170 170

Each one of the cells is defined by the indexes i and j and it would contain as many
observations as animals in each one of the cells. The table above shows the mean of
the observations of each of the cells. We can now explain each of the cell means as a
function of the main effects of the two predictor variables:

P = fed P = fasted
Q = diet 170=170+0+0 170=170+0+0 α̂

(Q)
diet = 0

Q = no diet 170=170+0+0 170=170+0+0 α̂
(Q)
no diet = 0

α̂
(P)
fed = 0 α̂

(P)
fasted = 0 µ = 170

If the results of the experiment were these, we would have to admit that the diet or
stomach state did not have any effect on the cholesterol level when animals were taking
a dose D2 of our new drug.

Let us now suppose that the experiment results were different as shown in the table
below, which already contains the explanation in terms of the linear model.

P = fed P = fasted
Q = diet 160=170-10+0 180=170+10+0 α̂

(Q)
diet = 0

Q = no diet 160=170-10+0 180=170+10+0 α̂
(Q)
no diet = 0

α̂
(P)
fed =−10 α̂

(P)
fasted = 10 µ = 170

In this case, the stomach state seems to have had an effect (whether this effect is sta-
tistically significant is a separate issue that will be address later), but the diet does not
affect the results.

Let us now suppose that the experiment gave different results

P = fed P = fasted
Q = diet 140=170-10-20 160=170+10-20 α̂

(Q)
diet =−20

Q = no diet 180=170-10+20 200=170+10+20 α̂
(Q)
no diet = 20

α̂
(P)
fed =−10 α̂

(P)
fasted = 10 µ = 170

Now, both stomach state and diet have had an impact on the results. We can perfectly
explain the cell means only with the main effects of the two predictor variables. How-
ever, this is not the case of the following possible results

P = fed P = fasted
Q = diet 180 6= 170+0+0 160 6= 170+0+0 α̂

(Q)
diet = 0

Q = no diet 160 6= 170+0+0 180 6= 170+0+0 α̂
(Q)
no diet = 0

α̂
(P)
fed = 0 α̂

(P)
fasted = 0 µ = 170
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The main effect of each one of the predictor variables is 0, because the mean of the fed
animals is 170, which is no different from the overall mean (the same happens for all
other main effects). Our linear model in Eq. 3.12 cannot explain these observations,
and we need to extend the model. In this case, it is said that there are interactions
between the two factors. Fig. 3.5 shows the results of the two previous experiments
(with and without interactions). If there are no interactions, the two represented lines
are parallel to each other. For small interactions, the two lines start to be slightly non-
parallel. And for strong interactions, the two lines are clearly non-parallel (in this
case, they intersect, but intersection is not a necessary condition for the existence of
interactions).
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Figure 3.5: Example of results with two factors without (left) and with (right) interac-
tions.

We can now include in the formula the interactions between predictors

yi jk = µ +α
(P)
i +α

(Q)
j +α

(PQ)
i j + εi jk (3.13)

The new term α
(PQ)
i j is particular to each one of the cells and it represents positive or

negative synergies of the combinations of the predictor levels, that is, this particular
combination of levels is particularly good or bad. With the interactions we can now
explain the cell means (the last number in each cell is the interaction between the two
corresponding levels of P and Q)

P = fed P = fasted
Q = diet 180=170+0+0+10 160=170+0+0-10 α̂

(Q)
diet = 0

Q = no diet 160=170+0+0-10 180=170+0+0+10 α̂
(Q)
no diet = 0

α̂
(P)
fed = 0 α̂

(P)
fasted = 0 µ = 170

As usual, interactions are also constrained by the ANOVA model to meet for all i

∑
i

α
(PQ)
i j = 0



196 CHAPTER 3. DESIGN OF EXPERIMENTS

and for all j

∑
j

α
(PQ)
i j = 0

That is, the sum of the interactions of each row and column must be zero. We can
estimate the different components of the linear model in Eq. 3.13 in the usual way, i.e.,
by removing from the mean of interest the part we have already explained:

µ̂ = y...
α̂
(P)
i = yi..− µ̂

α̂
(Q)
j = y. j.− µ̂

α̂
(PQ)
i j = yi j.− (µ̂ + α̂

(P)
i + α̂

(Q)
j )

ε̂i jk = yi jk− (µ̂ + α̂
(P)
i + α̂

(Q)
j + α̂

(PQ)
i j )

As usual, the ANOVA table explains the decomposition of the sum of squares and
number of degrees of freedom

Source Sum of squares Degrees of freedom

Treatments P SS
α(P) = ∑

i jk

(
α̂
(P)
i

)2
P−1

Treatments Q SS
α(Q) = ∑

i jk

(
α̂
(Q)
j

)2
Q−1

Interactions PQ SS
α(PQ) = ∑

i jk

(
α̂
(PQ)
i j

)2
(P-1)(Q-1)

Residuals SSε = ∑
i jk

ε̂2
i jk N−PQ

Total SST = ∑
i jk
(yi jk− y...)2 N−1

Note that there are 4 interactions in the example above. In general, there are PQ inter-
actions. However, estimating these many interactions is particularly cheap in terms of
degrees of freedom due to their constraints in the sum of the interactions per row and
columns. In this example, it only costs 1 degree of freedom.

For any of the rows of the ANOVA table we can test the hypothesis that that row has
a statistically significant contribution to the explanation of variability of the observed
data. This is done by comparing the corresponding MS to MSε . Under the null hypoth-
esis (all the treatments in the row are 0), this ratio is distributed with a Snedecor’s F
with the number of degrees of freedom corresponding to the row and to the residuals.

• Example 80 (continued): Let us assume that the observed cell means are as
shown in the table below

P = fed P = fasted
Q = diet 150=170-10-20+10 150=170+10-20-10 α̂

(Q)
diet =−20

Q = no diet 170=170-10+20-10 210=170+10+20+10 α̂
(Q)
no diet = 20

α̂
(P)
fed =−10 α̂

(P)
fasted = 10 µ = 170
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Let us assume that we have 5 individuals per cell, and that the ANOVA table is

Source SS d f MS f p-value
Treatments P 1500 1 1500 1500/900 0.215
Treatments Q 6000 1 6000 6000/900 0.020

Interactions PQ 1500 1 1500 1500/900 0.215
Residuals 14400 16 900

Total 18900 19

From this table we see that, with this sample size only the diet, Q, significantly
explains the variability observed in the measurements.

We can easily extend the two-way ANOVA model to multiple factors. For instance, we
may study the stomach state (P: fed or fasted), special diet (Q: yes or no), 3 dose levels
(R: D1, D2 and D3), and an exercise program (S: yes or no). Additionally, we may in-
clude the linear model interactions between pairs of factors (second order interactions),
triples (third-order interactions), etc. High-order interactions are normally unexpected
and they may easily lead to overfitting.

• Example 81: Let us assume that in the study of cholesterol we analyze the 4
predictors above (P, Q, R, and S), with all second order interactions. The linear
model would be

y= µ+α
(P)+α

(Q)+α
(R)+α

(S)+α
(PQ)+α

(PR)+α
(PS)+α

(QR)+α
(QS)+α

(RS)+ε

where we have dropped the subindexes for simplicity of notation. Let us as-
sume that we have 2 animals per combination of levels (there are 24 = 2 ·2 ·3 ·2
combinations). We organize the animals as shown in Table 3.1.

It can be verified that this design is balanced (every level of each treatment ap-
pears the same number of times in any of the combination of the other variables).
Note that randomization is an important tool to fight against unknown sources of
variations not controlled by the blocking or the studied factors.

Let us assume that, after performing the experiment, the ANOVA table (along
with the f and p-value) is

Source SS d f MS f p-value
Treatments P (stomach) 7200 1 7200 8 0.008

Treatments Q (diet) 28800 1 28800 32 3 ·10−6

Treatments R (dose) 50000 2 25000 27.8 8 ·10−8

Treatments S (exercise) 6000 1 6000 6.7 0.015
Interactions PQ 4000 1 4000 4.4 0.043
Interactions PR 5000 2 2500 2.8 0.077
Interactions PS 2000 1 2000 2.2 0.146
Interactions QR 3000 2 1500 1.7 0.204
Interactions QS 3000 1 3000 3.3 0.077
Interactions RS 1000 2 500 0.6 0.579

Residuals 29700 33 900
Total 137700 47
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Fasted Fiber diet D1 No exercise
Fed Fiber diet D3 Exercise
Fed Fiber diet D2 No exercise

Fasted Fiber diet D2 Exercise
Fed Fiber diet D1 Exercise

Fasted Fiber diet D2 No exercise
Fasted Normal diet D1 Exercise
Fasted Normal diet D2 No exercise

Fed Normal diet D2 No exercise
Fed Fiber diet D3 No exercise
Fed Normal diet D3 Exercise
Fed Normal diet D1 No exercise
Fed Fiber diet D2 No exercise

Fasted Fiber diet D2 Exercise
Fed Fiber diet D1 No exercise

Fasted Normal diet D3 Exercise
Fasted Normal diet D1 No exercise

Fed Fiber diet D3 Exercise
Fasted Fiber diet D1 No exercise
Fasted Normal diet D2 No exercise
Fasted Normal diet D3 No exercise

Fed Normal diet D2 No exercise
Fed Normal diet D2 Exercise
Fed Normal diet D3 Exercise
Fed Normal diet D2 Exercise

Fasted Normal diet D2 Exercise
Fasted Normal diet D1 Exercise

Fed Normal diet D1 Exercise
Fed Fiber diet D2 Exercise
Fed Fiber diet D3 No exercise

Fasted Fiber diet D3 No exercise
Fasted Fiber diet D3 Exercise

Fed Normal diet D1 No exercise
Fed Fiber diet D2 Exercise

Fasted Fiber diet D3 Exercise
Fed Normal diet D3 No exercise

Fasted Normal diet D2 Exercise
Fed Normal diet D3 No exercise

Fasted Fiber diet D1 Exercise
Fasted Fiber diet D3 No exercise
Fasted Normal diet D3 No exercise
Fasted Fiber diet D1 Exercise

Fed Fiber diet D1 No exercise
Fed Fiber diet D1 Exercise

Fasted Fiber diet D2 No exercise
Fasted Normal diet D1 No exercise
Fasted Normal diet D3 Exercise

Fed Normal diet D1 Exercise

Table 3.1: Example of factorial design with four factors.
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It is customary to merge all the non-significant rows into a single one called Lack
of fit (in the example, PR, PS, QR, QS, RS). Note that it is different merging these
rows from “returning” them to the residuals, which would affect the significance
of the other rows.

Source SS d f MS f p-value
Treatments P (stomach) 7200 1 7200 8 0.008

Treatments Q (diet) 28800 1 28800 32 3 ·10−6

Treatments R (dose) 50000 2 25000 27.8 8 ·10−8

Treatments S (exercise) 6000 1 6000 6.7 0.015
Interactions PQ 4000 1 4000 4.4 0.043

Lack of fit 14000 8 1750 1.9 0.086
Residuals 29700 33 900

Total 137700 47

From this table we see that the main effects of all variables make a difference in
the cholesterol level in blood, and that the interactions between having the dose
fed/fasted and diet has an effect on the final result.

Important remarks

94. We can easily extend the model to include blocking variables. Actually, the
difference between a factor and a blocking variable is more semantic than
mathematical. Blocking variables are treated in the same way as factors,
except that we assume that blocks do not interact with factors and, there-
fore, we are not interested in calculating the interactions of blocks with any
other block or factor. For instance, if we consider the cage as a blocking
variable, we are not interested in interactions between cage and dose (this
particular dose in this particular cage is particularly good or bad).

95. Factorial designs are very effective in recognizing statistically significant
results, even with a very low number of animals per cell (2 in the example).
The reason is that we have ’hidden’ replication where each level of the pre-
dictors has been tested in many different scenarios (combined with many
other predictors) and the treatment effects are therefore aggregated over a
much larger number of replicates than each individual treatment combina-
tion.

96. We should not forget to randomize the animals among the different combi-
nations of factors. The randomization will help to avoid the bias induced
by uncontrolled factors.

Among all possible designs, factorial designs give the smallest variance in the com-
parison of any of its components. Consider the following example:

• Example 82: We are interested in the effect of a mammalian hormone for water
balance in amphibians. We will study two amphibians species (toads and frogs),
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and we will examine the difference between performing the experiment when
animals are dry before making the experiment and when they have been 30 min-
utes immersed in water before administering the hormone. The control group
will not receive the hormone, but only the vehicle. After receiving the treatment,
animals will be immersed in water for one hour. We will measure the change in
weight of the animals after this time.

We have three factors: species (S), moisture state (M) and hormone treatment
(H), and we are interested only in the main effects. The linear model we will
analyze will be

y = µ +αS +αM +αH + ε

where y is the weight difference. We have resources for 24 animals, and we want
to compare three different designs:

– Design 1: One variable changes at a time

4 Frogs, Dry, No hormone vs 4 Toads, Dry, No hormone
4 Frogs, Dry, No hormone vs 4 Frogs, Wet, No hormone
4 Frogs, Dry, No hormone vs 4 Frogs, Dry, Hormone

Each one of the rows is an experiment in which we may compare two
groups (the one on the left with the one on the right). Each experiment
changes only one variable, and we may study the effect of that variable.
However, note that each level has been tested in only one combination of
the other variables. For instance, the difference between hormone and no
hormone can only be assessed for dry frogs, and we do not know the effect
on other species or previous moisture states. When we analyze the data,
we will want to perform a comparison between two groups (see the section
around Eq. 2.9). If the variance of water uptakes is σ2

∆w, then the expected
variance associated to this comparison will be

2
σ2

∆w
4

The observations variance is divided by 4 because we have 4 animals in
each group, and it is multiplied by 2 because we are comparing two groups.

– Design 2: We realize that in the previous design we have four groups, but
one of the groups (“Frogs, Dry, No hormone”) has been repeated three
times. We may have only for groups, with a larger number of animals, and
for each variable perform the comparison between the two corresponding
groups

6 Frogs, Dry, No hormone
6 Toads, Dry, No hormone
6 Frogs, Wet, No hormone

6 Frogs, Dry, Hormone
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The expected variance of the comparison of the effect of the hormone is
improved to

2
σ2

∆w
6

However, this design has the same problem as the Design 1: each level has
been tested in only one combination of the other variables.

– Design 3: We perform a factorial design (we should not forget about the
randomization when actually performing the experiment, we only report
here the number of animals per group)

3 Frogs, Dry, No hormone
3 Frogs, Dry, Hormone

3 Frogs, Wet, No hormone
3 Frogs, Wet, Hormone

3 Toads, Dry, No hormone
3 Toads, Dry, Hormone

3 Toads, Wet, No hormone
3 Toads, Wet, Hormone

The expected variance of the comparison of the effect of the hormone is
improved to

2
σ2

∆w
12

Additionally, the hormone treatment has been tested with many other levels
of the other variables (frogs, toads, dry and wet). Our conclusions from this
experiment will be more general than the ones from any of the other two
designs.

Interestingly, all the designs use the same number of animals, but they do not
have the same statistical power (shown by the variance of the variable being
compared, which is the smallest for the factorial design). Also, they do not
have the same experimental support (in the factorial design our statements about
the effect of the hormone treatment has a wider basis than in Designs 1 and 2,
because the treatment has been tested under many more conditions).

• Example 83: Factorial designs can also be used when setting up a new animal
model. We may need to decide the sex of the animals, their age range, how to
treat the animals before experimentation with the treatment of interest, ...

Important remarks

97. In research it is known the strategy of changing one variable at a time hold-
ing all the rest fixed (more similar to Design 1 above). Factorial designs
seem to contradict this rule. However, they do not. They propose to hold
everything fixed, except those variables of interest. These variables of in-
terest should be combined in all possible ways. The analysis is performed
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at the end after collecting the data from all groups (note that in the Design
1, we could perform the analysis of each one of the rows immediately after
collecting the data only for that row, only 8 animals). The collective analy-
sis of the 24 animals is much more powerful than the analysis of individual
small experiments as in Design 1.

98. Small factorial designs are used when we are interested in estimating pos-
sible interactions between factors. For designs with many parameters, we
should first determine which factors effectively contribute to the final re-
sult. This is done with a fractional (or screening) factorial design (see Sec.
3.2.5).

Single replicate factorial designs

Some experiments involve a large number of factors and/or levels. If we do not expect
high order interactions, we may have a single animal in each one of the combinations
and fit a reduced model in which the high order interactions are not estimated (they are
confounded with the residuals). It is generally advised to have at least three animals per
combination. However, depending on the number of factors, it might well be that the
“hidden replications” due to absence of high order interactions allow having a single
animal per combination as shown in this section.

• Example 84: We are interested in maximizing the delivery of a drug so that the
exposure is maximum. We have identified a few factors that might influence
its absorption: salt form (P, we have identified 3 different forms of the drug that
might have different absorption properties), particle size (Q, by changing the par-
ticle size after disintegration of the tablet, the surface area of the microparticles
facilitate the absorption, we plan to explore 5 different particle sizes), crystalliza-
tion form (R, we have identified 2 polymorphic forms and 1 amorphous form),
method of granulation (S, we may use 2 different methods of granulation), com-
pression force (T , we will explore 4 different forces).

The total number of combinations is 3 · 5 · 3 · 2 · 4 = 360). We do not foresee
interactions of order higher than 2. We may, then, fit a model only with main
effects and second order interactions. For every combination we will analyze a
single animal. This may seem surprising, but, as we show in Table 3.2, there are
more than enough degrees of freedom for the residuals.

Important remarks

99. If we can neglect high order interactions, we may drastically reduce the
number of samples to just one animal per combination, because the high
order interactions act as residuals. However, due to the lack of replication
we cannot construct an unbiased estimate of the noise. That is, if we do
not foresee high order interactions but in reality there are, then our estimate
of the noise variance is biased, confounded, by the presence of these high
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Source d f
Salt form (P) 2
Particle size (Q) 4
Crystallization form (R) 2
Method of granulation (S) 1
Compression force (T ) 3
Interactions PQ 8
Interactions PR 4
Interactions PS 2
Interactions PT 6
Interactions QR 8
Interactions QS 4
Interactions QT 12
Interactions RS 2
Interactions RT 6
Interactions ST 3
Residuals (=3rd, 4th, 5th order interactions) 292
Total 359

Table 3.2: Degrees of freedom associated to a design with multiple factors and their
second order interactions.

order interactions. Another difficulty of these designs is that we cannot
eliminate the effects of blocks, because we need all treatments applied to
all block levels and, therefore, there can only be one block (or at least, as
shown in the following section, some of the treatments should be applied to
several levels of the blocking variables).

100. Even if we use a single animal per combination, the number of combina-
tions can be very high, 360 in our example above. In Sec. 3.2.5, we will
see a method by which we can even further reduce the number of experi-
ments by using fractional factorial designs. In this book we only present
the theory for factors with two levels (2k fractional factorial designs). But
the theory can be extended to factors with an arbitrary number of levels.

3.1.7 Non-orthogonal, incomplete and imbalanced designs

Non-orthogonal designs

In Sec. 3.1.4, we have seen that one way of estimating linear models is by progressively
explaining variance of the observations by adding new terms that might be related to the
variability observed in the data. Least-squares simultaneously solves all the parameters
at once. It is based on trying to solve a linear equation so that the error in each one
of the equations is minimized. Understanding Least Squares will allow us to grasp
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the importance of balanced experiments in producing “easy to handle” equations for
estimating the different parts of the linear model. For explaining this technique, let
us introduce an extremely simplified problem, so that the expressions that appear are
relatively easy to manage.

• Example 85: Let us consider an experiment in which we are measuring the time
in minutes to perform a new surgical treatment compared to a control group
receiving the standard surgical treatment. For simplicity of equations, we will
only study 3 animals per treatment. We want to generalize our results, so the
new surgical operation will be performed by three different researchers, so that
each researcher only does one operation of each kind. We expect variations on
the data depending on the researcher, so that we will treat the researcher as a
block. The following linear model represents our problem:

yi jk = µ +αi + γ j + εi jk

where i is the treatment received (i = 1 is the reference treatment, while i = 2 the
new one), j is the researcher ( j = 1,2,3), and k is the individual number within
that researcher and treatment (k is always 1, because we have only one animal
per treatment and researcher).

After performing the experiment, we collect the following operation times:

Researcher 1 Researcher 2 Researcher 3
Reference Procedure 32 35 38

New Procedure 26 25 26

We can write these results in matrix form


32
35
38
26
25
26

=



µ α1 α2 γ1 γ2 γ3

1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1




µ

α1
α2
γ1
γ2
γ3

+


ε111
ε121
ε131
ε211
ε221
ε231


where we have noted on top of the columns of the system matrix, the variable by
which it is multiplied. In this way, we can read the first row as

32 = µ +α1 + γ1 + ε111

and similarly the rest of rows. At this point, we remember that we have the
constraints

α1 +α2 = 0⇒ α2 =−α1
γ1 + γ2 + γ3 = 0⇒ γ3 =−γ1− γ2
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so that we can eliminate some of the unknowns of the previous equation system


32
35
38
26
25
26

=



µ α1 γ1 γ2

1 1 1 0
1 1 0 1
1 1 −1 −1
1 −1 1 0
1 −1 0 1
1 −1 −1 −1




µ

α1
γ1
γ2

+


ε111
ε121
ε131
ε211
ε221
ε231

 (3.14)

We need to solve this equation system for the unknowns (µ,α1,γ1,γ2) as well
as for the residuals (εi jk). But the solution is not unique, because we have more
unknowns than equations. We will need to impose later some constraint so that
we can uniquely solve the equation system.

Note that this formalism easily adapts to covariates. Let us assume, that we
expect the number of years of research experience of the researcher could affect
the results. We can easily extend the model to include it

yi jk = µ +αi + γ j +β (rei jk− re)εi jk

where rei jk is the research experience in years of the researcher, and re its mean
value. The following table shows the same results with the research experience
in parenthesis

Researcher 1 (9) Researcher 2 (5) Researcher 3 (4)
Reference Procedure 32 35 38

New Procedure 26 25 26

The average research experience is 6. Then, the equation system is


32
35
38
26
25
26

=



µ α1 γ1 γ2 β

1 1 1 0 3
1 1 0 1 3
1 1 −1 −1 −1
1 −1 1 0 −1
1 −1 0 1 −2
1 −1 −1 −1 −2




µ

α1
γ1
γ2
β

+


ε111
ε121
ε131
ε211
ε221
ε231

 (3.15)

Both equation systems (without and with covariate) are of the form

y = Xθ + ε

where bold letters represent vectors. The vector of residuals can be expressed as

ε = y−Xθ
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and the sum of squares of the residuals would be

SSε = (y−Xθ)T (y−Xθ)

The condition we mentioned above for having a unique solution is that this sum of
squares is minimum. This problem is known as the Least Squares solution of the
equation system y = Xθ , which is given by

θ̂ = (XT X)−1XT y (3.16)

• Example 85 (continued): The estimates of the parameters for the experiment
with covariates would be

θ̂ =


µ̂

α̂1
γ̂1
γ̂2

β̂

=


30.33
6.08
−0.49
0.09
−0.85


Immediately, we can infer the two remaining parameters

α̂2 =−α̂1 =−6.08
γ̂3 =−γ̂1− γ̂2 = 0.40

The residuals would be 
ε̂111
ε̂121
ε̂131
ε̂211
ε̂221
ε̂231

=


−1.38
1.04
0.35
1.38
−1.04
−0.35


We would now use the ANOVA table as we have seen in the previous sections to
determine if these variables (treatments, blocks, and covariates) are significantly
explaining part of the variability of the observed data.

Important remarks

100. Least squares gives a computationally efficient method to simultaneously
solve for all the model parameters without the need to decide the order in
which they will be estimated as we did in Sec. 3.1.4.

Let us consider for the moment, the experiment without covariates (see Eq. 3.14).
Note that the columns of the different variables are orthogonal to each other

〈µ,α1〉= 〈µ,γ1〉= 〈µ,γ2〉= 〈α1,γ1〉= 〈α1,γ2〉= 0

γ1 and γ2 are not orthogonal because they are levels of the same block. Orthogonality
is required only between levels of different variables. Remember that two vectors are
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orthogonal if their dot product is zero, in the following example we calculate the dot
product of two of those vectors

〈µ,α1〉= 1 ·1+1 ·1+1 ·1+1 · (−1)+1 · (−1)+1 · (−1) = 1+1+1−1−1−1 = 0

The reader may easily verify the rest.
Note that the system matrix, X , depends only on our experiment design (3 re-

searchers will perform 1 operation of each kind) and not on the specific results obtained
when the experiment is done. If our design fulfills this orthogonality condition, then
the design is said to be orthogonal. We may now study the matrix (XT X)−1XT for an
orthogonal example such us the one of Eq. 3.14.

(XT X)−1XT =
1
6


1 1 1 1 1 1
1 1 1 −1 −1 −1
2 −1 −1 2 −1 −1
−1 2 −1 −1 2 −1


This matrix will be multiplied by the observed data in order to give the parameter
estimates, and again, this matrix depends only on our experiment design


µ̂

α̂1
γ̂1
γ̂2

=
1
6


1 1 1 1 1 1
1 1 1 −1 −1 −1
2 −1 −1 2 −1 −1
−1 2 −1 −1 2 −1




y111
y121
y131
y211
y221
y231


The first row implies

µ̂ =
1
6
(y111 + y121 + y131 + y211 + y221 + y231) = y...

That is the Least Squares estimate of the mean, µ , is the overall mean, as expected.
Similarly, we have

α̂1 = 1
6 (y111 + y121 + y131− y211− y221− y231)

= 1
3 (y111 + y121 + y131)− 1

6 (y111 + y121 + y131 + y211 + y221 + y231)
= y1..− y...

Again, as expected, the Least Squares estimate of α1 is the difference between the
mean of those observations that received treatment 1 and the overall mean. Finally,

γ̂1 = 1
6 (2y111− y121− y131 +2y211− y221− y231)

= 1
2 (y111 + y211)− 1

6 (y111 + y121 + y131 + y211 + y221 + y231)
= y.1.− y...

We verify once more that the Least Squares estimate of the block effect for Researcher
1, is the difference between the treatments operated by Researcher 1 and the overall
mean. We leave the verification of γ2 to the reader.
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Important remarks

101. We have verified that the Least Squares solutions for the main effects of
treatments and blocks are the same as the well known rule of “mean of
the group receiving that treatment (or block) minus the overall mean”. Al-
though, we have not verified it, this result extends to interactions of any
order.

• Example 86: The three researchers participating in the previous study are now
so kind to offer themselves to perform an extra operation so that we can better
estimate the time reduction in the new surgical procedure, if it exists. Since we
have 3 researchers and 2 operation procedures, each one of them will randomly
perform one of them. The results of the extra operation are in the following table:

Researcher 1 Researcher 2 Researcher 3
Reference Procedure 32,30 35 38, 35

New Procedure 26 25,27 26

We now extend the equation system in Eq. 3.14 to include the extra measure-
ments 

32
35
38
26
25
26
30
27
35


=



µ α1 γ1 γ2

1 1 1 0
1 1 0 1
1 1 −1 −1
1 −1 1 0
1 −1 0 1
1 −1 −1 −1
1 1 1 0
1 −1 0 1
1 1 −1 −1




µ

α1
γ1
γ2

+



ε111
ε121
ε131
ε211
ε221
ε231
ε112
ε222
ε132


(3.17)

We realize that µ is no longer orthogonal to α1, and α1 is not orthogonal to γ2.
The new (XT X)−1XT matrix yields the estimates


µ̂

α̂1
γ̂1
γ̂2

=
1

108


11 10 11 14 13 14 11 13 11
9 18 9 −18 −9 −18 9 −9 9

22 −16 −14 28 −10 −8 22 −10 −14
−8 32 −8 −20 20 −20 −8 20 −8





y111
y121
y131
y211
y221
y231
y112
y222
y132


The Least Squares estimate no longer has an obvious logic, and we definitely
need a computer to estimate the model parameters (µ , α’s, and γ’s). Even more
surprisingly, the Least Squares estimate of µ is not the overall mean of all obser-
vations.
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If we now look at the model with covariates (Eq. 3.15), we see that it is not orthog-
onal either due to the covariate.

Important remarks

102. The loss of orthogonality implies that the estimation of the model parame-
ters is extremely complicated to perform manually and requires a computer.
There is nothing wrong with this, only that we can no longer attempt to un-
derstand the logic of their estimation.

103. Another property of orthogonal designs is that if we follow a sequential
procedure of estimation, as we did in Sec. 3.1.4, the estimates of the param-
eters do not change whichever is the sequence we follow. Non-orthogonal
designs lose this property, and the model parameters vary depending on the
order they are fitted.

104. Designs with covariates are almost never orthogonal because their orthog-
onality depend on the actual measurements observed in the individuals.

Given the equation system
y = Xθ + ε

we now know how to compute the Least Squares estimate of θ (see Eq. 3.16). If the
residuals are Gaussian, independent from each other and from the predictors, then this
estimate has an associated covariance matrix given by

Σθ = σ
2
ε (X

T X)−1 (3.18)

where σ2
ε is the variance of the residuals.

Important remarks

105. The whole point of experiment design is designing the system matrix X
such that the uncertainty associated to the model parameters θ is mini-
mum. Unfortunately, the uncertainty is given by a matrix, and we cannot
“minimize” a matrix. We may minimize its trace (A-optimality), its deter-
minant (D-optimality), minimize its maximum eigenvalue (E-optimality),
etc. These different objectives give raise to different designs, with different
properties. For some computer programs, the optimality criterion is one of
the choices offered to the user.

106. The experiment designs seen in this chapter (completely randomized, ran-
domized block, factorial, etc.) are simple “precooked” designs that guaran-
tee good properties of the covariance matrix of the model parameters.

Incomplete designs

Incomplete designs are useful when for experimental reasons, we cannot test all treat-
ments in all blocks. For instance, let us consider a factorial design with three factors
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A, B, and C that can be present (yes) or absent (no). All the possible treatment groups
are shown in the table below.

Factor A Factor B Factor C
Treatment 0 no no no
Treatment 1 no no yes
Treatment 2 no yes no
Treatment 3 no yes yes
Treatment 4 yes no no
Treatment 5 yes no yes
Treatment 6 yes yes no
Treatment 7 yes yes yes

However, experimentally it may not make sense to assess the combination (no,no,no)
or (yes,yes,yes). We can skip these two treatments and perform only those that make
experimental sense. The Least Squares analysis presented in this section can be directly
applied. Incomplete designs are a special case of non-orthogonal designs.

We may also use incomplete designs for complicated factorial designs in which not
all combinations are to be tested. Additionally, the number of replicates in each one of
the combinations may be different.

• Example 87: We are studying the effect on asthma of two drugs (O and E) that
are inhaled, at three different doses (D1,D2, and D3). We also want to study the
effect of two different sprayers (SP1 and SP2). Additionally, Drug O must be
given with a surfactant and we want to study two surfactants (S1 and S2). We are
interested in the main effects of each one of the factors and not the interactions
between dose. We may design an experiment with the following treatments (each
row is a treatment)
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Drug Surfactant Sprayer Dose Number of animals
O S1 SP1 D1 1
O S1 SP1 D2 1
O S1 SP1 D3 1
O S1 SP2 D1 1
O S1 SP2 D2 1
O S1 SP2 D3 1
O S2 SP1 D1 1
O S2 SP1 D2 1
O S2 SP1 D3 1
O S2 SP2 D1 1
O S2 SP2 D2 1
O S2 SP2 D3 1
E SP1 D1 2
E SP1 D2 2
E SP1 D3 2
E SP2 D1 2
E SP2 D2 2
E SP2 D3 2

Control SP1 5
Control SP2 5

Before performing the experiment we may analyze the properties of the matrix
(XT X)−1XT and decide the number of animals such that we have a given sta-
tistical power if the effect size of any of the factors is some specified value (see
Sec. 2.1.6).

• Example 84 (continued): Using D-optimality of the matrix XT X (see this section
above and estimating only the main effects and the 2nd order interactions, we
may reduce the number of samples of Example 84 from 360 to 78, still with 1
sample per treatment and with a power higher than 99.5% for all the main effects
with an effect size of 2 standard deviations. To give an impression of the kind of
treatments applied we show the first 5 samples. Only one animal would receive
each of the combinations listed below:

Animal 1 Salt3, Size4, Crystal1, Granulation2, Compression4
Animal 2 Salt2, Size5, Amorphous, Granulation2, Compression3
Animal 3 Salt1, Size2, Amorphous, Granulation2, Compression1
Animal 4 Salt1, Size1, Amorphous, Granulation2, Compression3
Animal 5 Salt2, Size4, Crystal2, Granulation2, Compression1

... ...

These treatments are not randomly, but carefully selected to maximize the deter-
minant of XT X . In Sec. 3.2.5 we will extend this idea to factors with only two
levels. We will construct these incomplete designs in a more systematic way and
call them fractional factorial designs, because we only perform a fraction of all
the experiments implied by the full factorial design.
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Imbalanced designs

Imbalanced designs are useful when we cannot study all possible combinations of treat-
ments and blocks for economical or ethical reasons or any other consideration. Imbal-
anced designs can also be analyzed by Least Squares. Before introducing the analysis
of imbalanced designs, let us review again a balanced one. Let us suppose we are
studying the difference between two treatments (A and B). We expect differences be-
tween males and females, and we want to block them. The following design shows the
distribution of treatments per block

Male A B
Female A B

Let us assume we use the same number of individuals per treatment and block (N =
Nmale,A = Nmale,B = N f emale,A = N f emale,B). This is a balanced design because each
treatment appears in each block the same number of times. A model for analyzing this
data could be:

yi jk = µ +αi + γ j + εi jk

For balanced designs, we know that the best estimates of the model parameters are

µ̂ = y...
α̂A = yA..− y...
α̂B = yB..− y...

γ̂Male = y.Male.− y...
γ̂Female = y.Female.− y...

In the post-hoc analysis (see Sec. 3.1.5), when we compare the difference between
treatments A and B, we will construct the difference between the two:

∆̂AB = α̂A− α̂B = yA..− yB..

whose associated variance is

σ
2
∆AB

= σ
2
yA..

+σ
2
yB..

=
σ2

ε

2N
+

σ2
ε

2N
=

σ2
ε

N
(3.19)

where N is the number of samples per group, and σ2
ε the variance of the residuals. The

variance in each one of the treatment groups is σ2
ε

2N because for each treatment there are
N females and N males.

We are now interested in studying three treatments (A, B and C) and we plan to do
it with the following design

Male A C
Female B C

Repeating the Least Squares analysis, we would reach the conclusion that the best
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estimates of the model parameters are

µ̂ = 1
6 (4y...+ yA..+ yB..)

α̂A = 1
3 (4yA..−6y.Male.−2yB..+4y...)

α̂B = 1
3 (−2yA..+6y.Male.+4yB..−8y...)

α̂C = 1
3 (−2yA..−2yB..+4y...)

γ̂Male = 1
2 (4y.Male.− yA..+ yB..−4y...)

γ̂Female = − 1
2 (4y.Male.− yA..+ yB..−4y...)

We are not surprised by the strange coefficients for the estimation of the model param-
eters, as we already know that they come from matrix (XT X)−1XT . It is noteworthy
that for non-orthogonal designs, like this one, the estimate of the effect of treatment
A, involves the mean of the animals receiving A (as expected), and the mean of the
animals receiving B (unexpected). Similarly, the estimate of the effect of treatment C
does not require the mean of the animals receiving C. The reason is that the constraints
(αA +αB +αC = 0 and γMale + γFemale = 0) link the mean of all the groups, so that the
mean of group C can be calculated from the knowledge of A and B.

In the post-hoc analysis to compare A and B we will construct their difference

∆̂AB = α̂A− α̂B = 2yA..−4y.Male.−2yB..+4y...

whose associated variance is

σ2
∆AB

= 4σ2
yA..

+16σ2
y.Male.

+4σ2
yB..

+16σ2
y...

= 4 σ2
ε

N +16 σ2
ε

2N +4 σ2
ε

N +16 σ2
ε

4N = 20 σ2
ε

N

(3.20)

Now the variance of the comparison between A and B is 20 times the one of a balanced
design (see Eq. 3.19).

Important remarks

107. There is an important increase in the variance associated with the compar-
ison between treatments A and B. This increase is partly because A and B
are now tested on only N animals (while before they were tested in 2N an-
imals) and partly because with 4N animals before we were testing only 2
treatments, and now 3 treatments with the same number of animals.

108. The more number of times in which A and B occur in the same block, the
more efficient the design will be for assessing the difference between these
two treatments.

If we now compare A and C we will have

∆̂AC = α̂A− α̂C = 2yA..−2y.Male.

whose associated variance is

σ2
∆AC

= 4σ2
yA..

+4σ2
y.Male.

= 4 σ2
ε

N +4 σ2
ε

2N = 6 σ2
ε

N

(3.21)

We obtain the same variance for the comparison BC.
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Important remarks

109. Not all comparisons between treatments, AB or AC, have the same level
of uncertainty (variance). C is the link between the two blocks and it has
been tested twice (one with males, another one with females). This link
makes that the comparison of treatments within the same block (AC or BC)
is much less variable than the comparison of treatments in different blocks
(AB).

110. The fact that there is a common treatment in the two blocks, C, makes the
comparison between A and B possible. The variance of this comparison
decreases as the number of common treatments increases. For instance, the
comparison between AB in the previous example, where only C is in com-
mon, is larger than the variance of the same comparison for the design with
four treatments shown below, where there are two treatments in common.

Male A C D
Female B C D

Let us analyze the design of four treatments

Male A B
Female C D

We note that there is no treatment in common between the two groups. From the design
itself, we may infer that we are confounding the blocks with the treatments (if males
give a higher response than females, we cannot know if it is because they are males or
because of the treatments A and B). Furthermore, we may verify that the matrix XT X is
not invertible, meaning that there is not a Least Squares solution. Actually, the system
is ill-defined and there are infinite solutions, all of them of the form:

µ̂ = y...
α̂A = 2yA..−2y.Male.+αC
α̂B = −yA..+ yB..+2y.Male.−2y...−αC
α̂C = αC
α̂D = −yA..− yB..+2y...−αC

γ̂Male = −y.A.+2y.Male.− y...−αC
γ̂Female = −(−y.A.+2y.Male.− y...−αC)

αC is a free variable, we may give any value to it and the rest of the model parameters
would adjust themselves accordingly, in this way we have infinite solutions compatible
with the observed data. After performing the experiment we would realize that this
experiment cannot be analyzed and that it does not give any information about the
main effects of the treatments, nor the blocks: a total catastrophe for a researcher.

Important remarks

111. There are experimental designs that cannot be analyzed and in which the
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effects of the treatments and blocks are confounded. Confusion of factors
is normal in screening experiments (see Sec. 3.2.5). But they are especially
designed to confound in a controlled way.

• Example 88: We want to determine the effect on the growth of animals with three
different hormone doses (D1, D2, and D3) and a control (C). We will measure
five animals per group. We think that the litter animals come from may cause a
difference. For this reason, we will take four animals from five litters. The most
efficient design (the one that allows the comparison of any pair of treatments
with equal variability) would be the balanced and complete one:

Treatments
Litter 1 C, D1, D2, D3
Litter 2 C, D1, D2, D3
Litter 3 C, D1, D2, D3
Litter 4 C, D1, D2, D3
Litter 5 C, D1, D2, D3

The following imbalanced design would be necessarily more inefficient, note
that in some of the blocks there are only two different treatments. Although
inefficient, data analysis is still possible because there is a treatment linking all
blocks.

Treatments
Litter 1 C, D1, D1, D1
Litter 2 C, D1, D1, D2
Litter 3 C, D2, D2, D2
Litter 4 C, D2, D3, D3
Litter 5 C, D3, D3, D3

Finally, the following imbalanced design is incorrect because there are blocks
that receive a single treatment. In this way, the litter effect is confounded with
the treatment.

Treatments
Litter 1 C, C, C, C
Litter 2 C, D1, D1, D1
Litter 3 D1, D1, D2, D2
Litter 4 D2, D2, D2, D3
Litter 5 D3, D3, D3, D3

Balanced incomplete block designs

As we have seen, having a balanced design helps us to keep the estimation equations
understandable. Additionally, it does not favour any comparison between treatments.
If our blocks cannot hold all treatments, then we may try to find a balanced incomplete
block design. A design is balanced if:
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1. All treatments are applied the same number of times.

2. All pairs of treatments appear in the same number of blocks.

For instance, the following design is balanced because: 1) each treatment is applied 5
times; and 2) each pair (AB, AC, AD, AE, AF, BC, BD, BE, BF, CD, CE, CF, DE, DF,
EF) appears 2 times.

Treatments
Block 1 A B C
Block 2 A B D
Block 3 A C E
Block 4 A D F
Block 5 A E F
Block 6 B C F
Block 7 B D E
Block 8 B E F
Block 9 C D E

Block 10 C D F

• Example 89: We want to determine the effect on weight gain of two levels of
protein supplement (high or low, represented as P and p, respectively) and vita-
min supplement (high or low, represented as V and v). There are four different
treatments in total (all possible combinations of protein and vitamin levels, that
we will represent as A, B, C, and D) and we will use three animals for each of
the treatments (twelve animals in total). We think that the genetics of the animal
may cause a difference and to account for it, we will use six pairs of siblings.
The sibling pair is our block, but we can only test two treatments on each block.
The following design is a balanced incomplete design suitable for our needs:

Treatments
Sibling pair 1 A(pv) B(pV)
Sibling pair 2 A(pv) C(Pv)
Sibling pair 3 A(pv) D(PV)
Sibling pair 4 B(pV) C(Pv)
Sibling pair 5 B(pV) D(PV)
Sibling pair 6 C(Pv) D(PV)

That is, one of the animals of the first sibling pair will receive treatment A (low
protein and vitamin supplements) and the other will receive treatment B (low
protein and high vitamin supplements). It can easily be seen that each treatment
is applied to exactly 3 animals and that all pairs of treatments appear exactly
once.

Let us define these designs in general. For doing so, let us define the following
variables
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t No. Treatments
b No. Blocks
ri No. of blocks containing treatment i

For a balanced design ri = r for all treatments
k Size of the block

λii′ No. of blocks containing treatments i and i′

For a balanced design λii′ = λ for all pairs

The designs are named (t,b,r,k,λ )-designs. A balanced design must fulfill:

bk = tr
r(k−1) = λ (t−1)

The first equation simply states that the number of blocks times their size must be equal
to the number of treatments and their repeats. r−λ is the order of the design. There
does not exist a solution for all possible combinations of t, b, r, k, and λ . For instance,
for t = 6 with k ≤ t/2 and b≤ 30, the only solutions are

t b r k λ

6 10 5 3 2
6 20 10 3 4
6 30 15 3 6

For a comprehensive list of existing solutions see Zwillinger (1996)[Sec. 3.4.2].

A necessary condition to be balanced is that the row and column sums of the inci-
dence matrix are all equal as in the following example

Treatments
Block 1 A B C
Block 2 A B D
Block 3 A C E
Block 4 A D F
Block 5 A E F
Block 6 B C F
Block 7 B D E
Block 8 B E F
Block 9 C D E

Block 10 C D F

whose incidence matrix is
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XXXXXXXXXBlock
Treatment

A B C D E F

Block 1 1 1 1 3
Block 2 1 1 1 3
Block 3 1 1 1 3
Block 4 1 1 1 3
Block 5 1 1 1 3
Block 6 1 1 1 3
Block 7 1 1 1 3
Block 8 1 1 1 3
Block 9 1 1 1 3

Block 10 1 1 1 3
5 5 5 5 5 5

However, this condition is not sufficient as shown by the following example

Treatments
Block 1 A C
Block 2 B D
Block 3 A C
Block 4 B D

whose incidence matrix is
XXXXXXXXXBlock

Treatment
A B C D

Block 1 1 1 2
Block 2 1 1 2
Block 3 1 1 2
Block 4 1 1 2

2 2 2 2

The pair AC appears 2 times (λAC = 2), while AB or AD do not appear (λAB = λAD = 0).
An easy way to design experiments is by starting with an initial block (for in-

stance, ABD) and adding 1 to each treatment modulo the number of treatments (that is,
A+1=B; B+1=C; C+1=D; D+1=E; E+1=A). This is called a cyclic design. For exam-
ple, for 5 blocks of size 3 with 5 treatments we would start with the initial block ABD.
Then, by adding 1 to each of the treatments we would obtain, BCE. The rest of blocks
are obtained by adding 1 to the previous block as shown in the following table

Treatments
Block 1 A B D
Block 2 B C E
Block 3 C D A
Block 4 D E B
Block 5 E A C

Note that not all initial blocks give raise to a balanced incomplete block design, and
you may need to test several initial blocks before finding one.

Another easy way to generate balanced incomplete designs are based on lattices.
These designs are called lattice designs. For example, for 7 blocks of size 3 with 7
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treatments, we construct a Latin square with 7 treatments (see Sec. 3.2.1 and Fig. 3.6).
Then, we take 3 columns (not any 3 are valid) and construct the different blocks. These
rectangles are called Youden squares.

Figure 3.6: Example of Youden square. We start from a Latin square of the total
number of treatments (left). Then, we select a number of columns equal to the block
size (right). If we choose wisely the columns, the resulting design is balanced.

Although outside of the scope of this chapter, for a large number of treatments
(a few hundreds), the interested reader may look for Cubic lattice designs and Alpha
lattice designs for large-scale variety trials.

Important remarks

112. Balanced designs are important to keep estimation equations understand-
able. If we need to use blocks in which not all treatments fit, balanced in-
complete block designs help us to keep these two objectives (using blocks
and having a balanced design). However, these designs only exist for given
combinations of the number of treatments, blocks and size of the block.

3.2 Advanced designs

3.2.1 Latin squares

Design summary. Latin squares is a special kind of design in which there is a
single treatment factor with L levels, and two blocking variables, each one with
as many levels as the treatment factor.

• Example 90: We want to study the time in hours to recover from a small sur-
gical operation. We can perform it in 4 different ways (A, B, C, or D), and we
will block the researcher performing the operation (4 different researchers will
be employed). We expect variations depending on the time the operation is per-
formed (9:00, 12:00, 15:00, 18:00) that we also want to block. We may use the
design shown below
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XXXXXXXXXResearcher
Time

9:00 12:00 15:00 18:00

1 A B C D
2 B C D A
3 C D A B
4 D A B C

Each treatment appears only once in all rows and columns (that is the property
that defines a Latin square). Note that every researcher performs all operations,
and that all operations are done at a given time. If we perform only one operation
per cell in the table, we would have the following table of degrees of freedom

Source d f
Treatments 3
Researcher 3

Time 3
Residuals 6

Total 15

Having only 6 degrees of freedom for the residuals has not much statistical power
for the standard effect sizes sought in research experiments. After calculating the
sample size (see Sec. 2.1.6), the total number of samples is N = 25, we decide
to increase it to N = 32 in order to have a balanced design and have two samples
per combination of blocks and treatments. Instead of repeating twice the same
Latin table, we may use a different Latin square as shown below (the upper and
lower parts of the table are Latin squares).

XXXXXXXXXResearcher
Time

9:00 12:00 15:00 18:00

1 A B C D
2 B C D A
3 C D A B
4 D A B C
1 B D A C
2 A B C D
3 D C B A
4 C A D B

We may increase the generalizability of the experiment by studying the treat-
ments with a wider range of researchers and times
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XXXXXXXXXResearcher
Time

9:00 12:00 15:00 18:00 8:00 11:00 14:00 17:00

1 A B C D
2 B C D A
3 C D A B
4 D A B C
5 B D A C
6 A B C D
7 D C B A
8 C A D B

The table of degrees of freedom would be

Source d f
Treatments 3
Researcher 7

Time 7
Residuals 14

Total 31

The number of Latin squares of a given size L is limited, and beyond a number
of replications we need to repeat some of them. For L = 2, there are only 2 Latin
squares; for L = 3, there are 12; for L = 4, there are 576; for L = 5, there are
161,280; for L = 6, there are 812,851,200. Latin squares have been proved to
be more efficient than their complete block designs (see Sec. 3.1.3) counterparts
(Giesbrecht and Gumpertz, 2004)[p. 125].

• Example 91: Let us consider an experiment in which we analyze the learning
ability of animals under three different levels of wheel exercise: no exercise,
moderate, and intense. Due to circadian rhythms, the result may depend on the
time of the day the experiment is carried out. Also, it may depend on the body
weight of the animal. These are two nuisance factors we would like to get rid
of. For this purpose, we can define three levels for the time of the day, and three
levels for the body weight (for doing so, we simply sort the animals by their body
weight and divide the set of animals in three groups of equal size). Then, we use
a Latin square design for our experiment. In this way, we are sure to remove the
possible biases induced by these two nuisance factors.

• Example 92: Another example that calls for a Latin squares design is if we are
using mice whose cages are placed on racks. It has been reported (Gore and
Stanley, 2005) that the amount of water intake of the animals depended on the
row position of the cage within the rack, and that the body temperature depended
on the column of the rack. If we want to block these two effects, we may use
a Latin squares design within each rack with 5 rows and 5 columns. As stated
above, Latin squares can only be applied if we are studying the same number
of treatments as the number of blocks in rows and columns. If this is not the
case, we need to use a block design (see Sec. 3.1.3) or one of their incomplete
or imbalanced versions (see Sec. 3.1.7).



222 CHAPTER 3. DESIGN OF EXPERIMENTS

3.2.2 Graeco-Latin squares

Design summary. Graeco-Latin squares result from the superposition of two
Latin squares and they allow us to simultaneously perform two different experi-
ments with just one treatment factor and two nuisance factors, or to consecutively
perform experiments.

• Example 93: We are studying the effect of four different cleaning products on
the stress of the animals in an animal facility. Four centers participate in the
study, and each one of them has four rooms with cages. Simultaneously, we are
making a different study, also on the stress of animals, with four different types
of cages. Can we perform this two experiments simultaneously without any one
of them interfering with the other?

We may use two mutually orthogonal Latin squares: one with the four cleaning
products (A, B, C, D) and the other one with the four types of cages (α , β , γ , δ ).
This kind of designs are called Graeco-Latin squares:

XXXXXXXXXCenter
Room

1 2 3 4

1 Aα Dδ Bγ Cβ

2 Cδ Bα Dβ Aγ

3 Dγ Aβ Cα Bδ

4 Bβ Cγ Aδ Dα

Note that each treatment of one kind (cleaning product or cage) appears exactly
once with all treatments of the other kind. The Latin letters form a Latin square,
as well as the Greek letters. These two Latin squares are said to be mutually or-
thogonal and each combination of pairs of treatments (Aα , Aβ , ..., Dδ ) appears
only once. Each of the cages in the same room would be considered an experi-
mental unit receiving the combined treatment. As we mentioned in the section
above, the number of Latin squares of a given size is limited, and the pairs of
orthogonal Latin squares even more limited. For L = 2, there is only 1 pair of
mutually orthogonal Latin squares; for L = 3, 2; for L = 4, 3; for L = 5, 4; for
L = 6, 1.

We have presented Graeco-Latin squares in a context of two simultaneous experiments.
But they are also used for consecutive experiments: we first perform the experiment on
the cleaning products, and when it is finished, we perform the experiment on the cage
types. However, we use a Graeco-Latin design so that there is no carryover effect from
the first experiment to the second.

3.2.3 Cross-over designs

Design summary. In cross-over designs we block time and individuals. In this
way, we eliminate the inter-subject variability from the analysis because an indi-
vidual is its own control and reduce the number of subjects if we keep fixed the
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statistical power, or increase the statistical power if we keep fixed the number of
subjects.

• Example 94: We are studying the pain reduction caused by an analgesic. There
are two treatments: control (with only the vehicle) and treatment (with the drug).
We plan to perform a cross-over design in which an animal receives first one of
the treatments, and we perform the measure of pain reduction. Then, we wait
for a wash-out period such that there is no interference between the first and
second treatment. Finally, we give the second treatment and measure again. The
execution plan is as follows

XXXXXXXXXPeriod
Subject

1 2 3 4 5 6 7 8 9 10 11 12

1 C T T C C T C T T T C C
2 T C C T T C T C C C T T

• Example 95: Another example in which cross-over designs may be valuable is
when animals need to be trained for performing the experiment. In this case,
the animals are a very valuable asset. If we are testing several drugs, we would
like to test several of these drugs on each animal, so that the traning time is not
wasted. We may test several drugs on the same animal as long as the animal
is not “fundamentally modified” and we leave a wash-out period between tests.
Examples of experiments in which the animal is not fundamentally modified
are experiments in which we measure the preference of animals with respect
to several types of nests (the same animal can subsequently test different kinds
of nests) or experiments in which we measure the gastrointestinal transit rate
under different physiological conditions. In any case, as shown in the following
paragraphs, we may take statistical protections against order, carry-over, and
learning effects.

Cross-over designs can only be used when there is no interference from the first
treatment to the second. In a way, the animal seeing the first treatment is not the
“same” animal that sees the second, even if it is the same individual. Interferences can
be of three kinds:

• Order effects: For instance, if we are using diseased animals and the first treat-
ment cures the disease, we cannot apply the second or if we apply, its application
is useless. The order in which we apply the treatments modifies in an irreversible
way the state of the animal.

• Carry-over effects: There is still some of the first treatment leftover when we
apply the second (for instance, the drug has not been completely eliminated from
the body). These negative effects are easily removed by sufficiently long washout
periods, or by the use of statistical designs aimed at removing 1st, 2nd, ... order
carryover effects, as we will see below.

• Learning effects: Another example is with mice in a maze when one of the rooms
has some abuse substance. The study is on the amount of time spent in each of
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the rooms of the maze. In the second treatment, mice remember which was the
configuration of the maze under the first treatment, and this memory modifies the
time that naive animals spend in each of the rooms under the second treatment.

Our observation model this time would be

yi jk = µ +αi + γ
(period)
j + γ

(individual)
k + εi jk

and it could be analyzed using the Least Squares method presented in Sec. 3.1.7. We
see that this model blocks the individual (and consequently, the intersubject individual)
and time (that is, the order in which treatments are applied). To achieve this latter goal it
is important that the design is balanced (for instance, it has as many CT as TC orderings
in the example above).

A design is balanced with respect to 1st order carryover effects if each treatment
precedes any other treatment the same number of times. For instance, with four treat-
ments (A, B, C, D), a design based on the following sequences is not balanced with
respect to 1st order carryover effects:

Period
1 2 3 4

A B C D
B C D A
C D A B
D A B C

The reason is that A precedes B three times, while B never precedes A. However, we
can find suitable sequences for four treatments like

Period
1 2 3 4

A B C D
B D A C
C A D B
D C B A

In this design A precedes B, C, and D only once, and the same happens with all other
treatment pairs. Once we have found appropriate sequences of treatments, we must
assign the same number of individuals to each of the sequences.

These sequences can be found with the help of Latin squares (see Sec. 3.2.1), the
two previous examples of sequences of four elements were both Latin squares. How-
ever, not all Latin squares produce designs balanced with respect to 1st order carryover
effects. For an even number of treatments we can find such sequences with the help
of a single Latin square. For an odd number of treatments we require the help of two
Latin squares.
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Period
1 2 3

A B C
B C A
C A B
A C B
B A C
C B A

The upper half of the table is a Latin square as well as the lower half. For three treat-
ments, a design balanced with respect to 1st order carryover effects requires six se-
quences of length three. We may verify that A precedes B and C exactly twice, and the
same happens with all other pairs of treatments.

We may prefer designs that are strongly balanced with respect to 1st order carry-
over effects. A design is of this type if each treatment precedes all other treatments,
including itself, the same number of times. For instance, a design based on the se-
quences TC and CT is not strongly balanced because C precedes T once, but it does
not precede itself. However, a design based on the sequences TCC and CTT is strongly
balanced.

Additionally, we may require the design to be 1) uniform within sequences, that
is, each treatment appears the same number of times in each sequence, and 2) uniform
within periods, that is, each treatment appears the same number of times in each period.
For instance, a design based on TCC and CTT is not uniform within sequences, because
C appears twice in one of the sequences and once in the other. A strongly balanced,
uniform within sequences and periods design is the one based on the sequences CTTC,
TCCT, CCTT, and TTCC.

Period
1 2 3 4

C T T C
T C C T
C C T T
T T C C

In the following digression let us show that if there is any carryover effect from a
previous treatment, this effect is eliminated in the analysis. The observation model is

y = µ +α + γ
(order)+ γ

(period)+λ
(carryover)+ ε

where µ is the overall mean, α is the treatment effect in which we are interested in,
γ(order) is a possible effect due to the ordering of the treatments, γ(period) is a possible
effect due to the period, λ (carryover) is a carryover from one period to the next, and, as
usual, ε is the residual. The following table shows the decomposition of each of the
cells according to this model (we omit the overall mean and residuals for simplicity
of the notation). We are modelling only 1st order carryover effects, that is, carryover
effects from the immediately previous treatment in the sequence. 2nd order carryover
effects would analyze the previous two treatments.
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Sequence Period 1 Period 2 Period 3 Period 4
CTTC αC + γCT TC + γ1 αT + γCT TC + γ2 +λC αT + γCT TC + γ3 +λT αC + γCT TC + γ4 +λT
TCCT αT + γTCCT + γ1 αC + γTCCT + γ2 +λT αC + γTCCT + γ3 +λC αT + γTCCT + γ4 +λC
CCTT αC + γCCT T + γ1 αC + γCCT T + γ2 +λC αT + γCCT T + γ3 +λC αT + γCCT T + γ4 +λT
TTCC αT + γT TCC + γ1 αT + γT TCC + γ2 +λT αC + γT TCC + γ3 +λT αC + γT TCC + γ4 +λC

We can estimate the main effect of the treatment as the average of all those cells having
received a T, in the following equation the subscripts indicate the order and the period,
and ȳ is the average of all individuals in that order and period

yT = 1
8 (ȳCT TC,2 + ȳCT TC,3 + ȳTCCT,1 + ȳTCCT,4 + ȳCCT T,3 + ȳCCT T,4 + ȳT TCC,1 + ȳT TCC,2)

= 1
8 [(µ +αT + γCT TC + γ2 +λC)+(µ +αT + γCT TC + γ3 +λT )
(µ +αT + γTCCT + γ1)+(µ +αT + γTCCT + γ4 +λC)
(µ +αT + γCCT T + γ3 +λC)+(µ +αT + γCCT T + γ4 +λT )
(µ +αT + γT TCC + γ1)+(µ +αT + γT TCC + γ2 +λT )]

= µ +αT + 1
8 (2γCT TC +2γTCCT +2γCCT T +2γT TCC)

+ 1
8 (2γ1 +2γ2 +2γ3 +2γ4)+

1
8 (3λC +3λT )

We remember at this moment the ANOVA constraints on the different factors

γCT TC + γTCCT + γCCT T + γT TCC = 0
γ1 + γ2 + γ3 + γ4 = 0

λC +λT = 0

Then, we have
yT = µ +αT

Important remarks

113. In cross-over designs, animals are tested more than once reducing the total
number of animals needed. Additionally, we can estimate the treatment
effects without being affected by the between-animal variability.

114. Thanks to a strongly balanced, uniform within sequences and periods de-
sign, we can have estimates of the main effects of the treatments that are
unconfounded with the order, period, and carryovers from the immediately
previous treatment (1st order).

115. If we relax the contraints of the design (strongly balanced, uniform within
sequences and periods), we confound the treatment effects with the order,
the period, or carryover effects from the previous treatment.

If we repeat this analysis for this design with second order carryover effects, we
see that it is not balanced with respect to them.

Incomplete cross-over designs

Sometimes, we cannot test all treatments on the same animal, but just a few of them.
These are called incomplete cross-over designs. The way to analyze them is exactly
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the same as exposed for the complete cross-over designs above. This kind of designs
was discussed in Afsarinejad (1983) and the following example gives a glimpse of their
possible use.

• Example 96: We are testing the effect of three different doses of a compound
(D1, D2 and D3) plus a control dose (C) without the compound. Each animal
will receive a sequence of two doses. Since the number of treatments (four)
is larger than the sequence (two), each animal will not receive the full set of
treatments, and the design is incomplete. A possible design could be:

Animal Test period 1 Test period 2
Animal 1 C D1
Animal 2 D1 C
Animal 3 C D2
Animal 4 D2 C
Animal 5 C D3
Animal 6 D3 C
Animal 7 D1 D2
Animal 8 D2 D1
Animal 9 D1 D3

Animal 10 D3 D1
Animal 11 D2 D3
Animal 12 D3 D2

3.2.4 2k Factorial designs

Design summary. This is a standard factorial design in which the effect of mul-
tiple variables, and their possible interactions, are studied at the same time. The
characteristic of this design is that each variable only has two levels. For each
combination of the different treatments we will assume that N animals are stud-
ied.

In this section we will study a very common particular case of factorial design
in which all factors have only two levels (yes/no, absent/present, ...). If we have k
factors, the total number of treatments is 2k. This kind of designs can be analyzed in
the standard way introduced in Sec. 3.1. However, we will introduce a new notation
for the analysis of these designs that will help us later to perform fractional factorial
designs, designs in which not all the combinations are tested.

• Example 97: We want to know the optimal way of reducing conflicts between
animals in cages. For each combination, we will measure the average number of
daily conflicts, and we will run our experiment for ten days. We are interested in
the effect of three factors related to the animals in the cage: sex (P), age (Q), and
number (R). For each of the factors we have two levels which we will encode as
0 or 1:
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– Sex (P): all animals are of the same sex (0) or different sex (1).

– Age (Q): all animals are within a range of three months (0) or the age
difference is larger than three months (1).

– Number (R): two animals per cage (0) or four animals per cage (1).

For every treatment we will have two cages of that kind so that we have three
observations per treatment. We can arrange the observations as

Sex (P) Age (Q) Number (R) Observations
0 0 0 y0001 y0002 y0003
0 0 1 y0011 y0012 y0013
0 1 0 y0101 y0102 y0103
0 1 1 y0111 y0112 y0113
1 0 0 y1001 y1002 y1003
1 0 1 y1011 y1012 y1013
1 1 0 y1101 y1102 y1103
1 1 1 y1111 y1112 y1113

We will consider the full factorial model with all interactions

y = µ +αP +αQ +αR +αPQ +αPR +αQR +αPQR + ε (3.22)

The table of degrees of freedom is

Source d f
P 1
Q 1
R 1

PQ 1
PR 1
QR 1

PQR 1
Residuals 16

Total 23

An interesting feature of 2k factorial designs (in the example k = 3 because we have
three factors of interest) is that all model parameters cost only one degree of freedom
due to the constraints imposed by linear models. In the following paragraphs we will
develop an alternative way of estimating the model parameters. At the end, they will
produce similar estimates to the standard approach through the α parameters, but the
intermediate variables used for the analysis will be different.

Let us call:

• (1) the average of all observations with no treatment applied (P = Q = R = 0).

• p the average of all observations receiving the treatment P = 1,Q = 0,R = 0 and
P̂ the effect size of applying P = 1, this was α̂P in our previous notation.
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• pq the average of all observations receiving the treatments P = 1,Q = 1,R = 0
and P̂Q the effect size of applying P = 1,Q = 1, this was α̂PQ in our previous
notation.

• ...

In this way, we can write the different means as shown in the following table. It is
constructed by placing + if the treatment is applied to construct that mean and - if the
treatment is not applied.

Average in the new notation P Q R Average in the previous notation
(1) - - - y000.
r - - + y001.
q - + - y010.
qr - + + y011.
p + - - y100.
pr + - + y101.
pq + + - y110.
pqr + + + y111.

We may estimate the effect size of P = 1 as the difference between those animals
having received P = 1 and those animals not having received it

P̂ = p− (1)

That is, the mean of the animals receiving P= 1,Q= 0,R= 0 and the animals receiving
P = 0,Q = 0,R = 0. However, this is not the only way to estimate P̂, we could have
also estimated it in the following ways

P̂ = p+pq
2 − 1+q

2 = 1
2 (p−1)(1+q)

P̂ = p+pq+pr
3 − 1+q+r

3 = 1
3 (p−1)(1+q+ r)

P̂ = pq+pr+pqr
3 − q+r+qr

3 = 1
3 (p−1)(q+ r+qr)

The estimator with least variance is the one that utilizes all the samples available

P̂ = p+pq+pr+pqr
4 − 1+q+r+qr

4 = 1
4 (p−1)(1+q+ r+qr)

We may extend the sign table above to construct a recipe to calculate any of the effects.
We extend the table by adding columns corresponding to the overall mean (µ̂), the
second order interactions (P̂Q, P̂R and Q̂R) and third order interactions (P̂QR). µ̂ is
simply all +, the second and third order interactions are calculated as the product of the
corresponding columns (i.e., P̂Q is the product of column P̂ times column Q̂)

Average µ̂ P̂ Q̂ R̂ P̂Q P̂R Q̂R P̂QR
(1) + - - - + + + -
r + - - + + - - +
q + - + - - + - +
qr + - + + - - + -
p + + - - - - + +
pr + + - + - + - -
pq + + + - + - - -
pqr + + + + + + + +
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Each column gives the signs of the average for estimating that effect. For instance, to
estimate P̂QR, the least variance estimator is given by

P̂QR =
p+q+ r+ pqr

4
− 1+qr+ pr+ pq

4
=

1
4
(p−1)(q−1)(r−1)

In general, the estimation formula for any of the effects is of the form

ê f f ect =
1

2k−1 (p±1)(q±1)(r±1)

where k is the number of factors (k = 3 with our example of three factors, P, Q, and R),
and the sign depends on whether the corresponding variable (p, q, or r) is on the effect
we want to estimate (-) or not (+). In this way, we have

P̂ = 1
4 (p−1)(q+1)(r+1)

Q̂ = 1
4 (p+1)(q−1)(r+1)

R̂ = 1
4 (p+1)(q+1)(r−1)

P̂Q = 1
4 (p−1)(q−1)(r+1)

Q̂R = 1
4 (p+1)(q−1)(r−1)

P̂R = 1
4 (p−1)(q+1)(r−1)

P̂QR = 1
4 (p−1)(q−1)(r−1)

µ̂ = 1
8 (p+1)(q+1)(r+1)

The mean is different only in the sense that the denominator is 2k instead of 2k−1.
Interestingly, the variance of all these effects are identical and they take the value

Var{ê f f ect}= σ2
ε

2k−2N
(3.23)

where N is the number of individuals per group and σ2
ε the variance of the residuals.

The sum of squares explained by this effect is

SSe f f ect = N2k−2ê f f ect
2

(3.24)

Once we have the effect estimates we can construct the prediction for the full factorial
model. Given these effect estimates we can model the value for a sample yi jkl , where
i, j and k take the values 0 or 1 depending on the treatment applied for the factors P, Q
and R, and l takes the values 1, 2, ..., N implying that there are N individuals per P, Q
and R combination. The model decomposes the observation as

yi jkl = µ̂ overall mean
+ 1

2

(
(−1)i−1P̂+(−1) j−1Q̂+(−1)k−1R̂

)
main effects

+ 1
2

(
(−1)i+ j−2P̂Q+(−1)i+k−2P̂R+(−1) j+k−2Q̂R

)
2nd order interactions

+ 1
2

(
(−1)i+ j+k−3P̂QR

)
3rd order interactions

+εi jkl residual
(3.25)
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This is totally consistent with the standard ANOVA decomposition in Eq. 3.22. Ad-
ditionally, we already have ways to estimate the main effects (αP = 1

2 (−1)i−1P̂, ...),
second order interactions (αPQ = 1

2 (−1)i+ j−2P̂Q, ...) and third order interactions
(αPQR = 1

2 (−1)i+ j+k−3P̂QR). For instance, in Example 97, the expected value of the
observations of the average daily conflicts of animals of the same sex (P = 0), with age
differences of more than three months (Q = 1) and four animals per cage (R = 1) is

E{y011l} = µ̂

+ 1
2

(
(−1)0−1P̂+(−1)1−1Q̂+(−1)1−1R̂

)
+ 1

2

(
(−1)0+1−2P̂Q+(−1)0+1−2P̂R+(−1)1+1−2Q̂R

)
+ 1

2

(
(−1)0+1+1−3P̂QR

)
= µ̂− 1

2 P̂+ 1
2 Q̂+ 1

2 R̂− 1
2 P̂Q− 1

2 P̂R+ 1
2 Q̂R− 1

2 P̂QR

Similarly, the expected value of observations of animals of the same sex (P = 0), with
with age differences of more than three months (Q = 1) and two animals per cage
(R = 0) is

E{y010l}= µ̂− 1
2

P̂+
1
2

Q̂− 1
2

R̂− 1
2

P̂Q+
1
2

P̂R− 1
2

Q̂R+
1
2

P̂QR

• Example 98: If we want to check if grouping animals of the same sex with age
differences more than three months in groups of two or four makes a difference,
we will have to construct the difference between these two expected values. This
is called a contrast

c = E{y011l}−E{y010l}
=

(
µ̂− 1

2 P̂+ 1
2 Q̂+ 1

2 R̂− 1
2 P̂Q− 1

2 P̂R+ 1
2 Q̂R− 1

2 P̂QR
)

= −
(

µ̂− 1
2 P̂+ 1

2 Q̂− 1
2 R̂− 1

2 P̂Q+ 1
2 P̂R− 1

2 Q̂R+ 1
2 P̂QR

)
= R̂− P̂R+ Q̂R− P̂QR

(3.26)

Remember that each of these terms has a variance given by Eq. 3.23. As we
have four of these terms, the variance associated to c is

Var{c}= 4
σ2

ε

2N

However, if our model does not consider third order interactions, then the term
P̂QR disappears from the contrast (Eq. 3.26), and the associated variance is

Var{c}= 3
σ2

ε

2N

If we do not model second order effects, then the P̂R and Q̂R terms also disap-
pear, and the variance of c reduces to

Var{c}= σ2
ε

2N
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This change of variance has a real effect on the analysis of the data. Depending
on our model, the same data analyzed with the three models (full factorial, main
effects and second order interactions, or only main effects) rejects the hypothesis
that the contrast above is significant or not as shown in the table below

Model c
√

Var{c} 95% Confidence interval
Full model 6.7 5.9 (−6.3,20.3)
Main+2nd order 10.0 5.1 (−1.8,21.8)
Main 7.4 2.9 (0.6,14.2)

In the case of the model with only main effects, there is a significant difference
between grouping animals in groups of two or four. However, this difference is
declared as non-significant with the other two models.

Important remarks

116. Choosing a model for the observations has important consequences on the
statistical power of the analysis. If we foresee 2nd, 3rd, ... order analysis,
factorial designs allow estimating all of these interactions. However, if we
do not foresee these interactions, choosing an overcomplex model decreases
our statistical power, which is our capacity to recognize significant effects.

117. Interactions whose order is larger than two are normally not expected. But,
obviously, this depends on the specific system being studied.

118. We should choose the model (main effects, main effects plus second order
interactions, ..., full factorial) before observing the experimental data. We
cannot take the decision after seeing the data, this is called data snooping
and it constitutes a severe flaw of the analysis.

3.2.5 2k Fractional factorial designs

Design summary. For a large number of two-level factors, we may reduce the
number of experiments (we only perform a fraction of the experiments in the full
factorial design), if we sacrifice the estimation of high order interactions.

• Example 99: We are studying the effect of eleven different factors on the spread
of spinal anesthesia. The factors of interest are: 1) baricity of the anesthetic solu-
tion, 2) drug dosage, 3) temperature of the solution, 4) viscosity of the solution,
5) animal positioning during injection, 6) animal positioning after injection, 7)
site of injection, 8) needle type, 9) needle direction, 10) intrathecal catheters, 11)
intraabdominal pressure. For each of the factors we have two levels.

The full factorial design implies 211 = 2048 experiments. However, we can strongly
reduce this number if we do not foresee high order interactions. As we saw in the previ-
ous section, the number of degrees of freedom consumed to estimate the main effects of
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a 2k factorial design is 1 per factor, and the same for the second order interactions. For
k factors, the number of second order interactions is given by the number combinations
of k elements taken in groups of 2

d f2nd order =C(k,2) =
k!

2!(k−2)!
=

k(k−1)
2

For k = 9 factors, we need 36 degrees of freedom.
For simplicity of the presentation of the theoretical ideas involved, let us first

present a fractional factorial design in which we will only perform half the number
of experiments of the full factorial design with only k = 3 factors. As we saw in the
previous section, the full factorial design would estimate all the second order and third
order interactions according to the following table

Average µ̂ P̂ Q̂ R̂ P̂Q P̂R Q̂R P̂QR
(1) = y000. + - - - + + + -

r = y001. + - - + + - - +
q = y010. + - + - - + - +

qr = y011. + - + + - - + -
p = y100. + + - - - - + +

pr = y101. + + - + - + - -
pq = y110. + + + - + - - -

pqr = y111. + + + + + + + +

Let us assume that we only perform one half of the experiments, those indicated in the
following table

Average µ̂ P̂ Q̂ R̂ P̂Q P̂R Q̂R P̂QR
r = y001. + - - + + - - +
q = y010. + - + - - + - +
p = y100. + + - - - - + +

pqr = y111. + + + + + + + +

That is we will try the treatments P = 0,Q = 0,R = 1, P = 0,Q = 1,R = 0, P = 1,Q =
0,R = 0, and P = 1,Q = 1,R = 1. There are four treatment combinations that we will
not test. Remember that the signs in the columns of the different model parameters
give the estimation formula for that parameters. For instance, the estimate of µ̂ is

µ̂ =
1
4
(r+q+ p+ pqr)

But, this is exactly the same estimation formula for P̂QR. This means that we are
estimating the addition of these two quantities at the same time

̂µ +PQR =
1
4
(r+q+ p+ pqr)

The two quantities, µ̂ and P̂QR, are said to be confounded, we cannot tell from the
average 1

4 (r+q+ p+ pqr) which part corresponds to µ̂ and which part corresponds to
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P̂QR. We have confounded the zero order parameter with the third order interactions,
but we did not expect third order interactions, so we expect this latter contribution to
be zero. The same happens with the main effects and the second order interactions:
P̂ is confounded with Q̂R, Q̂ is confounded with P̂R, and R̂ is confounded with P̂Q.
Confounding is also called aliasing and, in this example, it is said that the main effects
are aliased with the second order interactions, and that the overall mean is aliased with
the third order interactions.

Important remarks

119. Confounding is not a problem if we do not expect high order interactions
since they will be zero. The problem comes if we do not expect them, but
they are not zero in reality. In this case, they bias the estimate of the low
order terms.

Not any fraction of the full factorial design makes experimental sense. For instance, if
we only perform the upper half of the table,

Average µ̂ P̂ Q̂ R̂ P̂Q P̂R Q̂R P̂QR
(1) = y000. + - - - + + + -

r = y001. + - - + + - - +
q = y010. + - + - - + - +

qr = y011. + - + + - - + -

then, the main effects of P are confounded with the overall mean (note that two columns
are aliased if their signs are exactly the same or exactly the opposite). But these two
quantities are supposed to be important and not negligible, thus invalidating our design.

Fractional designs are not unique. The following design also reduces the number of
experiments by one half and has the same confusion pattern as the previous one (main
effects are aliased with the second order interactions, and the overall mean is aliased
with the third order interactions).

Average µ̂ P̂ Q̂ R̂ P̂Q P̂R Q̂R P̂QR
(1) = y000. + - - - + + + -
qr = y011. + - + + - - + -
pr = y101. + + - + - + - -
pq = y110. + + + - + - - -

The previous two fractional designs are symmetric in the sense that all main effects are
aliased with second order interactions. But we may favour one of the factors, if this
factor is more important for us. For instance, in the following design P is confounded
with a third order interaction (which is supposed to be smaller than second order inter-
actions). In this case, it is the overall mean which is slightly sacrificed by confounding
it with a second order interaction (Q̂R).

Average µ̂ P̂ Q̂ R̂ P̂Q P̂R Q̂R P̂QR
r = y001. + - - + + - - +
q = y010. + - + - - + - +

pr = y101. + + - + - + - -
pq = y110. + + + - + - - -
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Important remarks

120. Not all fractions of the full factorial are valid. Some of them confound the
overall mean with the main effects, or main effects among themselves.

121. Fractional factorial designs are not unique. There exist several of them with
similar aliasing properties, and we may even find fractions that favour one
of the factors with respect to the rest.

122. The previous example is called a 2k−1 fractional design because we have
performed only one half 1/2 = 2−1 of a 2k full factorial design.

In the previous paragraphs we have introduced 2k−1 fractional designs by removing
experiments from the full factorial design of k factors. But we can also construct a
fractional design by taking the full factorial design of k−1 factors and adding an extra
factor. In the former procedure (removing experiments) we were able to analyze which
effects were aliased with which other effects, but other than intelligently removing
experiments, we could not decide which would be the confusion pattern. In the second
procedure (directly starting from the k− 1 full factorial design) we will be able to
decide which effects will be confounded with which other effects. For simplicity, let
us also work with the k = 3 factors. We would start from the full factorial design with
2 factors

Average µ̂ P̂ Q̂ P̂Q
(1) = y00. + - - +

q = y01. + - + -
p = y10. + + - -

pq = y11. + + + +

Now, we decide to confound the new factor R with PQ, which is written as

R̂≡ P̂Q

Then, the sign table is

Average µ̂ P̂ Q̂ R̂≡ P̂Q
(1) = y00. + - - +

q = y01. + - + -
p = y10. + + - -

pq = y11. + + + +

Finally, we extend the table by constructing the new columns P̂R, Q̂R and P̂QR, in the
new table we already annotate the columns with which they are confounded.

Average µ̂ P̂ Q̂ R̂≡ P̂Q P̂R≡ Q̂ Q̂R≡ P̂ P̂QR≡ µ̂

(1) = y00. + - - + - - +
q = y01. + - + - + - +
p = y10. + + - - - + +

pq = y11. + + + + + + +
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The treatments that we will test are defined by the signs of the P, Q and R variables,
that is, 001, 010, 100, 111.

We can multiply the both sides of the design equation by the signs of any of the
columns involved, obtaining the equivalent design equations (note that the multiplica-
tion of a column by itself is unity)

R̂ ≡ P̂Q
Q̂R ≡ P̂
P̂R ≡ Q̂

P̂QR ≡ µ̂

The first equation is our confusion design equation, while all the rest are consequences
of this design equation. All of them are equivalent because all of them induce the same
aliasing pattern. The last equation above is the canonical form of the design equation.
We observe that the word on the left of the canonical form has three variables. This
implies that this factorial design is of resolution III. The number of variables of the
canonical form defines the resolution of the experiment. The following table shows the
capabilities of the different resolutions

Resolution Example Capabilities

I P̂≡ µ̂

Not useful: an experiment of exactly one run only
tests one level of a factor and hence cannot even
distinguish the difference between the 0 and 1
levels of the factor.

II P̂Q≡ µ̂
Not useful: main effects are confounded with
other main effects.

III P̂QR≡ µ̂
Estimates main effects, but they are confounded
with 2nd order interactions.

IV P̂QRS≡ µ̂

Estimates main effects free from 2nd order
interactions. 2nd order interactions are
confounded with other 2nd order interactions.

V P̂QRST ≡ µ̂

Estimates main effects free from 3rd order
interactions. 2nd order interactions are
confounded with 3rd order interactions.

VI ̂PQRSTU ≡ µ̂

Estimates main effects free from 4th order
interactions. 2nd order interactions are
confounded with 4th order interactions. 3rd order
interactions are confounded with other 3rd order
interactions.

To design a 2k−1 fractional factorial design we just need 1 aliasing equation. But,
we can reduce further the number of experiments, to reduce it to one fourth of the
full factorial (2k−2 fractional factorial design) we need 2 aliasing equations. And, in
general, we can reduce the number of experiments of the full factorial by a factor
2−p by choosing p aliasing equations. Obviously, the p aliasing equations cannot be
equivalent to each other. The resolution of the experiment is given by the smallest word
of the p canonical forms.
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• Example 99 (continued): In the example with 11 factors, the full factorial re-
quires 211 runs. However, we can reduce it by a factor 64 and have a Resolution
IV factorial design with only 32 (= 211−6) runs. With this design we are able
to estimate the main effects free from 2nd order interactions (but they are con-
founded with 3rd order interactions). Calling the 11 factors from A to K, the 6
aliasing equations are

ÂBCF ≡ µ̂

B̂CDG ≡ µ̂

ĈDEH ≡ µ̂

ÂCDI ≡ µ̂

ÂDEJ ≡ µ̂

B̂DEK ≡ µ̂

Note that we cannot reach any of the other equations by multiplying by the fac-
tors involved in the aliasing equations. Consequently, they all are independent.

Important remarks

123. Using fractional factorial designs we can reduce the cost of an experiment
by a factor 2−p if we sacrifice the estimation of high order interactions.
This reduction is performed in a controlled way through the design of the
aliasing equations. In the example above, the number of experiments was
reduced from 2048 to 32. This small experiment is of Resolution IV mean-
ing that we can estimate the main effects free from 2nd order interactions,
although they are confounded with 3rd order interactions.

124. Using a theory similar to the Least Squares presented in Sec. 3.1.7, we
can even further reduce the number of treatments in the previous example
to 26. These designs are called Minimum-Run Resolution IV screening.
A Minimum-Run Resolution V design for the same example requires 68
individuals.

125. If we can even neglect 2nd order interactions, we can have Resolution III
designs. Plackett-Burman designs is a very well-known possibility to de-
sign these experiments. These designs can be used to rapidly identify fac-
tors that may have an effect on the outcome of the experiment, and then per-
form a higher resolution experiment with only those factors. These experi-
ments with very low resolution are also called Screening designs. Taguchi
designs are also very popular for screening variables in which only the main
effects can be estimated.

126. Screening designs focus on a minimum number of treatments. However, we
still need to consider how many animals per treatment are necessary taking
into account the requirement of having enough degrees of freedom for the
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residuals so that we have a desired statistical power for a given effect size
of the main effects.

• Example 100 (continued): In the example of 11 factors, Plackett-Burman Res-
olution III designs reduces the number of treatments from 2048 to just 12. In
these example, the 12 runs are

Run A B C D E F G H I J K
Run 1 0 1 1 1 0 0 0 1 0 1 1
Run 2 1 1 0 1 1 1 0 0 0 1 0
Run 3 0 0 0 0 0 0 0 0 0 0 0
Run 4 0 1 1 0 1 1 1 0 0 0 1
Run 5 1 0 1 1 1 0 0 0 1 0 1
Run 6 0 1 0 1 1 0 1 1 1 0 0
Run 7 1 1 0 0 0 1 0 1 1 0 1
Run 8 0 0 1 0 1 1 0 1 1 1 0
Run 9 0 0 0 1 0 1 1 0 1 1 1
Run 10 1 0 0 0 1 0 1 1 0 1 1
Run 11 1 0 1 1 0 1 1 1 0 0 0
Run 12 1 1 1 0 0 0 1 0 1 1 0

Note that to have statistical power we need at least two animals per treatment
combination. With just one animal per treatment, we would not have any degree
of freedom available for the residuals.

3.2.6 Split-unit designs

Design summary. We have an experiment with two factors. One of them requires
large experimental units, while the other one small ones. Additionally, the second
factor can be applied to a “small portion” of the experimental units of the first
factor.

• Example 100: We are investigating the effect of light and diet on the growth of
mice.

– The experimental unit for the light factor is the whole room, all cages re-
ceive the same treatment (number of light hours).

– The experimental unit for the diet is the cage, all mice in the same cage
receive the same treatment.

All experiments with repeated measures belong to this class of designs. These ex-
periments include those in which an animal is measured multiple times, at multiple
regions of its body, or at multiple tasks. If we follow a specific measurement pat-
tern (like measuring exactly at the same location in the case of multiple regions of the
body), we may expect correlations (in this case, spatial correlations) among the dif-
ferent measurements. We may consider randomizing the location of the measurement
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within a confined region so that we do not always measure at the same place. In all
these cases, the animal is the factor “hard to change” and acts as a blocking factor.
We may even have several repeated measures factors. For instance, we may have an
experiment in which the same animal is measured at multiple times simultaneously at
different regions of its body (through multiple sensors, for example).

Let us call P the factor applied to large units (called whole-units or whole-plots)
and Q the factor applied to small units (called split-units or split-plots). We need to
realize that the sample size of the different units (whole and split) are different, and
consequently the precision of each one of the factors is different. For completeness of
the example, let us assume that we have several blocks in which we will analyze the
different treatments (see Fig. 3.7). Each measurement is indexed as i jk where i is the
block number, j is the P treatment and j is the Q treatment.

yi jk = µ +(γi +α
(P)
j +ηi j)+α

(Q)
k +α

(PQ)
jk + εi jk

This model implies that a measurement is affected by the block, γi, the treatment ap-
plied to the large unit, α

(P)
j , and some noise affecting at the level of large units, ηi j.

All these terms in the parenthesis define the contribution of the large unit. Then, we
have the contribution of the split-units given by the Q treatment, α

(Q)
k , the interaction

between the factors P and Q, α
(PQ)
jk , and some noise at the level of split-unit, εi jk.

Figure 3.7: Example of split-unit design with four blocks. In each of the blocks we
apply five treatments of the “hard-to-change” factor P (note that all treatments in the
same column are the same) and three treatments of the factor Q. The colour of each
cell is given by the P treatment.

If both treatments require relatively large experimental units, we may apply one of
them on the columns, and another one on the rows as shown in Fig. 3.8. These designs
are sometimes called criss-cross designs.



240 CHAPTER 3. DESIGN OF EXPERIMENTS

Figure 3.8: Example of split-unit design with four blocks. Both P and Q are “hard-to-
change” so that they are applied in large units: each column of the design receives the
same P treatment and each row of the design receives the same Q treatment.

We may also nest several variables requiring increasingly small experimental units
like the design in Fig. 3.9. The design is nested because for each whole-unit of the
previous factor, we apply each of the possible treatments of the next factor. Obviously
the units of each one of the levels are increasingly small (P units are larger than Q units,
and these are larger than R units).

3.2.7 Hierarchical or nested designs

Design summary. Hierarchical designs are similar to split-unit designs, only that
we do not find all possible combination between factors.

• Example 101: We are investigating the effect of a drug on the concentration
of a given protein in the liver. We have two groups (control and treatment).
From every animal we will take several measurements from the liver. Which is
a suitable model for this design?

Repeated measures is a design in which the same animal is measured multiple times
(as in the example of multiple measures from the liver), and sometimes with a time in
between measurements (e.g., 0h, 2h, 6h, 12h, 24h). In this case, the animal becomes
the factor hard-to-change, and it cannot receive multiple treatments (for instance, either
it is in the control or the treatment group). In these designs, it is important to identify
the animal as a block variable because the animal may heavily influence the results and
samples coming from the same animal are not independent.
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Figure 3.9: Example of nested split-unit design with three blocks, and three factors P
(4 levels), Q (2 levels), and R (3 levels).
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Let us consider the treatment i, animal j, and measurement k within the same ani-
mal. Then, the observations can be modeled as

yi jk = µ +αi + γ j + εi jk

Note that each animal receives a single treatment so that inside a given j we can only
find one value of α . For this reason, it is said that the design is hierarchical or nested
(the treatment is nested within the animal). In a way the treatment i is given once we
select the animal j, that is, i( j). This is the most distinctive feature of nested designs:
the absence of all possible combinations of factors.

We can add more nested variables as shown in the example below.

• Example 102: Following with the previous example, the experiment will be car-
ried out by two technicians (A and B), and each animal is analyzed by a single
technician. How should we modify the model?

We add an extra factor γ
(tech)
l , the specific technician is also specified by the animal,

l( j), so that now the two variables technician and treatment are nested within the ani-
mal. The model would be modified to

yi jkl = µ +αi + γ
(animal)
j + γ

(tech)
l + εi jkl

It is sometimes useful to make a pictorial representation of the experiment as the
one shown in Fig. 3.10. The figure helps to write the analysis equations and identify
the different blocks and factors of the experiment. These representations are useful to
recognize pathological problems of our design. Let us assume that the technician A
performs all the control experiments and the technician B all the experiments with the
drug. We would be confounding the effect of the technician with that of the treatment.
Visually, we would see in the diagram that each of the levels of the technician corre-
sponds to a single level of the treatment (there is a single line coming out from each of
the technicians).

Figure 3.10: Pictorial representation of a nested design.
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• Example 103: We are interested in the effect of a particular diet on the devel-
opment of the animal development during pregnancy. For analyzing its effect,
we divide the animals in two groups: control (6 cages) and treatment (6 cages).
There are 5 pregnant animals per cage, and we will analyze the effect at 5 dif-
ferent time points. At each time point we kill one of the pregnant animals, and
study the development of the fetuses. There are two nested split-units. The first
one is the cage as we may suspect that there can be some cage effect. The sec-
ond one is the animal itself. The fetuses coming from the same animal may have
differences due to characteristics of their common mother.

3.2.8 Fixed vs. random and mixed effects

Design summary. Fixed effects is the most common ANOVA design. In these
designs the specific effect of the treatment is of research interest. Random effects
refer to treatments in which the specific level of the treatment is supposed to come
from a larger population. More than the specific contribution of the treatment, it
is more interesting to know about its variability.

All the linear models presented so far are called of fixed parameters. The treatment
effects were supposed to be unknown, but fixed, and all our efforts have concentrated
in designing experiments capable of estimating these parameters with the least amount
of uncertainty. Typical fixed effect factors are the strain of the animal (wildtype vs.
transgenic), the age group of the animal (2 months vs. 6 months vs 1 year), time of the
experiment, diet, supplier, experimenter performing the observations or operations, etc.
However, there are situations in which these parameters are not of so much interest, as
the factor levels themselves can be regarded as a sample from a larger population. For
instance, in Example 101 an specific animal may be regarded as uninteresting per se, it
is interesting as a random representative of a wider population of animals. In the same
way, in Example 102, the technician itself can be regarded as random representative of
a larger population of technicians. We shift the focus from the individual technicians
(fixed effects), to the population of all technicians (random effects). We are interested,
then, in the variance of the treatments, e.g., what is the variation from technician to
technician?

• Example 104: We are interested in the inheritance of birth weight. For analyzing
the effect of the female on it, we analyze the birth weight of the descendents of
a = 5 female mice, mated with different male animals. For each of the females,
we measure the birth weight of n= 10 of their offspring. How should we analyze
the data?

One-way, random effects

With a single factor, the ANOVA model seen so far, called fixed effects, was of the
form

yi j = µ +αi + εi j (3.27)
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where yi j was the observation for the birth weight of the j-th descendent of the i-th
mother (the treatments), µ was the overall mean, αi was the effect of the mother, and
εi j the residuals. In fixed effects ANOVA, αi was the parameter of interest. This
makes sense if the treatment is a drug or control, because it reveals the differences in
means between the two groups. However, in this experiment with animals, rather than
the difference between the specific 5 animals, it is much more interesting to assume
that these 5 animals are a random sample from a large population of females, and the
parameter of interest is the variance of this large population. That is, it is assumed that
αi has been randomly drawn from a N(0,σ2

A) distribution, i.e., a Gaussian with zero
mean and variance σ2

A . In random effects ANOVA, the observation model is still the
one in Eq. 3.27. However, several interesting properties stem from the change of the
nature of αi (from deterministic to random) as shown in the following table:

Fixed effects Random effects
Var{yi j} σ2

ε σ2
A +σ2

ε

Corr{yi j,yi′ j′} 0


0 i 6= i′

σ2
A

σ2
A+σ2

ε

i = i′, j 6= j′

1 i = i′, j = j′

Specifically: 1) the variance of the observations is increased by the treatment vari-
ance, σ2

A; and 2) there is a correlation of the samples within the same treatment (in
our example, the birth weight of all descendents from the same mother are correlated,
which should not surprise us), this correlation is higher as the treatment variance grows.

For random effects, balanced designs, in which there are n observations per treat-
ment, we would construct the ANOVA table in the standard way (note that there would
be N = an animals in total):

Source SS d f MS = SS/d f E{MS}
A SSA = ∑

i j
(yi.− y..)2 a−1 MSA nσ2

A +σ2
ε

Residuals SSε = ∑
i j
(yi j− yi.)

2 N−a MSε σ2
ε

Total SST = ∑
i j
(yi j− y..)2 N−1

The calculation of the sum of squares for the random effects is performed in exactly
the same way as for the fixed effects case (see Sec. 3.1.1). The fourth column is new in
this presentation of random effects ANOVA, although it could also have been calculated
for fixed effects ANOVA. It shows which is the expected value of the Mean Squares
column. This column gives us ways to estimate the model parameters. In particular,

σ̂2
ε = MSε

σ̂2
A = MSA−MSε

n

This estimate is called the method of the moments, and it has the disadvantage that
it may result in negative estimates of σ2

A , which theoretically is impossible because
it is a variance. Alternatively, we might use restricted maximum-likelihood estimates
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(REML), although the theory of these estimates is out of the scope of this chapter. As a
general idea, we should realize that estimating variances is difficult because we need a
relatively large sample size to be able to have a reasonable accuracy in the estimation.
In this regard, it is better to have many animals with few samples, than a few animals
with many samples.

The estimate of the treatment effects can also be performed as in the fixed effect
case:

α̂i = yi.− yy..

However, in the fixed effects ANOVA we needed to constrain the main effects to have
a unique solution with ∑

i
α̂i = 0. In the random effects, this constrain is not necessary.

To test whether the treatments are statistically significant, we have to compare them
to the residuals, in exactly the same way as we did in fixed effects ANOVA. The hy-
pothesis contrast is now

H0 : σ2
A = 0

Ha : σ2
A > 0

For this test, we also calculate the F statistic, as in fixed effects ANOVA,

F =
MSA

MSε

Under the null hypothesis, this statistic is distributed as a Snedecor’s F with a−1 and
N−a degrees of freedom.

Important remarks

127. Random effects allows estimating the variability of a population, rather than
specific means of particular individuals.

Two-way, random effects

We may consider in the model the effect of the mother (factor A) and father (factor B)
on the birth weight of their offspring. We mate a = 5 mothers with b = 5 fathers, and
for each cross we analyze n youngsters. We consider both factors as random samples
from a larger population of mothers and fathers. The observation model of the two-way
random effects ANOVA is the same as for the fixed effects

yi jk = µ +α
(A)
i +α

(B)
j +α

(AB)
i j + εi jk (3.28)

However, now the parameters are assumed to be independent from each other and come
from Gaussian distributions: α

(A)
i ∼N(0,σ2

A), α
(B)
j ∼N(0,σ2

B), and α
(AB)
i j ∼N(0,σ2

AB).
Now, the variance and correlation of the samples is modified to
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Fixed effects Random effects
Var{yi jk} σ2

ε σ2
A +σ2

B +σ2
AB +σ2

ε

Corr{yi jk,yi′ j′k′} 0



0 i 6= i′, j 6= j′
σ2

A
σ2

A+σ2
B+σ2

AB+σ2
ε

i = i′, j 6= j′

σ2
B

σ2
A+σ2

B+σ2
AB+σ2

ε

i 6= i′, j = j′

σ2
A+σ2

B+σ2
AB

σ2
A+σ2

B+σ2
AB+σ2

ε

i = i′, j = j′,k 6= k′

1 i = i′, j = j′,k = k′

That is, the correlation between two observations increases as the two samples share
more common treatments. Actually, this correlation is the ratio between the sum of the
variance of the common components and the total observation variance.

In the same way we did for one-way, random effects ANOVA, we can now calculate
the ANOVA table for balanced designs with n animals per treatment combination as
follows (note that there would be N = abn animals in total):

Source SS d f MS = SS/d f E{MS}
A SSA = ∑

i jk
(yi..− y...)2 a−1 MSA bnσ2

A +nσ2
AB +σ2

ε

B SSB = ∑
i jk
(y. j.− y...)2 b−1 MSB anσ2

B +nσ2
AB +σ2

ε

AB SSAB = ∑
i jk
(yi jk− yi..− y. j.+ y...)2 (a−1)(b−1) MSAB nσ2

AB +σ2
ε

Residuals SSε = ∑
i jk
(yi jk− yi j.)

2 N−ab MSε σ2
ε

Total SST = ∑
i jk
(yi jk− y...)2 N−1

From this table, using the method of moments, we could easily obtain estimates of all
the variances

σ̂2
ε = MSε

σ̂2
AB = MSAB−MSε

n
σ̂2

A = MSA−MSAB
bn

σ̂2
B = MSA−MSAB

an

To test whether the treatments are statistically significant, we have to compare their
MS to a suitable MS. In fixed effects and one-way, random effects ANOVA, this suit-
able reference MS was given by the residuals. However, in two-way, random effects
ANOVA, the situation changes. The reason is that if we inspect the expected variance
of the MSA, it is

bnσ
2
A +nσ

2
AB +σ

2
ε

If we compare it to MSε and it is significantly larger, we do not know if the difference
is due to σ2

A or to σ2
AB. We must find some comparison for which the only difference is

caused by MSA. This comparison is given by MSAB, and consequently, the F-statistic
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for calculating the significance of A and B would be respectively

FA = MSA
MSAB

∼ Fa−1,(a−1)(b−1)

FB = MSB
MSAB

∼ Fb−1,(a−1)(b−1)

Following the same strategy, the correct comparison for deciding on the significance of
the interaction effects uses the residuals

FAB = MSAB
MSε
∼ F(a−1)(b−1),N−ab

• Example 105: We are developing a new spectrophotometer to measure the con-
centration of some compounds (like triglycerides) in biological samples. We are
interested in the consistency of measurements from day to day and among dif-
ferent machines. We randomly select a = 5 machines and b = 5 days. Every day
we measure n = 2 samples per machine. All samples in a single day come from
the same serum sample. Should we use a random or fixed effects ANOVA?

In this design we are not interested in the particular performance of a particular
machine. We are not interested either on the effect of a particular day. They
are simply random samples from a larger population of machines and days. If
σ2

machine > 0, then it would indicate that our manufacturing process produces
machines with different measurement properties. If we cannot remove this vari-
ability, then each machine needs to be calibrated when it is bought. σ2

day repre-
sents the variability in triglyceride concentration among the samples used in the
individual days. σ2

machine,day > 0 would indicate that each machine needs to be
calibrated on daily basis (just one calibration at the beginning of the machine life
is not enough).

Two-way, mixed effects

• Example 106: As in Example 104, we are interested in the inheritance of birth
weight. We foresee that the mother has an important effect on the descendent
birth weights, and we would also like to simultaneously analyze the effect of
b = 4 different nutritional complements given to the mothers. As in the previous
example we will analyze a = 5 mothers and n = 10 descendents per mother. Our
experiment will include 4 pregnancy cycles of the same mothers.

In this experiment, the mother is a random effect (they are samples from a larger
population of mothers), but the nutritional complements are fixed effects (they are not
samples from a larger poputlation of nutritional complements, and we are really inter-
ested in the effect of these particular nutritional complements). The observation model
is still

yi jk = µ +α
(A)
i +α

(B)
j +α

(AB)
i j + εi jk (3.29)

As in the two-way, random effects model, we assume α
(A)
i ∼N(0,σ2

A). But now we as-
sume that α

(B)
j are fixed, deterministic values. The interactions are also supposed to be

random and distributed as α
(AB)
i j ∼ N

(
0, b−1

b σ2
AB

)
. Always that we have fixed effects,
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we need to impose some constraints to uniquely determine the model parameters. In
the two-way, fixed effects ANOVA model, these constraints were

∑
i

α
(A)
i = ∑

j
α
(B)
j = ∑

i
α
(AB)
i j = ∑

j
α
(AB)
i j = 0

With random effects, we do not need so many constraints, only

∑
j

α
(B)
j = ∑

j
α
(AB)
i j = 0

Corr{α(AB)
i j ,α

(AB)
i j }=−

1
b

Let us define σ2
B = 1

b−1 ∑
j

(
α
(B)
j

)2
. As was introduced in the case of random effects,

there is a correlation between two observations yi jk and yi′ j′k′ given by

Corr{yi jk,yi′ j′k′}=



0 j 6= j′
σ2

B−
1
b σ2

AB
σ2

A+σ2
B+

b−1
b σ2

AB+σ2
ε

i 6= i′, j = j′

σ2
B+

b−1
b σ2

AB
σ2

A+σ2
B+

b−1
b σ2

AB+σ2
ε

i = i′, j = j′,k 6= k′

1 i = i′, j = j′,k = k′

The mixed effects ANOVA table for a balanced design with n observations per
treatment combination is exactly the same as the one for random effects except that the
expected value of the MSA is bnσ2

A +σ2
ε . Consequently, the estimate of the variance of

A is
σ̂

2
A =

MSA−MSε

bn
and the test is performed with the F statistic

FA =
MSA

MSε

∼ Fa−1,N−ab

• Example 107: We are exploring the effect of wheel exercise in the development
of neurons in the brain of mice. We have three levels of exercise (no exercise,
moderate and intense). We will study the differences between males and females.
For each animal, we will assess the effect by analyzing four histological sections
of the brain. Sex and exercise are treated as fixed effects, while the animal and
the slides are treated as random effects. If the sections are taken from specific
locations (cortex, midbrain, hippocampus, ...) instead of at random, then we
could treat them as a fixed effect and determine the effect of exercise in each one
of the regions.

3.2.9 Loop designs
Microarray experiments face an important problem of cost and large variability of the
technical replicates. However, this has been solved with a smart experiment design



3.2. ADVANCED DESIGNS 249

that has received the name of loop designs (Churchill, 2002). We illustrate these de-
signs here as a way to fight very noisy measurements and possible biases caused by
confounding experimental errors with the treatment effects. In Sec. 1.4.5 we presented
the setup of this kind of experiments. Fig. 1.3 shows the two stages of the experimen-
tal procedure. We extract two aliquots from the same biological sample. One of the
aliquots is dyed in red and the other one in green. This dying (along with the whole
first stage of the experiment) introduces a high level of noise. A single dying from
a sample would confound the biological effects present in the specific sample being
analyzed with the effect of the specific dying. For this reason, the dying process is
repeated several times, and the different results are compared pairwise with some other
dying (see green and red arrows in Fig. 1.3).

Figure 3.11: Some examples of loop designs. Capital letters (A, B, C, ...) represent
different treatments (or varieties in the microarray lexicon). A1, A2 represent two
subsamples from the same treatment. Each edge represents a microarray experiment,
the red and green balls indicate which sample is dyed in red and green, respectively, in
that experiment.

Loop designs organize the dying of the samples in such a way that the experimental
design is balanced and we can determine the effect of the array and the dye (as nui-
sance/block variables) and the effect of the treatment and the gene (see Fig. 3.11). In a
microarray experiment, the treatment is called the variety and it may represent different
drugs, time points, physiological conditions, etc. We can also estimate second order
interactions between array, dyes and genes (some genes may be particularly well or
badly read/intensified in some of the arrays of dying processes). The overall model is
of the form (Kerr and Churchill, 2001)

log(yadvg) = µ +α
(A)
a +α

(D)
d +α

(V )
v +α

(G)
g +α

(AG)
ag +α

(DG)
dg +α

(V G)
vg + εadvg

where α
(A)
a is the main effect of the a-th array, α

(D)
d is the main effect of the d-th

dye, α
(V )
v is the main effect of the v-th variety, and α

(G)
g is the main effect of the g-th

gene. Then, we have the corresponding second order interactions. The information of
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interest is in the interaction V G, that is, how the variety v affects the gene expression
of the gene g. All effects related to the array and dye are “experimental artifacts”. The
main effect of the variety is uninteresting because it would represent a general shift up
or down of all genes. Similarly, the main effect of the gene is uninteresting because it
represents genes that are shifted up or down irrespective of the variety.

3.2.10 Response surface designs

Design summary. These designs can be seen as the sampling plan for a sur-
face regression. If we have multiple continuous factors, X1,X2, ...,Xk, then these
designs plan which samples to take from the different factors to optimally fit a
response surface Y = f (X1,X2, ...,Xk).

• Example 108: We are preparing a formulation for a drug that must be delivered
as an emulsion. We may dissolve the drug in two compounds simultaneously.
The goal is to determine the optimal concentration of each of the two compounds
such that the efficiency of the amount released is maximized. Fig. 3.12 shows
a possible result of the experiment. X1 and X2 vary from 0 to 1 (from no con-
centration to a maximum concentration defined for each compound). For every
combination of X1 and X2 the efficiency, Y , of the release is different. When
the experiment is done we will find a functional relationship between y and our
control variables:

Y = f (X1,X2)

We want to find sampling points (blue points) in the figure so that we can opti-
mally determine the coefficients defining the response surface.

Interestingly, although we have not sampled at the optimum combination of X1
and X2 concentrations, by maximizing f we will be able to identify the optimal
combination of these two solvents so that the liberation of the drug is maximum.

Response surface designs choose a sampling pattern in the (X1,X2, ...,Xp) space
such that some property of the fitted surface is optimized. We must first choose the
family of surfaces that we will explore. For instance, we may look for planes of the
form

Y = β0 +β1X1 +β2X2 + ε

This is a linear model in the regression parameters β (the dependence of Y on the β ’s
is linear). We may also allow for more complicated surfaces like

Y = β0 +β1X1 +β2X2 +β11X2
1 +β12X1X2 +β22X2

2 + ε (3.30)

This model allows for quadratic dependencies with X1 and X2, but it is still linear in the
regression coefficients. All linear models can be estimated by Least Squares. Once we
have performed the experiment, assume we have N measurements of the form

(X1i,X2i, ...,Xpi)→ Yi
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Figure 3.12: Response surface example.

meaning that the i-th run of the experiment used the factor values (X1i,X2i, ...,Xpi) and
for this combination we observed the response Yi. We can set an equation system to
solve for the regression coefficients. For example, for the quadratic model above, it
would be


Y1
Y2
...
YN

=


1 X11 X21 X2

11 X11X21 X2
21

1 X12 X22 X2
12 X12X22 X2

22
... ... ... ... ... ...
1 X1N X2N X2

1N X1NX2N X2
2N




β0
β1
β2
β11
β12
β22

+


ε1
ε2
...
εN



that is of the form
y = Xβ + ε

Its Least Squares solution is, as we saw in Eq. 3.16,

β̂ = (XT X)−1XT y

Some domains require specific surface families. For instance, enzymatic reactions
normally call for Michaelis-Menten functions, which can be written as

1
Y

= β0 +β1
1

X1
+ ε
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or the modelling of population or tumor growth may call for a logistic regression

− log
(

1
Y
−1
)
= β0 +β1X1 + ε

As we saw in Eq. 3.18, for linear models in the regression parameters and Gaussian,
independent residuals, the covariance matrix of these regression parameters is

Σβ = σ
2
ε (X

T X)−1

That is, the uncertainty around the regression coefficients only depend on the variance
of the residuals (which we cannot know before performing the experiment), and the
system matrix X which is directly related to the sampling pattern. For linear models,
the inverse of this matrix is called the Fisher’s Information matrix

Iβ = Σ
−1
β

The covariance of the predictions is

Σy = XT
Σβ X

As we saw in Sec. 3.1.7, there are several optimization criteria

D-optimal Maximize the determinant of Iβ

A-optimal Minimize the trace of Σβ

T-optimal Maximize the trace of Iβ

E-optimal Maximize the minimum eigenvalue of Iβ

G-optimal Minimize the maximum entry of ΣY
I-optimal Minimize the trace of ΣY

None of them is necessarily better than the rest and our choice depends on our experi-
mental objectives.

In the following we will assume that the Xi variables range between -1 and 1. If this
is not the case, for instance, the solvents in Example 108 may go from a concentration
of 0.01 to 0.1%, we can easily construct a new variable X ′i going from -1 to 1 by
transforming the Xi values as

X ′i =−1+2
Xi−mi

Mi−mi

where mi and Mi are the minimum and maximum values, respectively, of the variable
Xi. We do the experiment design in the X ′i variables and transform them back to their
natural range by undoing the transformation

Xi = mi +
Mi−mi

2
(X ′i +1)

Once each factor is between -1 and 1, and if our model is linear like the one in Eq.
3.30, we might think of a 2k factorial design like the one shown in the following table
and Fig. 3.13
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X ′1 X ′2
- -
- +
+ -
+ +

Figure 3.13: Example of a pure 2k factorial design for a response surface sampling.

However, pure 2k factorial designs do not allow estimating quadratic terms of the
form X2

i , extra samples need to be added. These extra samples are typically centered at
0 so that the 2k factorial design (with only two levels -1 and 1) becomes a 3k factorial
design (with three levels -1, 0, and 1). However, we do not need to run the full 3k

factorial design (all 9 possible combinations). It is enough to perform a fractional run.
Typically, only the center point is added, and several replicates of this are added as a
way to measure possible drifts over time of the experiment, the inherent variability, and
the curvature of the surface. Center points should be added at the beginning and the
end of the experiment and evenly spread along the sequence as shown in the following
table and Fig. 3.14. In general, there should be 3-5 center points along the experiment,
or more if the total number of experiments is large.

X ′1 X ′2
0 0
- -
- +
0 0
+ -
+ +
0 0
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-1.5 -1 -0.5 0 0.5 1 1.5

X
1
'

-1.5

-1

-0.5

0

0.5

1

1.5

X
2
' 3

Figure 3.14: Example of a 2k factorial design with center points for a response surface
sampling. The center point is run 3 times: once at the beginning of the experiment,
once in the middle, and once at the end. In this way we can monitor the stability of the
process.

The full factorial 3k factorial design allows the estimation of third order interactions

Y = β0 overall mean
+β1X ′1 +β2X ′2 main effects
+β11(X ′1)

2 +β12X ′1X ′2 +β22(X ′2)
2 2nd order interactions

+β111(X ′1)
3 +β112(X ′1)

2X ′2 +β122X ′1(X
′
2)

2 +β222(X ′2)
3 3rd order interactions

+ε residual

However, the problem with these designs is that the number of runs quickly grows with
the number of factors, while staying at the level of second order interactions keeps the
number of runs at an acceptable level, as shown in the following table.

k # Factors # Runs 3k full factorial # Runs Quadratic terms
2 9 6
3 27 10
4 81 15
5 243 21
6 729 28

Box-Wilson central composite designs can be used to perform the sampling capable
of estimating up to the quadratic terms of the regression. Fig. 3.15 shows two of
such designs. For k = 2, the number of runs of the Box-Wilson CCI and CCF designs
coincides with the ones of the 3k full factorial. But this does not happen, in general, for
higher k’s. The CCI design can be thought of as a 2k full factorial design (in Fig. 3.15
of levels±1/

√
2, represented in red), plus some replicates of the center point, plus a set

of axial points opposite to each other in different directions (represented in green). The
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CCF design can be thought of as a 2k full factorial design (of levels ±1, represented in
red), plus a set of axial points located at the “faces” of the 2k full factorial (represented
in green).

-1.5 -1 -0.5 0 0.5 1 1.5

X
1
'

-1.5

-1

-0.5

0

0.5

1

1.5

X
2
'

Central composite inscribed, CCI

-1.5 -1 -0.5 0 0.5 1 1.5

X
1
'

-1.5

-1

-0.5

0

0.5

1

1.5

X
2
'

Central composite face centered, CCF

Figure 3.15: These Box-Wilson central composite designs allow estimating up to sec-
ond order interactions between the factors.

The treatments in the design can also be randomized, but not the central points,
which should be evenly spread along the runs. For instance, a Box-Wilson CCI design
with 5 center points could be run as

X ′1 X ′2
0 0
0 0
0 -1/

√
2

0 1/
√

2
-1 -1
-1 1
1 -1

-1/
√

2 0
1 1
0 0
0 0

1/
√

2 0
0 0

In general, the further the sampling points from the origin, the more determined is the
matrix XT X . In this regard, the CCF design would be preferable to the CCI.
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The Box-Behnken designs are an alternative to the CCF designs in which all sam-
ples are centered at the edges of the cube (hypercube) define by the 2k full factorial.
Figure 3.16 shows these two designs. Both allow the estimation second order terms, but
the CCF requires 15 samples and the Box-Behnken only 13. This difference increases
as the number of factors, k, grows. Although, they are not seen, both designs have
center points. The following table shows some of the treatments for the Box-Behnken
design of k = 5 factors, note that in each of the rows there are exactly two treatments
that are different from 0. For comparison purposes, the Box-Behnken design of k = 5
factors require 46 runs, while the 3k full factorial requires 243.

X ′1 X ′2 X ′3 X ′4 X ′5
0 + 0 0 +
0 0 - 0 -
- - 0 0 0
0 + + 0 0
- 0 - 0 0

-1

1

-0.5

10.5

0

X
3
'

0.5

Box-Wilson CCF

0.5

X
2
'

0

X
1
'

0

1

-0.5
-0.5

-1 -1

-1

1

-0.5

10.5

0

X
3
'

0.5

Box-Behnken

0.5

X
2
'

0

X
1
'

0

1

-0.5
-0.5

-1 -1

Figure 3.16: Comparison of Box-Wilson CCF and Box-Behnken designs.

Blocking is more difficult with response surface designs and only certain combina-
tions are allowed. For instance, CCI designs allow blocking a variable with two levels;
CCC also allows blocking with 2 or 3 levels; Box-Behnken designs allow blocking only
in limited circumstances; and CCF does not allow blocking. However, we remember
that we can follow a custom design by optimizing some property (see optimality cri-
teria above). Then, we can easily include the block as one parameter more. Fig. 3.17
shows a D-optimal design of two control variables with three blocks (for instance, the
researcher performing the experiment).
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D-optimal design with 3 blocks (colours)

Figure 3.17: Example of D-optimal design for k = 2 variables and 3 blocks.

Important remarks

128. Blocking a variable is difficult in response surface designs. It can be done
through optimality criteria, but the blocking pattern does not follow any
particularly symmetric structure.

3.2.11 Mixture designs

Design summary. Similarly to response surface designs, mixture designs also
address regressions of the type Y = f (X1,X2, ...,Xk), where Y is a variable of
interest and X1, X2, ... are the fractions of the mixture made of compound 1,
compound 2, ... These designs are similar to surface response designs, only that
there is an extra constraint that all control variables must add up to 1.

• Example 109: We are interested in preparing a feed for laboratory animals that
maximizes the density of the bones. We have three ingredients for the feed, and
we want to determine the optimal fraction of the three ingredients we must use.
Our variable of interest, Y , is the density of the bones, that is supposed to be a
function of the fraction of the three ingredients:

Y = f (X1,X2,X3)

For instance, if we use 50% of ingredient 1, 30% of ingredient 2, and 20% of
ingredient 3, then we would have X1 = 0.5, X2 = 0.3, and X3 = 0.2. These three
fractions are constrained to add up to 1

X1 +X2 +X3 = 1
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Our analysis can be very similar to the one we have followed for the Surface response
designs in the previous section. For instance, we may assume a linear model for the
response with second order interactions

Y = β0 overall mean
+β1X1 +β2X2 +β3X3 main effects
+β11X2

1 +β12X1X2 +β13X1X3 +β22X2
2 +β23X2X3 +β33X2

3 2nd order interactions
+ε residual

(3.31)
All possible combinations of the mixture form a simplex. A simplex of k− 1 di-
mensions is defined as the set of all points with coordinates (X1,X2, ...,Xk) such that
0≤ Xi ≤ 1 and

X1 +X2 + ..+Xk = 1

For instance, the simplex of 2 dimensions is given by 3 points and its shape is an
equilateral triangle as the one shown in Fig. 3.18. The vertices of the simplex are given
by the pure ingredients (a mixture in which only one of the ingredients is used). Points
inside the triangle represent different mixtures. In the figure we show a few mixtures.
For instance, the mixture in which all the ingredients are equally used X1 = X2 = X3 =
1/3 is called the barycenter of the triangle. The coordinates of any of the points, X , in
the simplex (also called the barycentric coordinates) is a set of numbers (λ1,λ2, ...,λk)
such that

X = λ1X1 +λ2X2 + ...+λkXk

and
λ1 +λ2 + ...+λk = 1

These barycentric coordinates are the ones represented in parenthesis in Fig. 3.18.

Figure 3.18: Simplex in 2 dimensions defined by 3 points (X1,X2,X3).

If we have k factors to explore, we can perform a simplex (k,m) design by using all
combinations of the levels xi = 0, 1

m ,
2
m , ...,1 such that the mixture constraint of adding



3.3. DESIGN SELECTION GUIDE 259

up to 1 is fulfilled. For instance, with k = 3 ingredients and m = 2, our design would
be

X1 X2 X3
1 0 0

1/2 1/2 0
1/2 0 1/2
0 1 0
0 1/2 1/2
0 0 1

For a (k,m)-simplex design, the number of runs is

N =
(k+m−1)!
m!(k−1)!

Consequently, this design has only 6 runs (=4!/(2!2!)), while for a quadratic model such
as the one in Eq. 3.31, with 11 parameters, we need to replicate some of the points or
augment the design to have more sampling points. As we did with the Response surface
designs, we may repeat some of the combinations in order to monitor the stability of
the process. In this way, we may augment the previous design to 14 runs as shown in
this table and in Fig. 3.19.

X1 X2 X3
0 0 1

1/2 1/2 0
1/3 1/3 1/3
0 1 0
1 0 0

1/2 0 1/2
2/3 1/6 1/6
1/6 2/3 1/6
0 0 1

1/2 1/2 0
1/6 1/6 2/3
0 1/2 1/2
0 1 0
1 0 0

We may also perform constrained designs. For instance, we may want to perform
mixtures in which X1 and X2 are constrained to be less than 50%. Then, our sampling
points must lay in the unshaded area of Fig. 3.20. The D-optimal sampling points are
shown on the bottom of the same figure.

3.3 Design selection guide
In the following paragraphs we provide some guidance on how to choose a suitable
experimental design. The guide is not meant to be the ultimate word in the selection
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Figure 3.19: Mixture design, those points with replicated twice have been indicated by
×2.

and other criteria may also be valid. However, we find it very useful for practitioners.
The approach followed in this guide refers to several sections of the book depending
on multiple criteria. Do not forget that the experiment designs explained in this chapter
must be combined with randomization so that we avoid biases caused by uncontrolled
factors.

Criterion 1. What kind of study are you performing?

• Screening: It requires the least number of runs, but also gives the least
amount of information. Very low resolution designs are employed (see
fractional factorial designs in Sec 3.2.5). Only the main effects can be
estimated. It requires a second experiment focusing on those factors that
have been identified to be relevant. For continuous factors, the complexity
of the fitted model (main effects, second order interactions, etc.) depend
on the number of sampling points (see response surface designs in Sec.
3.2.10).

• Characterization: Requires more runs than screening and less than opti-
mization. It can estimate models up to second order interactions (see frac-
tional factorial designs in Sec 3.2.5 and response surface designs in Sec.
3.2.10).

• Optimization: This is the most informative design, but also requiring the
most number of runs. It should be used with at most 5 factors, because
the number of runs grows exponentially. For discrete factors, these are the
standard factorial designs (Secs. 3.1.6 and 3.2.4). We may not need to
perform all the treatment combinations if we are not going to estimate very
high order interactions (see fractional designs in Secs. 3.1.7 and 3.2.5).

Criterion 2. What kind of variables do you have?
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Figure 3.20: Top: Shaded areas correspond to mixtures in which X1 > 1/2 or X2 > 1/2.
Bottom: The D-optimal sampling points for the unshaded area.
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• Discrete factors: with two (e.g., yes/no; absent/present) or more levels (e.g.,
drug A/B/C or placebo). These are the standard factorial designs (Secs.
3.1.6 and 3.2.4).

– If you have a few factors (e.g., drug dose; drug dose and stomach
state), you may want a Completely Randomized Design (Sec. 3.1.1).
Actually, if we are not going to estimate all the high order interactions
we can reduce the experimental effort by performing only a fraction of
the whole list of experiments (Secs. 3.1.7 and 3.2.5).

– If there are variables to block (e.g., animal sex, day of the experiment,
researcher performing it), you may want to use a Randomized Block
Design (Sec. 3.1.3). If the block size does not allow for replicating all
the treatments in all blocks, you will need an incomplete or imbalanced
block design (Sec. 3.1.7). Latin squares is a quick way of analyzing
one factor and two nuisance factors (Sec. 3.2.1). If we concatenate
several experiments of this kind, you may use a Graeco-Latin square
(Sec. 3.2.2).

– Using covariates (e.g., the laboratory temperature or time of the day
at which the experiment is perform) can reduce the variability of the
experiment (Sec. 3.1.4).

– If the discrete levels come from the discretization of a continuous vari-
able (e.g., three levels of a drug dose), you may want to explore a re-
gression design (Sec. 3.1.2) or a response surface design with a single
factor (Sec. 3.2.10). If the animal can be its own control, you may use
a cross-over design (Sec. 3.2.3). They also serve as a way to block
time as a nuisance factor.

• Continuous factors: these are continuous variables that can be indepen-
dently set (e.g., concentration of one, two or more solvents for an ointment;
temperature and humidity of the experiment). These are the response sur-
face designs (Sec. 3.2.10). You may also want to explore Regression de-
signs (Sec. 3.1.2). Although in this book they have been presented in
separate contexts, they are essentially the same thing.

• Mixture: these are continuous variables that not all of them can be inde-
pendently set, because they are fractions of a total mixture, their sum must
add up to one. These are the mixture designs (Sec. 3.2.11).

• Combined mixture+factors: These are combined designs in which the op-
timal mixture is sought for a number discrete or continuous factors. These
designs have not been explicitly introduced in this book, but we have all
the pieces to build them up.

Criterion 3. Is any of the factors hard to change?
In Sec. 3.2.6 we saw split-plot designs in which of the some factors cannot be
easily changed (e.g, the oven temperature, the room of an animal house, the in-
dividual in a cross-over design). A single level of these hard-to-change factors
receive many combinations of the other easier-to-change factors. Repeated mea-
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sures designs in which the same animal is measured several times is also treated
as a split-plot design.

3.4 Sample size for designed experiments

Along the chapter we have presented the methodology to design an experiment so that
it optimally allocates animals to different groups in order to eliminate the impact of
biases, minimize the variance of group comparisons, and introduce other information
known about each animal such as covariates. In this section we show how to calculate
the sample size for these designs.

3.4.1 Sample size for completely randomized and randomized block
designs

Consider Example 72. In that example we were testing the effect of two drug doses and
a control on the cholesterol level of animals. We showed that the analysis of the data
for this experiment, assuming we had already performed it with 10 animals per group,
led to the ANOVA table reproduced below

Source SS d f MS
Treatments 31252 2 15626
Residuals 30600 27 1133

Total 61852 29

We explained that the decision on whether all treatments had the same effect or not
was taken of the ratio between the Mean Squares (MS) of the treatments and the Mean
Squares of the residuals

f =
15626
1133

= 13.79

which, if the null hypothesis were true, it would be distributed as an Snedecor’s F with
2 and 27 degrees of freedom. In this case, the probability of observing such a large f ,
or larger, if the null hypothesis was true was only 6.18 ·10−5 (this is the p-value of the
hypothesis test) and we rejected the hypothesis that the treatments had no effect.

We remind that the experiment was performed with 10 animals per group. But
how did we arrive to this number? Sample size calculations are performed before the
experiment is done, so we need to assume something about the posterior behaviour of
our measurements. In this case, control animals are supposed to have a cholesterol
level around 250 mg/dL and a standard deviation of 30 mg/dL.

Under the Completely Randomized Design (CRD), the observed data is presumed
to follow the ANOVA model

xi j = µ +αi + εi j

and the analysis of the data results in the following ANOVA table (see Sec. 3.1.1)
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Source Sum of squares Degrees of freedom Mean squares (MS = SS/d f )
Treatments SSα = ∑

i j
(yi.− y..)2 T −1 MSα = SSα/(T −1)

Residuals SSε = ∑
i j
(yi j− (µ +αi))

2 N−T MSε = SSε/(N−T )

Total SST = ∑
i j
(yi j− y..)2 N−1

The ANOVA test is based on the Fα statistic which under the H0 hypothesis is dis-
tributed as a central Snedecor’s F with d fα and d fε degrees of freedom. Under Ha
it is distributed as a noncentral Snedecor’s F with the same degrees of freedom and
non-centrality parameter

φ =
SSα

σ2
ε

The principles of sample size calculation were already introduced in Sec. 1.6. We
must specify a confidence level, 1−α . Then, this confidence level will result in a
critical value for an statistic, in this example f , such that if the observed f exceeds
the critical value f1−α , then we reject the null hypothesis. We must also specify the
statistical power we want to have to detect a specific departure from the null hypothesis.
The statistical power is one minus the probability of failing to reject the null hypothesis
when the alternative hypothesis is true. This probability depends on the sample size and
the statistical power constraint gives us a sample size design equation.

This methodology applied to the particular case of the CRD results in the following
reasoning. Let us assume we have T treatments, and we will employ n animals per
group. The total number of animals will be N = nT and the corresponding number of
degrees of freedom will be nT −1. The degrees of freedom “consumed” by the treat-
ments will be T −1 and the remaining degrees of freedom, nT −T go to the residuals.
Consequently, the Snedecor’s F of interest is of T −1 and nT −T degrees of freedom.
For the alternative hypothesis, we need to calculate the non-centrality parameter which
is given by

φ =
SSα

σ2
ε

=

∑
i j
(yi.− y..)2

σ2
ε

=
∑
i

nα2
i

σ2
ε

= n
∑
i

α2
i

σ2
ε

The sample size calculation for CRD is traditionally performed by hypothesizing
a possible result for which we already want to have a given statistical power. In the
cholesterol example, let us assume that we want detect with a statistical power of 90%
those deviations of at least 20% from the nominal level, that is, if any of the groups
departs more than 50 mg/dL (=0.2 ·250). We had three groups (control and two doses),
let us refer to the mean in each one of the groups as µ1, µ2 and µ3, respectively. If all
groups have the same number of individuals, then we can calculate the main effects as

µ = 1
T

T
∑

i=1
µi

αi = µi−µ

• Example 110: In our example, we would have, for instance

µ1 = 250,µ2 = 250,µ3 = 200
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Actually, it does not matter if the deviation is positive or negative, and in which
of the groups it occurs. Then

µ = 1
3 (250+250+200) = 233.33

α1 = 250−233.33 = 16.67
α2 = 250−233.33 = 16.67
α3 = 200−233.33 =−33.33

The corresponding non-centrality parameter would be

φ = n
16.672 +16.672 +(−33.33)2

302 = 1.85n

The sample size design must find a number of samples per group such that the
probability of rejecting the null hypothesis when this is true is α and the probability of
not rejecting it when it is false is β (see Fig. 3.21). In general, we must satisfy

F1−α,d fα ,d fε = Fβ ,φ ,d fα ,d fε (3.32)

and in particular, with the variables introduced so far

F1−α,T−1,T n−T = Fβ ,φ ,T−1,T n−T (3.33)

• Example 110 (continued): In our example, we must find n such that

F0.95,2,3n−3 = F0.1,1.85n,2,3n−3

This is satisfied for n = 8. We see that by taking n = 10 animals per group we
have used more animals than necessary for our research goals.

A similar design, although from a different perspective, would have been obtained from
the calculations in Sec. 2.1.6.

Important remarks

129. Eq. 3.32 is also valid for randomized block experiments and experiments
with covariates. The only difference is the number of degrees of freedom
left for the residuals and the variance of the residuals (which is reduced by
the introduction of the blocks and the covariates if they really explain part
of the variability of the data). The non-centrality parameter only depends
on the main effects and the effect size we want to be able to detect.

130. For randomized block experiments, we need to remind that n is the number
of samples for a given treatment. If there is a block with two levels, then
each of the two levels will receive n/2 samples.



266 CHAPTER 3. DESIGN OF EXPERIMENTS

Figure 3.21: The red shaded area is the probability of observing an f statistic larger
than the critical value F1−α,d fα ,d fε if the null hypothesis is true (this area should be
α). The blue shaded is the probability of not rejecting the null hypothesis when the
alternative hypothesis is true (this area should be β ).
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3.4.2 Sample size for factorial designs

The sample size for a full factorial design follows the same principles as for the stan-
dard completely randomized designs. Eq. 3.32 is still valid as long as we correctly
account for the number of degrees of freedom. For several factors, we need to perform
a sample size calculation for each one of the factors. In the following example we
illustrate these ideas.

• Example 111: Following with our example of the previous section about the
design of the diet to control cholesterol, let us assume that we have 5 different
nutritional compositions (factor P), 3 different levels of fiber content (factor Q)
and 4 different presentations (factor R). We want to be able to detect a change of
20% in the cholesterol level with a statistical power of 90%. How many animals
do we need per group (defined as the combination of P,Q, and R)?

When we analyze the data the ANOVA table will be of the following form (note that
samples have now four indices, three for the factors and one for the animal within that
combination of factor levels). We assume that there are n animals per combination

Source Sum of squares Degrees of freedom

Treatments P SS
α(P) = ∑

i jkl

(
α
(P)
i

)2
= nQR∑

i

(
α
(P)
i

)2
P−1

Treatments Q SS
α(Q) = ∑

i jkl

(
α
(Q)
j

)2
= nPR∑

j

(
α
(Q)
j

)2
Q−1

Treatments R SS
α(R) = ∑

i jkl

(
α
(R)
k

)2
= nPQ∑

k

(
α
(R)
k

)2
R−1

Interactions PQ SS
α(PQ) = ∑

i jkl

(
α
(PQ)
i j

)2
= nR∑

i j

(
α
(PQ)
i j

)2
(P-1)(Q-1)

Interactions PR SS
α(PR) = ∑

i jkl

(
α
(PR)
ik

)2
= nQ∑

ik

(
α
(PR)
ik

)2
(P-1)(R-1)

Interactions QR SS
α(QR) = ∑

i jkl

(
α
(QR)
jk

)2
= nP∑

jk

(
α
(QR)
jk

)2
(Q-1)(R-1)

Interactions PQR SS
α(PQR) = ∑

i jkl

(
α
(PQR)
i jk

)2
= n ∑

i jk

(
α
(PQR)
i jk

)2
(P-1)(Q-1)(R-1)

Residuals ∑
i jkl

ε2
i jkl N−PQR

Total SST = ∑
i jkl

(yi jkl− y....)2 N−1

In general, given T levels within a factor, a change ∆ in one of the classes results in
main effects of the form αi =

1
T ∆ for all levels except for one that will be αT =−T−1

T ∆.
The corresponding sum of squares is

T

∑
i=1

α
2
i =

T −1
T

∆
2.
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For different factors the associated non-centrality parameters are

φP =
SS

α(P)

σ2
ε

=
nQR P−1

P ∆2

σ2
ε

φQ =
SS

α(Q)

σ2
ε

=
nPR Q−1

Q ∆2

σ2
ε

φR =
SS

α(R)

σ2
ε

=
nPQ R−1

R ∆2

σ2
ε

and n must be such that the statistical confidence and power requirements are met for
all factors

F1−α,P−1,N−PQR = Fβ ,φP,P−1,N−PQR
F1−α,Q−1,N−PQR = Fβ ,φQ,Q−1,N−PQR
F1−α,R−1,N−PQR = Fβ ,φR,R−1,N−PQR

(3.34)

• Example 111 (continued): In our example, we have P = 5, Q = 3, R = 4. Then,

φP =
n3·4 4

5 502

302 = 26.67n

φQ =
n5·4 2

3 502

302 = 37.04n

φR =
n5·3 3

4 502

302 = 31.25n

The we must find n such that

F0.95,4,60n−60 = Fβ ,26.67n,4,60n−60
F0.95,2,60n−60 = Fβ ,37.04n,2,60n−60
F0.95,3,60n−60 = Fβ ,31.25n,3,60n−60

It suffices with n = 2 samples per group. We cannot do it with n = 1 because
we would not have degrees of freedom available for the residuals. Actually, with
n = 2 we have a statistical power much larger than 90%, and we will be able to
detect smaller changes.

Important remarks

131. We have presented an example with a full factorial design in which the sam-
ple size calculation has been performed considering only the main effects.
However, it would be straightforward to base the design in the interactions
of order two, three, ... or to consider a factorial design in which the interac-
tions are not estimated. A key point is that we need to foresee before doing
the experiment which will be the variance of the residuals.

• Example 112: Following with the previous example, we have a total of PQR =
5 · 3 · 4 = 60 different treatments, with 2 animals per group. That makes a to-
tal of N = 120 animals. They are housed in cages of 4 animals. If we think
that the cages may have some influence, we can use them as blocks. We will
need 30 cages, and we will spend 29 degrees of freedom in estimating their
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effects. If our model contains second order interactions, then the number of de-
grees of freedom required for the model are: 4+ 2+ 3 = 9 for the main effects
and 4 · 2+ 4 · 3+ 2 · 3 = 26 for the second order interactions. The total num-
ber of degrees of freedom required for the model will be 29+9+26 = 64. We
have 120 animals (119 degrees of freedom), so that leaves us with 119−64 = 55
degrees of freedom for the residuals. With this many number of spare degrees
of freedom, we are still capable of blocking other variables like the researcher
performing the experiment, animal sex, and age.



270 CHAPTER 3. DESIGN OF EXPERIMENTS



Chapter 4

Statistical pitfalls

Evolution did not select Homo sapiens because we were good at solving statistical
problems, the evolutionary pressure was on the solution of other kind of problems. Al-
though in an economical context, the work of Daniel Kahneman and Richard Thaler,
Nobel Memorial Prizes in Economy in 2002 and 2017 respectively, showed us how
difficult is probability and statistics for us. Both have outreach books in which they
summarize part of their work and the interested reader will find in them many surpris-
ing and funny situations in which humans are found when dealing with these issues
(Thinking, fast and slow, D. Kahneman; Misbehaving: the making of behavioral eco-
nomics, R. Thaler). As a consequence, Statistics manages to regularly pervade our
intuition. We tend to quickly jump into conclusions from characteristics of a small
population, we tend to be overconfident in our own experiments, we tend to see pat-
terns in random data, we do not realize that coincidences are common, and we tend
to ignore alternative explanations. Actually, one of the main points in Statistics is to
decide when we can generalize to a large population, the observations we have made in
a small laboratory sample. Along these chapters we have seen how to fight bias, calcu-
late the sample size that allows this generalization and how to organize these samples
so that we avoid influences from nuisance factors.

Once the experiment is carried out, we will analyze its results using also statistical
tools. The scope of this book is on the design of the experiment, and not on data
analysis. However, there is a non-negligible intersection of ideas related to both data
analysis and experimental design. If these ideas are overlooked, then the experiment
runs the risk of being spoiled. In this section we collect a number of issues to keep in
mind during our statistical analysis, and planning of the research experiment.

4.1 Probability pitfalls

We are not good at recognizing ambiguously defined probabilities. When we say
that a test for a given disease is 98% accurate, we normally failed to recognize that this
statement alone is ambiguous. In a frequentist approach, the probability is defined as
the ratio between positive cases and all possible cases. For instance, the probability of

271



272 CHAPTER 4. STATISTICAL PITFALLS

being born a male is the ratio between the number of all male newborns and the number
of all newborns. When we say that the disease test is 98% accurate, we do not know
which the numerator and denominator are. There are four possible interpretations and
they all make sense. Simply, the statement “98 % accurate” does not indicate which
one of them we are referring to:

• Interpretation 1: Sensitivity. Numerator: Correctly identified disease cases in a
group of animals with the disease. Denominator: Number of tested animals (all
of them had the disease).

• Interpretation 2: Specificity. Numerator: Correctly identified non-disease cases
in a group of animals not having the disease. Denominator: Number of tested
animals (none of them had the disease).

• Interpretation 3: Predictive value of positive test. Numerator: Correctly identi-
fied disease cases. Denominator: Number of animals whose result with this test
was positive.

• Interpretation 4: Predictive value of negative test. Numerator: Correctly identi-
fied non-disease cases. Denominator: Number of animals whose result with this
test was negative.

It is even more ambiguous when we assign to probabilities the notion of “belief”.
The surgeon told the first patient ever having a heart transplant that his probabilities
of survival were of 70%. In a frequentist approach (number of successes divided by
number of possible cases), this statement has no sense, since there has not been any
previous experience. In many research situations, our probabilities resemble more a
degree of belief (consequently not supported by accurate measurements of previous
data), rather than a true frequentist probability. There is nothing wrong with this ap-
proach (very likely, 70% was the expected value of the surgeon considering all his
experience in similar patients and what he could infer from other, necessarily different,
operations), as long as we recognize its limitations: it is simply a useful way of han-
dling uncertainty, and that probability is much more solidly invoked when it is based
on past observations or in well defined models as illustrated in the next paragraph.

We normally fail to consider the assumptions of probabilities. We can compute
the probability of an event based on a model of how the world is or based on counting
positive results and dividing it by the total number of possible outcomes. For instance,
for the probability of being born male, we may make the following assumptions: 1)
Each ovum has an X chromosome and none has a Y chromosome; 2) Half the sperm
have an X chromosome and the other half have a Y chromosome; 3) Only one sperm
will fertilize the ovum; 4) Each sperm has an equal chance of fertilizing the ovum; 5)
If the winning sperm has a Y chromosome, then the embryo will be XY (male); 6)
If the winning sperm has a X chromosome, then the embryo will be XX (female); 7)
Any miscarriage or abortion is equally likely to happen to male or female fetuses. Our
prediction with this model is that there is 50% chances of being a male or a female. We
have come to this probability reasoning on a model of the world.
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However, reality is that in 2012 worldwide, 51.7% of the newborns were male,
and 48.3% female. There is something wrong in our model that does not faithfully
represent the real world. If we now set the probability of humans being male to 51.7%,
because it has been carefully measured experimentally, we are further adopting more
assumptions. We assume that this probability does not change: 1) over the years, 2)
along the year, 3) across races, 4) and across world regions.

Realizing how we have come to a given probability (model or data based) is impor-
tant in order to understand the limitations of the predictions based on this probability.

We tend to confuse conditional probabilities. Conditional probabilities are nor-
mally expressed as Prob{A|B} and it is understood as the probability of A occurring
when we know that B has occurred. It is also read as the probability of A given B. Our
problem is that we find it difficult to distinguish Prob{A|B} from Prob{B|A}. In some
contexts it is very easy: it is not the same the probability of a boring book (given, B)
being about Statistics (A) and the probability of a Statistics book being boring (I leave
to the reader the decision about which one is higher). In some other contexts it is more
difficult: the probability that a heroin addict (given, B) first used marijuana (A) is not
the same as the probability of a marijuana user (given) will later become addicted to
heroin. And in technical contexts it becomes absolutely incomprehensible: the proba-
bility of a study for which the null hypothesis is true (given, B) having a p-value smaller
than 0.05 (A) is not the same as the probability of the null hypothesis being true for a
study in which the p-value is smaller than 0.05 (given).

We do not naturally calculate with conditional probabilities. We regularly moni-
tor for the presence of a rare disease in our animal house. We have a test that correctly
identifies 99% of the infected animals, and incorrectly gives a true positive in 0.2% of
the non-diseased animals. There must be something wrong with these numbers, 99%
and 0.2%, because they do not add up to 100%.

This intuition is incorrect because they are not complementary probabilities. 99%
is the probability of identifying the disease with the test (positive result of the test)
knowing that the animal has the disease, while 0.2% is the probability of incorrectly
identifying the disease knowing that the animal does not have the disease. These prob-
abilities are formally written as

Prob{positive|disease}
Prob{positive|healthy}

It is not true that

Prob{positive|disease}+Prob{positive|healthy}= 1

which cannot be read as “Given a positive result of the test, for sure, either the animal
has the disease or not”. The complements of these probabilities are Prob{negative|disease}
and Prob{negative|healthy}, respectively, for which

Prob{positive|disease}+Prob{negative|disease} = 1
Prob{positive|healthy}+Prob{negative|healthy} = 1
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which can be read as “Given an animal with the disease, for sure, either the test is
positive or negative” (the same for a healthy animal).

We do not naturally do Bayesian calculations. If the test of the previous example is
positive for one of the animals in our laboratory, what is the probability that it actually
has the disease? We know that this disease affects only 0.1% of the animals.

The correct answer to this question is given by Bayesian theorem:

Prob{disease|positive}= Prob{positive|disease}Prob{disease}
Prob{positive}

The probability of having a positive result

Prob{positive} = Prob{positive|disease}Prob{disease}
+Prob{positive|healthy}Prob{healthy}

= 0.99 ·0.001+0.002 ·0.999 = 0.003

Substituting back into the Bayesian formula, we have

Prob{disease|positive}= 0.99 ·0.001
0.101

= 0.331

That is, we have a very accurate test (only failing to detect 1% of the diseased animals
and with very few false positives), but if the test is positive, the probability of actually
having the disease is less than 1/3. The problem is that the disease is rare and because of
that there are more false positives (Prob{Falsepositive}=Prob{positive|healthy}Prob{healthy}=
0.001 ·0.999= 0.001998) than true positives (Prob{Truepositive}=Prob{positive|disease}Prob{disease}=
0.99 ·0.001 = 0.00099).

We are not good at recognizing Bayesian setups. One third of the laboratory ac-
cidents happen to 1st year Ph.D. students. Consequently, it seems that 1st year Ph.D.
students are more careful in their laboratory handling than their more experienced col-
leagues that are responsible for two thirds of the laboratory accidents. But we tend
the forget that 1st year Ph.D. students are only 5% of the researchers in the labora-
tory. 1/3 is the probability of being in 1st year knowing that there has been an accident
(Prob{1st|Acc}). How reliable is a 1st year Ph.D. student in the laboratory is not given
by this probability, but by Prob{Acc|1st}. With the data available we cannot calculate
this latter probability, but we can calculate the odds ratio of a laboratory accident be-
tween 1st year Ph.D. students and the rest of researchers in the laboratory. For doing
so, we exploit Bayes rule

Prob{1st|Acc}= Prob{Acc|1st}Prob{1st}
Prob{Acc|1st}Prob{1st}+Prob{Acc|rest}Prob{rest}

which can be transformed into

Prob{Acc|1st}
Prob{Acc|rest}

=
Prob{1st|Acc}

1−Prob{1st|Acc}

(
1

Prob{1st}
−1
)
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Substituting the data known, we get

Prob{Acc|1st}
Prob{Acc|rest}

=
1/3

1−1/3

(
1

0.05
−1
)
= 9.5

That is, 1st year Ph.D. students have a risk of laboratory accident that is 9.5 times larger
than that for the rest of researchers.

4.2 Data analysis pitfalls
We get confused by variance and subpopulations. We tend to be overwhelmed by
the biological variability observed in some populations. This variability is also in-
creased if there exist several subpopulations within the whole populations with very
different characteristics. We tend to constrain statistical analysis to very limited and
homogeneous experimental conditions, we think that we cannot “merge” results from
different replications of the same experiment because they are “too different”. But
along this reasoning we have forgotten a fundamental point of experimental research:
the validity of our results. If we are developing a new vaccine, and its protection effects
can only be shown in very narrow experimental conditions, then our vaccine cannot be
used in a general population. Actually, that is the whole point of statistical analysis:
can we generalize the results observed in a small sample of individuals to the whole
population, or at least, to a subgroup of it with more homogeneous characteristics? The
key assumption of the statistical analysis is that the individuals studied in our experi-
ment are representative (random samples) from the whole population (or a part of it).
If this is true, then population variance can be compensated by a larger sample size. If
this is not true, then we say that our results are biased. As we saw in Secs. 1 and 1.3,
there can be several sources of bias. Bias invalidates our generalization capability. In
Sec. 1.4.4 we gave an example of an invalid analysis due to the presence of subpop-
ulations and an incorrect randomization. The use of all the information present in the
experiment, very often in a graphical way, will allow us to understand the relationships
between the different variables and, possibly, reduce the number of animals in future
experiments by a better understanding of their behaviour.

In very few cases, we need to analyze data with no variance. This could be the case
for instance if we measure the time that an animal takes to perform a given task. We
have an upper limit beyond which we stop the experiment, and in this particular case,
all the animals reached that limit. The appropriate tool to analyze this data is through
a survival analysis with censored data. The censoring will handle correctly the lack of
variability in the dataset. In any case, the example just described should be analyzed
with survival analysis.

We misunderstand the meaning of a confidence interval. Instead of a point esti-
mate, it is much better reporting a confidence interval (CI). For instance, instead of
saying that the survival probability after 6 months is 79%, it is much more informative
to say that the 95% confidence interval of the survival probability after 6 months is
[64,89]%. The true survival proportion lies or lies not in the 95% CI, but there is no
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way to know if it does or not. If we repeat the experiment (calculating the CI) many
times, in 95% of the occasions, our CI contain the true survival proportion (although
we do not know which ones). Actually, the confidence is on our procedure to construct
intervals, not about this particular interval. 95% is, consequently, the probability that
our CI contains the true proportion. There is nothing special about 95% (except tra-
dition). If the true parameter is outside our CI, it is due to bad luck with our samples
(sampling error). This occurs in 5% of the cases.

95% is not the probability that the true proportion is in our CI (note the difference
between this latter statement and that our CI contains the true proportion with probabil-
ity 95%). Once we have performed the experiment, the true propotion is or is not inside
the CI, it is no longer a matter of probability. The 95% probability relates to the con-
struction procedure of CIs, not to a specific CI. A 95% CI does not mean that 95% of
the sample data falls within this interval. A 95% CI does not mean that with probability
95% if we repeat the experiment, the estimated proportion falls within this interval. It
does not mean, either, that 95% of the population has this survival proportion.

We misunderstand the meaning of a p-value. If we compare two groups (treatment
and control) and we get a p-value of 0.03. This means that ...

• If the two population means were identical (null hypothesis), there is a 3%
chance of observing a difference as large as you observed (or larger).

• Random sampling from identical populations would lead to a difference smaller
than what you observed in 97% of the experiments, and larger than you observed
in 3% of the experiments.

and it does not mean that ...

• There is a 97% chance that there is a real difference between the two populations
and 3% chance that the difference is a random coincidence.

• The p-value is the probability that the result is due to sampling error.

• The p-value is the probability that the null hypothesis is true.

• The probability that the alternative hypothesis is true is not 1-p-value.

• The probability that the experiment will hold up when repeated is not 1-p-value.

• A high p-value does not prove that the null hypothesis is true.

There are also some common mistakes related to the use of p-values:

• Stargazing: Considering results in a paper only important if they have 1, 2, 3, ...
stars. p-values are not as reproducible as confidence intervals (see Sec. 1.5.2),
and they only mean that the result is not generated under the null hypothesis, not
that the result is relevant.
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• Significance is not relevance: Being statistically significant does not mean that
the result is relevant, because the difference between the treatment and control
groups may be too small to be useful, for instance. The following two examples
illustrate this idea.

1. We compare the responding proportion in a control and treatment group.
We report the sample size, the proportion of responding animals in the
control and treatment groups, the p-value, and the 95% confidence interval

Sample size per group Control Treatment pval CI 95%
10 10% 80.0% 0.006 [44.39,97.48]%
100 10% 26.0% 0.006 [17.74,35.73]%

1000 10% 14.1% 0.006 [12.00,16.41]%
10000 10% 11.2% 0.006 [10.59,11.83]%

They all have the save p-value, but their relevance are rather different (e.g.,
the last one is seldom interesting, the effect is too small, while the first
one is rather interesting despite its small sample size that translated into
a large uncertainty about the true proportion of respondents). Conversely,
if the result is not statistically significant, it is a warning on its biological
relevance (since we cannot discard that we have observed these differences
just by chance, the null hypothesis cannot be rejected).

2. In Fig. 4.1 top we show a possible result for an experiment. All statis-
tical measures (parametric or non-parametric difference between means or
distributions) would indicate that there is a highly significant difference be-
tween the two groups. However, we see in Fig. 4.1 bottom that they overlap
too much to be of practical relevance. The treatment implies a slight shift
to the right of the animal response, which is correctly identified by the sta-
tistical tools. But it is the responsibility of the researcher to decide whether
this difference is important in real life, or even, if it exists, it is too small
to be relevant. Unfortunately, Statistics cannot give any number that cap-
ture the importance of a statistically significant finding. This importance
depends on the physiological meaning of the underlying variables and their
impact in the quality of life of the animals.

• p-hacking to obtain significance: Trying different hypothesis tests to see if one of
them proves to be significant, dynamic sample size (adding more and more data
until the result is significant), taking subsets of the data on which the difference
is significant, playing with the definition of outliers, changing from a two-sided
hypothesis to a one-sided, or preprocess the data in multiple ways. In general, we
cannot change our data analysis plan after seeing the results of the experiment.
This is called data snooping. Simmons et al (2011) argue that part of the problem
is that we currently measure many variables and are free to choose which ones
to present in the article. Simonsohn et al (2014) and Head et al (2015) tried
to quantify the extent of p-hacking in publications reaching the conclusion that
it increases as the reported p-value approaches the threshold 0.05, very likely
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Figure 4.1: Example of a comparison between two experimental situations in which
all statistical measures indicate a highly significant difference, but whose practical rel-
evance may not be too important. The top figure represents a typical bar plot with the
mean and its SEM (Standard error of the mean) of the results from the two experiments
and the bottom figure represents their histogram.
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meaning that it might have originally been above 0.05 and that, by probably
well intended purposes, the researchers made an effort to find the analysis/data-
selection combination that turned the data just significant.

• Post-hoc power analysis is the estimation of the statistical power once the ex-
periment has been performed. We have observed some effect size, and now we
calculate what would be the statistical power if the true underlying effect size
was the one observed. Unfortunately, post-hoc power is simply another way of
reporting the p-value. There is a close relationship between the observed power
and the observed p-value (Hoenig and Heisey, 2001). If we want to look at our
experiment retrospectively, we should better look at the confidence interval. On
the other side, post-hoc power analysis is useful as a prospective tool to design
new experiments (Hoenig and Heisey, 2001).

Nieuwenhuis et al (2011) shows a number of pitfalls in the reporting of statistical
tests, especially in the use of the p-value and the selection of the appropriate statistical
test.

We do not know how to interpret not significant results. Two groups of pregnant
women:

• One of the groups received routine ultrasound twice during pregnancy. In 4.98%
(=383/7685) of the cases, an adverse outcome was detected.

• The other group received ultrasound only when indicated by clinical reasons. In
4.91% (=373/7596) of the cases, an adverse outcome was detected.

The null hypothesis is that the risk of adverse outcome is the same in both groups. The
relative risk is 1.01 (=4.98/4.91) and has a 95% confidence interval (CI) [0.88,1.17]
and the p-value is 0.86. There are three possible interpretations and there is no way to
decide which is correct:

1. The CI contains 1. Routine ultrasounds are not helpful nor harmful. They could
be skipped.

2. The CI is compatible with a relative risk of 0.88, that is there is a 12% reduction
in the risk of adverse outcome by routine use of ultrasounds.

3. The CI is compatible with a relative risk of 1.17, that is there is an increase of
17% in the risk of adverse outcome. May ultrasounds be harmful to the fetus?

We do not realize the assumptions made by statistical analysis. Most statistical
analyses commonly used in research assume that:

• The samples in our experiment are representative of a larger population. There
is no bias as those discussed in Secs. 1 and 1.3. The conclusions we draw
from our data can only be extrapolated to a population for which our sample was
representative. For instance, the survival proportion after 6 months for a given
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disease depends on the state-of-art treatments at that moment, the clinical cares
given to the patient, ... changes in these variables will induce changes in the
survival proportion.

• Samples are independent, and as we saw in Sec. 1.2 there are obvious and not so
obvious ways of breaking this independence.

• Data is accurate. Beside obvious errors as mistypes, there are more subtle ways
of breaking this assumption.

– Counting a specific kind of cell in a microscopy field is sometimes un-
defined because we have doubts of whether a cell is really of the type of
interest.

– If we are interested in studying the survival proportion after 6 months for
a given treatment, we may make more efforts to keep a treated individual
alive from 5 months to 6 months. If it dies after 6 months and 1 day, it
counts as a survival (and, consequently, a success) for our treatment.

– For survival analysis, the entry criteria does not change over time. For
instance, it may be the detection of the first metastasis. But the acquisition
of new equipment in the middle of the study allows us to detect earlier these
metastases.

– The same happens with the end point, if we are interested in cancer deaths,
but our diseased animals die from an infection totally unrelated to cancer,
do we count them for survival? Counting them or not counting, both make
sense, but the decision has to be taken before performing the experiment.
In these cases, it is also recommended making the survival analysis twice
(counting and not counting them) and checking whether the two results
significantly differ.

• There are no outliers. A sample is an outlier if it comes from

– Invalid data (transposed digits, shifted decimal point, sensor blackout, ...).

– Experimental mistake (bad pipetting, a voltage spike, a hole in a filter).

It is not an outlier if it comes from

– Random chance (just by chance some values are larger/smaller than rest).

– Biological diversity (the population is really variable).

– Invalid assumption (we assume it is normal, but it is log-normal).

Removing data because it does not fit our “expectations” is cheating. But, leav-
ing outliers may lead to invalid results, it is another way of “cheating” (see Fig.
4.2). We do not cheat when the decision to remove an outlier is based on rules
and methods established before the data was collected. In this regard, the sys-
tematic use of robust statistics (statistical procedures specifically designed to be
robust to extreme values) may help.
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Figure 4.2: Example of a dataset for which leaving an outlier incorrectly results into an
artificially inflated coefficient of determination, R2 = 0.91, giving the impression of a
clear relationship between X and Y . If we remove this outlier, there is no relationship
between X and Y .

We fail to realize that non-parametric tests are not assumption free. Nonparamet-
ric methods have several advantages or benefits over parametric methods: they may be
used on all types of data including nominal, ordinal, interval and ratio scaled; they make
fewer and less stringent assumptions than their parametric counterparts; they may be
almost as powerful as the corresponding parametric procedure when the assumptions
of the latter are met and when this is not the case, they are generally more powerful.
This has led to their being used as a first resort when there are any problems with data
distribution, such as non-normality. Note, however, that there is a restricted range of
non-parametric equivalents of parametric tests, and while there are very efficient and
effective equivalents for simple comparisons, there are no such simple equivalents for
more complicated designs commonly encountered in ANOVA. Note also that, while
the non-parametric tests may be distribution-free, they are not assumption-free.

Consider using a parametric method when:

• The assumptions for the population probability distribution hold true.

• The sample size is large enough for the central limit theorem to lead to normality
of averages.

• The data is non-normal but can be transformed.

Consider using a non-parametric method if the data is

• Distinctly non-normal and cannot be transformed.

• From a sample that is too small for the central limit theorem to lead to normality
of averages.

• From a distribution not covered by parametric methods.
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• From an unknown distribution.

• Nominal or ordinal.

It is generally believed that non-parametric tests are immune to data assumption
violations and the presence of outliers. While non-parametric methods require no as-
sumptions about the population probability distribution functions, they are based on
some of the same assumptions as parametric methods, such as randomness and inde-
pendence of the samples.

Equally important is that many non-parametric tests are sensitive to the shape of the
populations from which the samples are drawn. For example, the 1-sample Wilcoxon
test can be used when the team is unsure of the populations distribution, but the dis-
tribution is assumed to be symmetrical. For the Kruskal-Wallis test, samples must be
from populations with similar shapes and equal variances. Problems with data that lead
to non-normality, for example low averages caused by treatment leading to data “piling
up” against the lower limit, will typically lead to differences in both shape and variance
of the distributions, which may invalidate the assumptions of non-parametric tests.

Table 4.1 contains the most commonly used parametric tests, their non-parametric
equivalents and the assumptions that must be met before the non-parametric test can be
used.

We fail to use the correct statistical distribution. Not all data follow the Gaussian
distribution, which is one of the underlying assumption behind t-tests, ANOVA tests,
χ2 tests, etc. As we saw in Sec. 1.4.5, there are many situations in which log-normal is
the appropriate distribution. For counting data we have other distributions like Poisson,
binomial or negative binomial. If we do not know the distribution of our data, we may
resort to non-parametric tests. They are less statistically powerful (because they use
less a priori knowledge), but they do not assume any particular distribution (although
they still do the standard assumptions of a representative and independent samples, and
accurate data). The decision on parametric or non-parametric is most important with
small sample sizes, but with small sample sizes most normality tests cannot show that
the data is not Gaussian (high p-values). This gives a false confidence on the use of
parametric analysis.

We incorrectly report variability. Our data is variable, we never observe exactly
the same value in all animals, and it is common to report not only the mean of our
observations, but also some notion of variability. We have to distinguish between the
variability of our observations and the variability of our estimate of the mean. The
variability of the observations is the variability inherent to the animals we are studying.
Assume we study N = 10 animals, each one with an observation xi (i = 1,2, ...,10).
Our estimate of the mean would be

µ̂ =
1
N

N

∑
i=1

xi

The estimate itself is another random variable (if we take a different group of 10 an-
imals, our estimate of the mean will be different due to the random sampling). If the
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Parametric test Non-parametric
equivalent Non-parametric data assumptions

1-Sample z-test or
t-test 1-Sample sign test

Bivariate random variables are mutually
independent. The measurement scale is at
least ordinal.

1-Sample Wilcoxon
test

Random, independent sample is from a
population with a symmetric distribution.

2-Sample t-test Mann-Whitney test

Mutually independent random samples
from two populations that have the same
shape, whose variances are equal and a
scale that is ordinal.

Paired t-test Paired Wilcoxon test Random, independent samples are from
populations with symmetric distributions.

1-Way Analysis of
Variance (ANOVA) Kruskal-Wallis test

Random, mutually independent samples
are from populations whose distribution
functions have the same shape, equal
variances. Each sample consists of five or
more measures. Kruskal-Wallis is more
powerful than Mood’s for data from many
distributions, but less robust against
outliers.

Mood’s median test

Independent random samples from
population distributions that have the
same shape. Mood’s median test is robust
against outliers.

2-Way ANOVA Friedman test

Responses for each of the
block-treatments are from populations
whose distribution functions have the
same shape and equal variances.
Treatments must be assigned within the
blocks.

Table 4.1: Table of some the most used parametric tests, their non-parametric counter-
parts, and some of the assumptions of the non-parametric tests.
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standard deviation of the observations is σx, the standard deviation of the estimate of
the mean is σx/

√
N, independently of the distribution of the observations. This stan-

dard deviation is called the standard error of the mean (SEM).
If we want to report the variability of the observations we can give an interval based

on percentiles of their distribution (for instance, the interval defined by the 2.5% and
97.5% percentiles). This interval is not a confidence interval. Some researchers report
the mean and standard deviation (SD) of our observations (σ̂x). Reporting the standard
deviation has the disadvantage that makes the reader assume that the distribution of ob-
servations is symmetric around the mean, and that we only know an approximate range
of the observations for the Gaussian (which we know that in practice is approximately
limited to µ±3σ ).

If we report the CI associated to the mean estimate or the SEM, we are only re-
porting our uncertainty about our estimate of the mean. That is, the variability of the
estimate of the mean as a random variable. As the number of samples in our experi-
ment grows we reduce the uncertainty about our estimate of the mean. If we simply
report this uncertainty, we may give the false impression of low variability samples,
when what we have is low variability estimates of the mean of the samples.

We misuse correlation. Pearson’s correlation is a very useful tool to identify the
association of two variables. Intuitively, we want to measure how much information
do we gain on the variable Y given the value of another variable X . Correlation is
between -1 and 1. The closest its absolute value is to zero, the less information we have.
However, we do not realize that these statements are true only for linear dependencies.
Correlation can only account for linear relationships between two continuous variables.
It is a tool designed to capture relationships like the ones in the top row of Fig. 4.3,
in which both X and Y are continuous, random variables. If there is a perfect linear
relationship between both variables (second row of Fig. 4.3), then the correlation is
either -1, 0 or 1, depending on the sign of the slope of Y over X . However, as illustrated
in the third and fourth rows of Fig. 4.3, Pearson’s correlation has the same value for
datasets with very different characteristics. For instance, it cannot capture non-linear
relationships as the ones in the third row. A better suited tool for this is the coefficient of
determination (R2), which is defined for any kind of regression (linear or non-linear),
or the mutual information (which is well-defined for any pair of random variables,
continuous or not). The fourth row shows that a high correlation does not necessarily
imply a strong linear relationship between two variables. Correlation is easily fooled
by the presence of outliers and non-linear relationships.

Additionally, we tend to interpret correlation as causation, for instance if the ex-
pression of two genes, A and B, are highly correlated we tend to interpret one as a
cause of the other. But, this relationship may not be necessarily so: both genes may
be caused by a common gene C that we have not measured. For instance, the budget
spent on ice-creams is highly correlated (negatively) with the budget spent on warm
clothes. The reason is not that if we stop buying ice creams, then we have more spare
money that we can use to buy warm clothes. There is a common cause, summer, that
makes both variables to be highly and negatively correlated. This same effect occurs
if we introduce common information in the variables being correlated. For instance,
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Figure 4.3: Example of several datasets and their corresponding correlation values.
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for a number of villages we may measure the number of babies, storks and women.
Then we construct the variables X = Babies/Storks and Y = Women/Storks, that is
the number of babies and women per stork. Variables X and Y are highly correlated,
but not because storks bring babies to women, but because the same information (the
number of storks) is seen by both variables X and Y .

We also misuse the correlation coefficient when we use it to measure the association
between two discrete variables or one discrete and one continuous variables. In these
cases it is better to use other tools:

• For one continuous and one discrete variables: we may use ANOVA using the
discrete variable as factor and measure the R2 of the model.

• For two ordinal variables: we may use Kendall’s or Spearman’s rank correlation
coefficient.

• For two categorical variables: we may use a χ2 test for association.

The correlation coefficient answers the question “How much information do we
gain on Y if we know the value of the variable X?”. There are more advanced versions
of the correlation coefficient:

• Multiple correlation coefficient: “How much information do we gain on Y if we
know the value of the variables X1 and X2?”

• Partial correlation coefficient: “How much information do we gain on Y if we
know the value of the variable X1 once I have removed from Y the variability due
to X2?”

• Part correlation coefficient: “How much information do we gain on Y if we know
the value of the variable X1 once I have removed from X1 the variability due to
X2?”

We do not check the assumptions of regression. Regression analysis, as all statis-
tical techniques, makes assumptions about the observed data and the data generation
model. Some of the assumptions are hard to know whether they are really fulfilled
or not, but some other are very easy by simply inspecting the residuals of the regres-
sion. Generally speaking, any regression can be seen as the prediction of a variable Y
as a function of some predictors (continuous or discrete) X1,X2, ...,Xp. The difference
between our prediction f (X1,X2, ...,Xp) and the observations are the residuals, ε

Y = f (X1,X2, ...,Xp)+ ε

Linear models like ANOVA and other related models presented along the book share
many of the assumptions explained below and the same caution should be taken with
them. In the following paragraphs we discuss these assumptions:

• Representative data. As all statistical techniques, regression assumes that the
observed data is representative of a population (for instance, mice with hyper-
tension or mice whose cholesterol level in blood was between 1.3 mg/mL and
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1.7 mg/mL). If there are animals that do not belong to this population, then the
regression results are biased. Analogously, if our sample does not fully represent
the whole population it aimed to, our regression is biased. For the same reason,
the regression results are only valid within the population for which the sample
was representative. Applying the regression formula, f , to a different popula-
tion (non-hypertensive mice or mice with a cholesterol level different from the
observed range) is considered as an extrapolation. As such, extrapolation is not
necessarily bad, but we should always be cautious about the validity of the “inter-
nal causes” driving the relationship between the predicted and predictor variables
outside of the population for which the regression was performed.

• Predictors are not noisy. The standard regression tools are based on Least Squares
(LS) optimization. The goal is to find the function f that minimizes the distance
between the predicted and the observed values. Let us define the vector of pre-
dictors X = (X1,X2, ...,Xp), and let us assume that we have N observations of
predictor-observation pairs (Xi,Yi, with i = 1,2, ...,N). Then, Least Squares can
be formulated as

f ∗LS = argmin
f

N

∑
i=1

(Yi− f (Xi))
2 = argmin

f

N

∑
i=1

ε
2
i

This is minimizing the vertical distance between the observed and predicted val-
ues (see Fig. 4.4). Although other regression techniques exist, all those based on
the minimization of something only related to ε implicitly assume that the mea-
surement of the predictors are perfectly performed (without any noise), while the
measurements of the observations are noisy.

If this assumption is not true (the measurements of the predictors are also noisy),
then we should use Total Least Squares (or any of its variants). This technique
minimizes the distance (not the vertical distance) between the predicted and ob-
served values (see Fig. 4.4).

f ∗T LS = argmin
f

N

∑
i=1
‖(Xi,Yi)− (Xi, f (Xi))‖2

Figure 4.4: Illustration of the minimization implied by Least Squares (left) and Total
Least Squares (right).
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• Predictors are linearly independent. Another assumption is that none of the pre-
dictors can be expressed as a linear combination of the rest of predictors. If they
are not linearly independent, then one of the predictors is redundant and can be
removed from the regression because it does not bring any new information (for
instance, in the regression of a mouse length as a function of the mouse weight
in grams and ounces, the weight in ounces does not bring any new information
that was not brought in by the weight in grams). The set of linearly dependent
variables is said to be multicollinear, and the corresponding regression coeffi-
cients are very poorly determined (because the information can be arbitrarily
shifted from one variable to the rest of the variables in the linearly dependent
set). Collinear variables (or almost collinear variables) should be condensed in
a smaller set of linearly independent variables (if you have more predictors than
samples, you are guaranteed to have a multicollinearity problem). This is done
by a previous step of dimensionality reduction (Principal Component Analysis,
Non-negative Matrix Factorization, Independent Component Analysis, Autoen-
coders, ...) or by Partial Least Squares (that has an embedded linear dimension-
ality reduction step).

• Residuals are homocedastic. That is, they have the same variance across all val-
ues of the predictors (see Fig. 4.5 top for an example of heterocedastic residuals).
If this is not the case, it is normally because the data generation model is not cor-
rect. Sometimes, this is corrected by some data transformation (of the predictor
and the predicted variables). If not, you may try to use Weighted Least Squares,
in which the residuals are multiplied by a factor that depends on the predictor
value such that the corrected residual has the same variance across the predictor
range.

f ∗WLS = argmin
f

N

∑
i=1

wi(Yi− f (Xi))
2

• Residuals are uncorrelated. Uncorrelated to the predictors and uncorrelated to
the residuals themselves (see Fig. 4.5 bottom for an example of autocorrelated
residuals). Plots of the autocorrelation function of the residuals or the cross-
correlation between the residuals and predictors should reveal the violation of
this assumption. This normally indicates that the family of explored functions
f does not truly explain the data generation model and that we should resort to
some other family. If this cannot be done, then we may use Generalized Least
Squares in which a matrix W compensates the correlation among residuals. Let
us refer to all the N observations as the vector Y and to the N predictions as the
vector F such that the i-th component of this vector is Fi = f (Xi). Then, the
Generalized Least Squares minimizes

f ∗GLS = argmin
f

(Y−F)TW−1(Y−F)

A common mistake is performing a regression on smooth data (see Fig. 4.6). The
smoothing can artificially create trends. Additionally, the smoothing introduces
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Figure 4.5: Illustration of a regression with heterocedastic residuals (top, note that
the variance of the residuals changes across the predictor value), and autocorrelated
residuals (bottom, residuals are not independent of other residuals).

Figure 4.6: Example of smoothed data using rloess (a robust version of local regression
using weighted linear least squares and a 2nd degree polynomial model).
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a local correlation among residuals increasing the coefficient of determination,
R2, and decreasing the p-value.

• Residuals are normally distributed. Least Squares is tightly linked to the assump-
tion of normality (Gaussian) distribution of the residuals. We should check that
there are not outlier among the residuals. Useful tools for checking for the pres-
ence of outliers are the leverage, the studentized residual, and Cook’s D. Remind
that a data point is an outlier if it can be explained by reasons unrelated to the
underlying population (like measurement errors, data transcription typos, ...) If
after removing outliers residuals are still not Gaussian, for linear regression you
may use a Generalized Linear Model (GLM) that are valid for any distribution of
the residuals from the exponential family (the univariate members of this family
are the Gaussian, χ2, Bernouilli, exponential, β , Γ, and Poisson distributions).
For non-linear regression, we need to formulate the problem in a Maximum Like-
lihood framework using the specific distribution of the residuals.

We misuse regression. We misuse regression when we overinterpret its results. For
instance, we should use at least the p-value and the coefficient of determination, R2,
to fully understand a regression (remind that the R2 is the fraction of the data variance
explained by the regression model). For instance, Fig. 4.7 shows a dataset for which
a linear regression has very low p-value (i.e., it is highly significant) but it also has a
very low coefficient of determination (i.e., it cannot explain the variations observed in
the data). If we only consider the p-value, we overestimate the explanatory power of
the model.

However, choosing a model by maximizing the R2 is not a good practice because
models with more parameters tend to have higher R2. At some moment, with too many
parameters we may perform overfitting as shown in Fig. 4.8. As a rule of thumb it is
recommended to have between 10 and 20 observations per model parameter. For linear
models, a more detailed sample size calculation has been given in Sec. 2.3. There is
no formal definition of overfitting although the Vapnik-Chervonenkis (VC) dimension
or sample complexity theory are formal frameworks related to overfitting. Informally,
we may say that a model is overfitted if its complexity is not justified by the data. In
this way, we may penalize a model for having too many parameters. An objective way
of implementing this idea is by some formula that takes into account the explained
variance (sum of squares) and the number of parameters. As we saw in Eq. 3.3 we may
decompose the total sum of squares into a part that depends on the model and a part
that depends on the residual. Actually, R2 is the fraction of the total sum of the squares
explained by the model.

R2 =
SSmodel

SStotal
=

SStotal−SSresiduals

SStotal
= 1− SSresiduals

SStotal

If we have N observations and a model with with p parameters, the adjusted R2 is
defined as

R2
ad j = 1− SSresiduals/(N− p)

SStotal/(N−1)
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Figure 4.7: Example of a dataset for which a linear regression (Y = b0 +b1X) has very
low p-value (0.000105) and very low coefficient of determination, R2, (0.003005). This
low coefficient of determination implies that the model cannot explain even 0.5% of the
observed variance.

In this way, we only augment the number of parameters if the decrease in sum of
squares of the residuals sufficiently justifies the “cost” of an extra parameter. Other
model selection tools exist like Akaike’s Information Criterion (AIC), Schwarz’s Bayesian
Information Criterion (BIC), Minimum Description Length (MDL), or Mallow’s Cp,
each one with different properties and assumptions.

Two models are nested if one of them is a particular case of the other, for instance,
Y = b0 +b1X is nested in Y = b0 +b1X +b2X2. For nested models we may also check
if the extra parameter is justified through an hypothesis test called Partial F test. If
we refer to the simple model as “reduced” and the more complex model as “full”, then
under the null hypothesis (H0 : there is no difference between the explanatory power of
both models) the statistic

F =

SSreduced
residuals−SS f ull

residuals
p f ull−preduced

SS f ull
residuals

N−p f ull

is distributed as a Snedecor’s F with p f ull− preduced and N− p f ull degrees of freedom.
Likelihood ratio, Wald or Score (Lagrange multiplier) tests can also be employed for
this task. BIC and MDL were also designed for the selection of nested models. For
the comparison of non-nested models we may use AIC or the Relative Likelihood test.
Bear in mind that we should always compare models fitted to the same dataset.

Coming from the machine learning field, some other techniques like K-fold cross
validation, leave-one-out, or bootstrapping can also be used to assess the validity of
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Figure 4.8: Example of overfitting. The same observations have been fitted with poly-
nomials of degree 2 and 9. The more complex model goes closer to the observations
thanks to the larger number of parameters, but it does not generalizes well the value of
the function between samples or outside the measurement region.

our regression model. These techniques follow a strategy in which the regression is
performed on a subset of the data (training phase) and tested on the remaining part of
the data (test phase). This process is repeated several times by randomly changing the
subsets used for fitting and testing. By analyzing the performance of the regressor on
the test data across the multiple runs, we can determine the capacity of the regressor to
generalize to unseen data and assess the degree of overfitting.

We also misuse regression if we fit scientifically non-sensible models to data simply
because the function fits well the data. For instance, the natural regression for the
reaction rate of a chemical reaction is of the form

V =Vmax
[S]

Km +[S]

where [S] is the concentration of the substrate, V is the reaction speed, and Vmax and Km
are the model parameters. This family of functions have a chemical reasoning behind
(with its own assumptions) that, if the assumptions are justified in our case, should
explain the observed reaction rate values. We cannot use the regression model

V = b0 +b1 log([S])

simply because it has a smaller R2. In the absence of a family of regressors based on
physical reasoning, we should not fit many regression functions and see which one fits
the best. This is another way of data snooping.
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4.3 Test selection guide
Although data analysis is not within the scope of this book, the question of which
should be the appropriate statistical test for this data is so common, that we here include
some guide to select some suitable statistical tool for the data analysis. This is not the
ultimate guide and the researcher wise selection is always encouraged. The interested
reader is referred to Sheskin (2004) and Kanji (2006) for a more comprehensive review
of the tests available and their applicability. In this guide we simply give the test name
and not the reference, the reader must look for it in his/her software tool as well as the
theory behind it.

In many cases, there are parametric and non-parametric tests available. Parametric
tests assume some statistical distribution for the observed data (usually normality).
If this assumption is correct, these tests are more powerful than their non-parametric
equivalents since they have more information about the data being analyzed. Having
more statistical power is useful if the effect size (for instance, the difference between
the different groups) is relatively small. If the effect size is large, then, both kind of
tests (parametric and non-parametric) should be able to identify it as significant. On
the other side, if the Gaussian assumption is largely violated, p-values calculated by
parametric tests are incorrect.

S.1 What kind of analysis do you want to perform?

• Test about continuous variables (e.g., height, temperature, blood pressure),
go to S.2.

• Multiple dependent and independent variables (e.g., regression problem
with multiple predictors and predicted variables), go to S.11.

• Test about ordinal variables (e.g. mild, medium, severe), go to S.12.

• Test about count data (e.g. number of visits to a maze room in 10 minutes),
go to S.18.

• Test about discrete/categorical variables (e.g., male/female, yes/no, red/green/blue),
go to S.19.

• Test about correlation/association (e.g., relationship between height and
weight; animal sex and hormone level), go to S.27.

• Test about survival (e.g., time before a tumor grows to a given size), go to
S.33

• Sequential tests (e.g., we have to test 80 animals, but we will do interim
tests to see whether we can take a decision earlier), go to S.34.

S.2 Test about continuous variables. Which is the number of variables you are ana-
lyzing?

• One variable (e.g., weight), go to S.3.

• One variable, but it is an angle, go to S.4.

• Two or more variables (e.g., weight and height), go to S.10.
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S.3 Test about one continuous variable. A sample is a set of independent measure-
ments. For instance if you are measuring the level of an hormone in a group of
animals, you have 1 sample. If you are comparing the level of the hormone in
two groups (control and treatment), then you have 2 samples. If you are com-
paring the level of the hormone for multiple doses and for each dose you test a
number of animals, then you have 3 samples.

Two samples are independent if the measurements are on different animals. Two
samples are dependent if an animal is measured before and after treatment, or
we measure the left and right eye of the same animal. Two samples are also
dependent if for each animal, we look for a matched animal with almost identical
characteristics (for instance, twins or siblings).

How many samples do you have?

• 1 Sample, go to S.5.
• 2 Independent samples, go to S.6.
• 2 Dependent samples, go to S.7.
• 3 or more independent samples, go to S.8.
• 3 or more dependent samples, go to S.9.

S.4 Test about one continuous, angular variable. Due to the special nature of angles
(0 and 360 degrees denote the same orientation), special tests are particularly
suited for this special case.

• Randomness: to check if the set of angles tend to cluster or they are uni-
formly distributed you may use V-test or Watson’s U2

n test.
• Two samples:

– Watson-Williams test or Mardia-Watson-Wheeler test to check if the
mean angles of two independent groups significantly differ.

– Watson’s U2 test to test if two groups of angles significantly differ with
respect to their mean direction or angular variance.

• Three or more samples: Harrison-Kanji-Gadsden is an ANOVA-like tech-
nique for angular data.

S.5 Test about one continuous variable measured in one sample. For instance, mea-
suring the response time of a group of animals or the concentration of a drug in
serum in a single group of animals after having received a fixed dose.

• Parametric tests.
– Tests about the mean:
∗ z-test: if you want to compare the mean of your sample to a pre-

defined value and you know the variance before doing the experi-
ment.

∗ Student’s t-test: if you want to compare the mean of your sample
to a predefined value and you have to estimate the variance from
the data itself.
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– Test about the variance: χ2 test if you want to compare the variance of
your variable with some predefined value.

– Test about the skewness: skewness test if you want to know if the
distribution your data is coming from is symmetric or not about its
centre. A symmetric distribution has skewness=0.

– Test about the kurtosis: kurtosis test if you want to compare the kurto-
sis of your sample to a predefined value (e.g., the standardized Gaus-
sian distribution has a kurtosis of 3).

– Normality test if you want to check if the distribution the data comes
from is compatible with the Gaussian distribution. There are a num-
ber of them: 1) D’Agostino-Pearson test, 2) JarqueBera test, 3) An-
dersonDarling test, 4) Cramrvon Mises criterion, 5) Lilliefors test, 6)
ShapiroWilk test, 7) Pearson’s χ2 test, 8) Fisher’s cumulant test, 9) the
w/s test.

– Distribution test: if you want to test that your data is compatible with a
particular continuous distribution, you may use KolmogorovSmirnov
test.

– Test about outliers: Dixon’s Q test, Grubbs’ test, Peirce and Chau-
venet’s criteria for identifying the presence of outliers.

• Non-parametric tests.

– Tests about the mean: The following tests are focused on showing
if the mean or median of the variable being analyzed, X , is zero or
not. If we are interested in showing that the is larger than a threshold
µ0, we analyze the sign of the variable X − µ0. The following are
different possibilities for this test: 1) A permutation test for the mean,
2) Wilcoxon signed-rank test, 3) the sign test for a median.

– Test about randomness: for example, are the residuals of a regression
really random, or they follow some pattern with the predictor variable?
Residuals must be first sorted with respect to the predictor (for in-
stance, time). Possibilities for this test are: 1) mean-square successive
difference test, 2) the adjacency test for randomness of fluctuations, 3)
the serial correlation test for randomness of fluctuations, 4) the turning
point test for randomness of fluctuations, 5) the difference sign test for
randomness, 6) the run test on successive differences, 7) the run test,
8) the Wilcoxon-Mann-Whitney rank sum test for the randomness of
signs, 9) the rank correlation test for randomness.

S.6 Test about one continuous variable measured in two independent samples. Some
examples comparing an hormone level between two different mouse strains or
comparing some physiological variable in a control and treatment groups.

• Parametric tests.

– Test about the mean: you want to compare the mean in both samples.
In case of multiple tests you should adopt some protection against fam-
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ily error inflation like 1) Bonferroni correction, Holm-Bonferroni, 3)
Sidak, 4) Benjamini-Hochberg (False Discovery Rate).
∗ z-test: if you know the variance of each group before doing the

experiment.
∗ Student’s t-test: if you have to estimate the variance of each group

from the data itself.
∗ The single-factor, between-subjects ANCOVA (Analysis of Co-

variance), if you have measured another variable that may help in
the comparison between the two groups (e.g., the weight of each
animal).

∗ If the ANOVA rejects the equality of the means of all groups,
then post-hoc comparisons will be performed between pairs of
groups. In this case, you may use: 1) Least Significant Differ-
ence, 2) Tukeys Honestly Significant Difference to compare all vs
all groups (also known as Tukey’s range, or Tukey-Kramer), 3)
Link-Wallace test to compare all vs all groups, 4) Dunnetts test
to compare all vs control, 5) Hsus test to compare all vs best,
6) Scheffe’s test to perform unplanned comparisons, 7) Brown-
Forsythe if the variance of the two groups is different, 8) Duncan’s
Multiple Range test, 9) Newman-Keuls adapts the test to the size
of the difference between the two groups.

– Test about the variance: you want to compare the variance in both
samples.
∗ Snedecor’s F test for two population variances. There is a variant

of this test that includes the correlation between measurements in
both groups.

∗ Hartley’s Fmax test for the homogeneity of variance.
∗ Bartlett’s test.
∗ Levene’s test.

• Non-parametric tests.

– Test about the mean: Rather than the mean, the following tests nor-
mally address the equality of the median. 1) Wilcoxon-Mann-Whitney
or Mann-Whitney U test or rank-sum test, 2) Tukey-Duckworth test,
3) Mood’s median test, 4) Rank-sum test for the difference between
the largest mean and the rest.

– Test about the variance: 1) Siegel-Tukey test for equal variability, 2)
Moses test for equal variability

– Test about the distribution: Do both samples come from the same dis-
tribution? You may use: 1) Kolmogorov-Smirnov test, 2) the median
test of two populations, 3) Wilcoxon inversion test (U-test), 4) van der
Waerden normal-scores test.

S.7 Test about one continuous variable measured in two dependent samples. For ex-
ample, comparing the effect of a drug before and after treatment, or comparing
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the recovery of two dermal lesions in an animal (one treated and the other un-
treated). Typically both measurements (e.g., before and after) are combined into
a single variable that represents the difference between the two stages. However,
this step depends on the specific tool used.

• Parametric tests.

– Test about the mean: 1) z test for two dependent samples if you assume
you know beforehand the variance of the difference, 2) Student’s t test
for two dependent samples if you will estimate the variance from the
data itself, 3) Sandler’s A test, 4) the single-factor, between subjects
Analysis of Variance (1-way ANOVA), 5) the single-factor, between
subjects Analysis of Covariance (1-way ANCOVA) if you have also
measured some covariate (e.g., the animal’s age).

• Non-parametric tests.

– Test about the mean: 1) Wilcoxon matched-pairs signed-rank test, 2)
binomial sign test for two dependent samples, 3) Kruskal-Wallis one-
way Analysis of Variance (ANOVA), 4) Jonckheere-Terpstra test for
ordered alternatives.

S.8 Test about one continuous variable measured in three or more independent samples.
For example, comparing the effect on weight of five different diets.

• Parametric tests.

– Test about the mean: you want to compare the mean in all groups. The
rejection of the null hypothesis normally implies that not all means
are equal, meaning that there are at least two that are different to each
other. A post-hoc analysis then follows trying to identify the pair(s)
that is(are) different (see S.6).
∗ The single-factor, between subjects Analysis of Variance (1-way

ANOVA).
∗ The single-factor, between-subjects Analysis of Covariance (1-

way ANCOVA), if you have measured another variable that may
help in the comparison (e.g., the weight of each animal before
starting the diet).
∗ If groups are defined by several independent variables, you may

use 2-way ANOVA, 3-way ANOVA. For example, groups are de-
fined by diet and sex.
∗ If groups have a nested nature (e.g., we take several individuals

from each group, and take several measurements from each indi-
vidual; the measurements form a subgroup within larger groups),
the you may use nested ANOVA.

– Test about the variance: you want to check if the variance in all groups
is the same. Some possibilities are: 1) Hartley’s Fmax, 2) Bartlett’s test,
3) Cochran’s C test, 4) Levene’s test.



298 CHAPTER 4. STATISTICAL PITFALLS

• Non-parametric tests.

– Test about the mean: 1) Kruskal-Wallis 1-way ANOVA, 2) ordered
logistic regression, 3) Steel test for comparing K treatments with a
control, 4) median test of K populations, 5) Jonckheere-Terpstra test
for ordered alternatives.

– Test about the variance: Brown-Forsythe test.
– Test about the distribution: van der Waerden normal-scores test.

S.9 Test about one continuous variable measured in three or more dependent samples.
For example, measuring the blood pressure of animals before treatment and 1, 2,
4 and 8 hours after a drug bolus.

• Parametric tests.

– Test about the mean: The single-factor, between subjects Analysis of
Variance (1-way repeated measures ANOVA).

• Non-parametric tests.

– Test about the mean: 1) Friedman two-way Analysis of Variance (ANOVA)
by ranks, 2) Page test for ordered alternatives.

S.10 Test about two or more continuous variables. For the hypothesis about the dif-
ference between two or more population means you may use:

• The between-subjects factorial analysis of variance (1-way MANOVA).
The associated test is the Hotelling’s T 2 test. Example: Comparing the
height and weight of two or more mouse strains.

• The within-subjects factorial analysis of variance (Repeated MANOVA, the
same animal is measured multiple times along time, and the time changes
are sought). Example: Comparing the height and weight of a group of mice
as they grow at 1, 5, 10 weeks old.

• The factorial analysis of variance for a mixed design (One-way and Re-
peated MANOVA). Example: Comparing the height and weight of two or
more mouse strains as they grow at 1, 5, 10 weeks old.

S.11 Regression. In the following, we understand regression in a very wide sense.
We will include many different problems that they all share a common charac-
teristic: they all can be understood as trying to find some functional relation-
ship between sets of variables. We will distinguish between the analysis of de-
pendence (that tries to find an explicit dependence (Y1,Y2, ...) = f (X1,X2, ...))
and the analysis of interdependence (that tries to find an implicit dependence
(Z1,Z2, ...) = f (X1,X2, ...)). In the following the variables Y1, Y2, ... refer to
the experimentally observed, dependent variables, while X1, X2, ... refer to ex-
perimentally observed, independent variables. The variables Z1, Z2, ... refer to
unobserved (latent) independent variables. Continuous variables are represented
by capital letters (X1, X2, ...), while non-continuous variables are represented by
small letters (x1, x2, ...)
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• Analysis of dependence.
– Regression: Y1 = f (X1). A continuous variable is predicted from an-

other continuous variable (e.g. the length of an animal is predicted
from his weight). The function f may be linear or non-linear. If the
function is linear and the residuals are Gaussian, there are closed-form
tests for the regression coefficients. If not, bootstrapping may be used
to test that the regression coefficients are significantly different from
0. The significance of the different parameters of a linear regression
can be performed with 1) F-test for non-additivity, 2) F-test for main
effects and interaction effects, 3) F-test for nested or hierarchical clas-
sification, 4) F-test for the linearity of regression, 5) t-tests and Z-tests
may also be used if the residuals are normal. To see if the residuals of
a time regression are autocorrelated you may use the Durbin-Watson
test.

– Multiple regression Y1 = f (X1,X2, ...). A continuous variable is pre-
dicted from other continuous variables (e.g., the length of an animal is
predicted from his weight and his age). See comments for regression
above.

– Structural Equation Modelling (Y1,Y2, ...)= f (X1,X2, ...,Z1,Z2, ...) De-
pendent variables are predicted from observed and unobserved vari-
ables (e.g., (cholesterol LDL, cholesterol HDL)=f(weight, enzyme A
activity [unobserved])). See comments for regression above.

– MANOVA (Y1,Y2, ...) = f (x1,x2, ...). Several continuous variables are
predicted by several categorical variables (e.g., (Concentration hor-
mone A, concentration compound B)=f(strain, sex, age group)). As-
sociated tests to MANOVA are 1) Wilks’ Λ, 2) Pillai-Bartlett trace, 3)
Lawley-Hotelling trace, 4) Roy’s greatest root, 5) Hotelling’s T 2.

– MANCOVA (Y1,Y2, ...) = f (x1,x2, ...,X1,X2, ...). Several continuous
variables are predicted by several categorical variables and some con-
tinuous covariates (e.g., (Concentration hormone A, concentration com-
pound B)=f(strain, sex, age group, concentration compound C)). See
comments for MANOVA above.

– Discriminant analysis (and in general any classification algorithm) y1 =
f (X1,X2, ...). A discrete, binary variable is predicted from several con-
tinuous variables (e.g. disease (or healthy)=f(gene A expression, gene
B expression)). Testing if the classifier performs significantly better
than random can be done though McNemar’s or Fisher’s exact tests.
Cross-validation and bootstrapping also help to validate a classifier.
There is also a Discriminant test for the origin of a sample (e.g., is one
sample generated by model A or by model B).

– Logistic/Logit regression Y1 = f (X1,X2, ...). A discrete variable y1, ap-
proximated by a continuous variable Y1 (sometimes interpreted as the
probability of belonging to one class) is predicted by several continu-
ous variables (e.g., probability of disease=f(gene A expression, gene
B expression)). See comments for regression.
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– Canonical correlation, Partial Least Squares (Y1,Y2, ...)= f (X1,X2, ...).
Several continuous variables are predicted by several continuous vari-
ables (e.g. (gene A expression, gene B expression)=f(gene C expres-
sion, gene D expression)). See comments on regression above.

– Conjoint analysis y1 = f (X1,X2, ...,x1,x2, ...). An ordinal variable is
predicted by several categorical/ordinal/metric variables (e.g., sever-
ity=f(animal movement, water intake, food intake)). See comments
on discriminant analysis above.

• Analysis of interdependence. Although there are no tests associated, the
following techniques are useful data analysis techniques that are used in
many contexts.

– Dimensionality reduction (Principal Component Analysis, Factor Anal-
ysis, Independent Component Analysis, Non-negative Matrix Factor-
ization, ...) Z1,Z2, ...= f (X1,X2, ...). Several continuous latent factors
are sought from the continuous input data (e.g. (curiosity,intelligence)=f(exploration
time, exercise time, sleeping time)).

– Correspondence analysis Z1,Z2, ...= f (x1,x2, ...). Several continuous
latent factors are sought from discrete input data (e.g. (gene expression
A, gene expression B)=f(hair colour, eye colour, skin colour)).

– Clustering z1 = f (X1,X2, ...). A categorical variable, the cluster la-
bel, is predicted from several numerical variables (e.g. animals having
similar characteristics are put into the same cluster).

S.12 Tests about ordinal variables. An ordinal variable is one in which the values are
ordered (mild, medium, severe, irreversible), but the distance from one value to
the next does not have any meaning. For this reason, ordinal variables convey
much less information than continuous variables. They are also more related to
subjective evaluations (for instance an animal procedure may seem medium to a
veterinarian and severe to another one), and in this way subjected to a higher level
of noise. Many non-parametric tests of continuous variables (like temperature or
height) treat the variables like ordinal. In a way, most tests for ordinal variables
can be considered non-parametric, and generally speaking, there are many fewer
options than for continuous variables.

In the following all cases refer to experiments with a single ordinal variable that
will be tested. A sample is an independent group that has received a treatment.
For instance, if you are comparing the severity of a procedure in three groups
that are receiving different treatments, you have three samples.

How many samples do you have?

(a) 1 sample, go to S.13.

(b) 2 independent samples, go to S.14.

(c) 2 dependent samples, go to S.15.

(d) 3 or more independent samples, go to S.16.
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(e) 3 or more dependent samples, go to S.17.

S.13 Tests about one ordinal variable in one sample. For example, which is the sever-
ity of a procedure evaluated for a single treatment.

• Test about the median: if you want to compare the median of the obser-
vations to a predefined median, then you may use Wilcoxon signed-rank
test.

• Test about the distribution: if you want to compare the frequency of the ob-
servations to some predefined discrete distribution (e.g., mild 50%, medium
30%, severe 15%, irreversible 5%), you may use χ2 goodness-of-fit test.

S.14 Tests about one ordinal variable in two independent samples. For example, which
is the severity of a procedure evaluated for two treatments or for two research
centers.

• Test about the median: you want to compare the median of the observations
in the two groups. Possibilities are: 1) Mann-Whitney U-test, 2) Permuta-
tion test, 3) Ordered logistic regression.

• Test about the variance: you want to test if both groups have the same
variability. Possibilities are: 1) Bootstrap, 2) Jackknife, 3) Siegel-Tukey
test for equal variability, 4) Moses test for equal variability.

• Test about the distribution: you want to test if both groups have the same
discrete distribution. Possible tests are: 1) Kolmogorov-Smirnov test for
discrete distributions, 2) Bootstrap Kolmogorov-Smirnov test, 2) χ2 test.

S.15 Tests about one ordinal variable in two dependent samples. For example, which
is the severity of a procedure evaluated by two veterinarians, they independently
evaluate the same animals.

• Test about median: you want to test if the median of the difference between
both evaluations is zero. You may use: 1) Wilcoxon matched-pairs signed-
rank test, 2) binomial sign test for two dependent samples, 3) permutation
test.

S.16 Tests about one ordinal variable in three or more independent samples. For ex-
ample, which is the stress level of animals evaluated for three treatments.

• Test about median: you want to test if all groups have the same median.
Possibilities are: 1) Kruskal-Wallis one-way Analysis of Variance (ANOVA)
by ranks, 2) Jonckheere-Terpstra test for ordered alternatives, 3) van der
Waerden normal-scores test, 4) factorial logistic regression.

S.17 Tests about one ordinal variable in three or more dependent samples. For exam-
ple, which is the stress level of animals evaluated by three veterinarians.
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• Test about median: you want to test if all groups have the same median.
Possibilities are: 1) Friedman two-way Analysis of Variance (ANOVA) by
ranks (it is the non-parametric equivalent to the Repeated mesures ANOVA,
one of the variables is the animal being evaluated, the other is the evalua-
tor), 2) Page test for ordered alternatives.

S.18 Test on count data. Count data is of the form 0, 1, 2, ... For example, number
of photons arriving a detector, number of cells of a given type in a microscope
field, number of visits to a maze room in 10 minutes, etc. The usual way of
dealing with count data is by assuming it follows a given discrete distribution
and by fitting the parameters of that distribution. The fitting can be by a constant
(and then two or more groups can be compared) or by regression. Distributions
normally considered are:

• Poisson: number of events occurring in a fixed interval of time and/or space
if these events occur with a known average rate and independently of the
time since the last event.

• Negative binomial: number of successes in a sequence of independent
and identically distributed Bernoulli trials before a specified (non-random)
number of failures occurs.

• Zero-Inflated Count Models: on top of Poisson and Negative Binomial
count models we may add the concept of zero-inflation. For instance, we
may count the number of fishes caught by visitors to a national park. The
number of fishes can be modelled with a Poisson of a given parameter cal-
culated as a function of the number of children in the group, the number of
nights in the park, and the number of persons in the group. If a group takes
0 fishes, it may be because they tried to fish, but did not catch any fish (true
zero), or because they went with the children to see the park and they did
not try even fishing (inflated zero).

• Zero-truncated Count Models: There are situations in which the value 0
is not amenable for the Poisson or Negative Binomial count models. For
instance, the number of nights at hospital can be 1, 2, 3, ... but cannot be 0.
The probability distribution has to be adjusted to exclude the value 0.

• Hurdle models: there are two models: one generating the zeros, and another
one generating the positive values.

• Random effects count models: the parameter of the Poisson or negative
binomial is assumed not to be constant, but the realization of an underlying
random variable.

The following tests can be performed:

• Single sample:

– Test on the value of the model parameter. For example, has the count
rate parameter departed from a reference situation?
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– Test on the significance of a regression parameter. For example, does
the ingestion of magnesium increase the number of immune cells cir-
culating in blood?

• Two samples: for example, is the event rate in one group larger than in the
other group? If you are comparing two samples, and assume that both have
Poisson counts with different rates, then you may compare the two rates
with: 1) z-test if the the Poisson can be approximated by a Gaussian, 2)
F-test.

S.19 Test about discrete/categorical variables. A discrete variable is one that takes
a finite number of values (yes/no, control/disease, red/blue/green, male/female,
...). There is no logical order among the different possibilities.

How many discrete variables are you considering?

• 1, go to S.20.
• 2, go to S.26.

S.20 Test about one discrete/categorical variable. A sample is a set of independent
measurements that have received the same treatment. For instance, if you are
studying the number of responding animals for three different treatments, you
have three samples.

How many samples do you have?

• 1 sample, go to S.21.
• 2 independent samples, go to S.22.
• 2 dependent samples, go to S.23.
• 3 or more independent samples, go to S.24.
• 3 or more dependent samples, go to S.25.

S.21 Test about one discrete/categorical variable in one sample.

• Test about the distribution: For example, is the distribution of phenotypes
concordant with a Mendelian inheritance? or is the proportion of males
with a given behavior equal to 50%?

– For binary variables: 1) Binomial sign test, 2) z-test (if the sample
size is large enough so that the number of observations can be approx-
imated by a Gaussian).

– For multivalued (including binary) variables: 1) exact test of goodness-
of-fit, 2) χ2 goodness-of-fit, 3) G-test of goodness-of-fit (if the sample
size is large).

• Test about randomness: if you are testing if the sequence of observations
is random or, on the contrary, it has a time pattern. Possible tests are: 1)
Single sample runs test, 2) The difference sign test for randomness, 3) the
Wilcoxon-Mann-Whitney rank sum test for the randomness of signs, 4) the
rank correlation test for randomness, 5) frequency test, 6) gap test, 7) Poker
test, 8) maximum test, 9) Coupon’s collector test.
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S.22 Test about one discrete/categorical variable in two independent samples. For ex-
ample, you are testing if the number of respondents to a drug in two groups are
similar, or if the choice preferences in two groups are similar.

• Test about distribution:

– For binary variables: 1) Fisher’s exact test, 2) z-test (if the sample size
is large enough so that the number of observations can be approxi-
mated by a Gaussian), 3) z-test for correlated proportions.

– For multivalued (including binary) variables: 1) χ2 for homogeneity
of groups, 2)χ2 for the independence of groups, 3) G-test of indepen-
dence (if the sample size is large).

S.23 Test about one discrete/categorical variable in two dependent samples. For ex-
ample, scoliosis is a disease in which the spine has an excessive curvature. One
of the problems is the development of fibrosis. Are the probabilities of develop-
ing fibrosis in the concave and convex sides of the spine equal? We have samples
from the convex and concave sides of the same animal.

• Test about distribution: 1) McNemar test, 2) Gart test for order effects, if
the dependence is introduced by the order in which treatments are applied,
3) Bowker test of internal symmetry, 4) Stuart-Maxwell test of marginal
homogeneity.

S.24 Test about one discrete/categorical variable in three or more independent samples.
For example, you are testing if the number of respondents to three different drugs
are similar.

• Test about distribution: 1) χ2 for the compatibility of K counts, 2) Cochran’s
test for the consistency of an K×2 contigency table, 3) χ2 test for the in-
dependence of a p×q contingency table, 4) Cochran-Mantel-Haenszel test
(it adds an extra variable, for instance, you are testing if the number of
respondents to three different drugs are similar, and you will repeat this
experiment at different research centers).

S.25 Test about one discrete/categorical variable in three or more dependent samples.
For example, you are testing if the number of respondents to two drugs along
time (repeated measures) is the same.

• Test about distribution: 1) Cochran’s Q test, 2) Repeated measures logistic
regression.

S.26 Test about two discrete/categorical variables in two samples. For example, count
the number of animals with a given phenotype among three possibilities in a ge-
netic cross (expected to follow a 1:2:1 ratio), do multiple crosses. One of the
variables is the phenotype, the other the cross number.

• Test about distribution: Repeated G-tests of goodness-of-fit.
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S.27 Test about correlation/association. What kind of variables do you want to test?

• 1 variable among multiple groups, go to S.28.

• 2 or more continuous variables, go to S.29.

• 2 ordinal/rank variables, go to S.30.

• 2 categorical variables, go to S.31.

• 1 continuous and 1 categorical variables, go to S.32.

S.28 Test about correlation/association of one variable among multiple groups. We ask
several researchers to evaluate the pain level of a given procedure. What is the
correlation (consistency) between the different answers? We have a collection of
measurements for each rater and the measurements from the same rater make a
group.

This problem of correlation between groups can be addressed by:

• For continuous variables: Test on the intraclass correlation coefficient.

• For ordinal variables: 1) Kendall’s coefficient of concordance test, 2) the
rank correlation test for agreement, 3) Friedman’s test.

S.29 Test about correlation/association of two or more continuous variables. The cor-
relation tests normally are based on linear associations between the variables
being studied (see Sec. 4.2, about the misuse of the correlation).

• Parametric tests: they normally assume gaussianity of the two variables
being compared.

– Correlation between two variables:
∗ Test of the Pearson correlation coefficient. For example, are the

length and weight of an animal correlated?
∗ Test of the Partial correlation coefficient. For example, are the

length and weight of an animal correlated when we remove the
effect of the age from both variables?
∗ Test of the Semipartial correlation coefficient. For example, are

the length and weight of an animal correlated when we remove
the effect of the age from the length?

– Correlation between a variable and a set of variables.
∗ Test of the Multiple correlation coefficient. For example, what is

the correlation between weight and (length, waist size, and neck
size)?

• Non-parametric tests: go to S.30.

S.30 Test about correlation/association of two ordinal/rank variables. For instance, what
is the correlation between the assessment of the severity of a procedure and the
level pain?

This problem is addressed by: 1) test on the Spearman’s rank-order correlation
coefficient, 2) test on Kendall’s τ , 3) test on Goodman and Kruskal’s γ .
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S.31 Test about correlation/association of two categorical variables.

• For binary variables: for example, is having a gene active or not related to a
disease state? This is addressed by: 1) χ2 test of independence, 2) Fisher’s
exact test, 3) test on the contingency coefficient, 4) test on Cramer’s φ

coefficient, 5) test on Yule’s Q, 6) test on the Odds Ratio, 7) test on Cohen’s
κ .

• For multivalued (including binary) variables: is the phenotype of an animal
related to its social behavior classified into 4 different categories? This is
addressed by: 1) test on the contigency coefficient, 2) test on Cramer’s φ

coefficient, 3) test on the Odds Ratio, 4) test on Cohen’s κ .

S.32 Test about correlation/association of one continuous and one categorical variables.
Is the animal length related to sex? Or to a specific phenotype?

• For binary variables: 1) test on Cohen’s d index, 2) test on Cohen’s g index.

• For multivalued (including binary): 1) Test on the coefficient of determina-
tion, R2, of a 1-way ANOVA model, 2) test on Ω2, 3) test on η2, 4) test on
Cohen’s f index.

S.33 Test about survival. Survival data is analyzed by fitting a survival model to the
observed data and then making inference on the fitted parameters. The param-
eters may be assumed to be constant or to be a function of other variables. In
this latter case, tests on the significance of the regression parameters may also be
performed.

The following models are normally used in survival analysis: 1) Exponential
survival, 2) Weibull survival, 3) Normal survival, 4) Log-logistic survival, 5) Γ

survival, 6) Exponential-logarithmic survival.

The regression of the model parameters can be done through: 1) Cox propor-
tional hazards regression, 2) Parametric survival models, 3) Survival trees.

The following tests can be performed:

• Single sample:

– Test on the value of the model parameter. For example, has the survival
parameter departed from a reference situation?

– Test on the significance of a regression parameter. For example, does
the ingestion of iron relate to the survival after stroke?

• Two samples: For example, is the survival in one group larger than the
survival in another group? This can be done by: 1) Test on the comparison
of two exponential models (one for each group), 2) Log-rank test, there is
no assumption about the specific survival model but it is assumed that the
ratio between the hazards in both groups is constant.
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S.34 Sequential tests. Sequential tests are performed as a way to early stopping the
experiment if there are not good chances of having found a useful treatment or if
the evidence of having found it is so overwhelming that we do not need to go to
the end of the planned experimental size.

There are sequential tests to verify:

• That the mean of the treatment is different from a reference mean.

• That the variance of the treatment is different from a reference variance.

• That the proportion of individuals with a given label is different from a
reference proportion (a Bernouilli variable).

• That the coefficient of variation (standard deviation divided mean) is within
pre-specified limits.

Some of these tests and the corresponding sample size calculations are presented
in Sec. 2.9.
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